COMP 410 (SPRING 2017) 2

Outline of topics:

o Review. Abstraction: Complexity (Correctness?) versus Efficiency
lustrated last time for Stack of doubles — java.util.Stack versus “roll-my-own” versus in-line implementation

e Stacks and Queues

Stacks and queues

Stacks: Last In First Out (LIFO) Queues: First In First Out (FIFO)
(Often drawn as a well) (Usually drawn horizontally)
et «ll |l e

front of queue rear of queue

Create an empty queue

Enqueue an item at the back of the queue
Dequeue the front-most item

Check whether the queue isEmpty

Create an empty stack
Push an item on the stack
Pop the top-most item

Check whether the stack isEmpty Peek at the front of the queue

Check whether the queue isFull

Peek at the top-most item
Check whether the stack isFull

— Abstraction — the size constraint should be respected in a LL implementation as well
— What if we do a pop () on an empty Stack?
Preconditions represent a contract between user and the ADT. (Implementation need not be robust beyond the

preconditions.)
o Implementation: arrays and Linked Lists

- Did in class: Stack in array; Queue in LL
- Generics in Java; create an array of Ob ject and then cast

— Discuss efficiency issues:

1) Top of stack in array should be to the right (otherwise, each push, pop, is O(n))
2) Queue in linked list: having each element point to the one in front of it is inefficient (the queue [a, b, c]
should be stored as a—->b—->c rather than a<--b<--c)

3) Enqueue in array should wrap-around (otherwise, ©(n) worst-case)

