COMP 410 - Spring 2017
Programming Assignment 5

Due back by 8:00 am on April 17th

For this assignment, you are to

1)
2)
3)

Read in a directed graph from an input text file,
Represent this graph in adjacency list form, and
Use the topological sort algorithm to either flag the graph as containing a cycle, or obtain a list of its vertices in

topologically sorted order.

The input file. Here is an example text-file representation of a graph:

5

Dallas Houston Austin Amarillo Lubbock
Dallas Austin 100

Houston Lubbock 100

Austin Lubbock 200

Dallas Amarillo 125

Lubbock Dallas 10

Austin Amarillo 220

This lists a graph with five vertices named Dallas, Houston, Austin, Amarillo, and Lubbock, and 6 edges (e.g., there is an
edge leading from Dallas to Austin, of cost 100).

Reading in the graph. You are to write a public class ReadGraph that supports the following public methods:

public static String[] readVertices (Scanner fileln).

This method returns a sorted list of vertex names (and retains a copy for future use).
public static AdjListNode[] readEdgesAdjList (Scanner fileln)
This method returns an adjacency list representation of the graph.

The Adjacency list representation. For each edge (3, j), there should be an entry in vertex ¢’s adjacency list denoting that
there is an edge (from 7) to j, and the cost/ weight of the edge — for this assignment, you may assume that the cost is an
integer. Here is the AdjListNode class you are to use:

public class AdjListNode {
int v; //The vertex to which the edge leads
int w; //The weight of the edge
AdjListNode next;
public AdjListNode (int i, int Jj, AdjListNode n) {//Constructor

v

}

= 1i; w = j;next = n;

The “main” class. Here is what your main class looks like:

public class Main {
static String[] vertices; // The sorted list of vertex names

static AdjListNode[] adjList; // The adjacency list

/%

* You are to write the following method. You will need to use a stack
* or queue of integers here (you may use java.util.{Stack, Queue}

*/

public static String[] topSort() { ... }

public static void main(String[] args) {
if (args.length != 1) {
System.err.println("Incorrect number of args passed");
System.exit (-1);

Scanner fileIn = new Scanner (new File(args[0]));
vertices = ReadGraph.readVertices (fileln);
adjList = ReadGraph.readEdgesAdjList (fileln);
String[] sorted = topSort();

/ *

* At this point, "sorted" contains the vertices in topologically-sorted
* order (or all NULLs if the graph is not acyclic
*/

Submission instructions. You should upload the following three files in a . zipfile to Sakai

1) A file titled ReadGraph. java containing the two required public methods (you may have additional private

methods and variables);
2) A file titled Main. java, completing the Main class shown above; and
3) A pdf file indicating the status of your project — whether it all works (and if not, which parts do and how you have

tested these parts, and what the problem appears to be with the rest of the parts).

Note. For this assignment you may use the Java methods Arrays.sort and Arrays.binarySearch. You may NOT use
any other Java library methods or classes EXCEPT Arrays.sort(), Arrays.binarySearch(), java.util.Stack, and java.util. Queue.

