
Abstraction facilitates	 the	correct construction	 of	complex	systems
Example:	voltage	levels	à bits	àmachine	language	àassembly	language	à Java

But	abstraction	may	trade	off	efficiency for	correctness
Arrays:	must	declare	size beforehand	(waste	memory)

[in	Java,	initialization wastes	run-time	as	well…]

A	data	structure:	 a	way	of	storing and	organizing data	in	a	computer

Abstract	Data	Types:	ADT’s	– an	abstract	model	for	a	certain	class	of	data	
structures	 that	have	similar	behavior

Java:	an	interface specifies	 an	ADT;	a	class	that implements	 the	interface is	
the	data	structure

Abstraction



§ Software	developers	 use ADT’s;	we	will	learn

1. How	to	use common	ADT’s	(wearing	our software	 developer hat)

- Java:	Choosing	the	right	interface

2. How	to	implement these	ADTs	efficiently	 (our	computer	 scientist hat)

- Java:	write	concrete	 classes	 for	implementing	 the	interfaces	

Abstraction



Introduction to the course

Some	of	the	topics we	will	cover

• “Linear”	data	structures	– stacks	and	queues	

• Implementation	using	arrays and	linked	lists

• A	brief	introduction	to	run-time	analysis:	Big-Oh notation

• Illustration	via	sorting (insertion/	bubble/…	/merge-sort)	and	searching

• The	priority	queue	ADT

• Implementation	using	heaps

• Heapsort

• Some	more	sorting: quicksort;	radix- and bucket- sort;	external	sorting

•Dynamic	Dictionaries

• binary	search	trees	(BSTs),	

• balanced	BSTs,	

• hash	tables

•Graphs – representation;	top-sort;	shortest	paths


