
Hashing



Dynamic	Dictionaries	

Operations:
• create
• insert
• find
• remove
• max/	min
• write	out	in	sorted	order

Only	defined	 for	object	classes	that	are	Comparable



Hash	tables

Operations:
• create
• insert
• find
• remove
• max/	min
• write	out	in	sorted	order

Only	defined	 for	object	classes	that	are	Comparable have	equals defined



Hash	tables

Operations:
• create
• insert
• find
• remove
• max/	min
• write	out	in	sorted	order

Only	defined	 for	object	classes	that	are	Comparable have	equals defined

Java	specific:		From	the	Java	
documentation



Hash	tables	– implementation	

• Have	a	table	(an	array)	of	a	fixed	tableSize

• A hash	function	determines	where	in	this	table	each	

item	should	be	stored

itemhash(item)

[a	positive	integer]

%	tableSize

THE	DESIGN	QUESTIONS

1. Choosing	tableSize

2. Choosing	a	hash	function

3. What	to	do	when	a	collision occurs

2174 % 10	=	4



Hash	tables	– tableSize

• Should	depend	on	the	(maximum)	number	of	values	to	be	stored

• Let λ =	[number	of	values	stored]/	tableSize

• Load	factor of	the	hash	table

• Restrict	λ to	be	at	most	1	(or	½)	

• Require	tableSize	to	be	a	prime	number

• to	“randomize”	away	any	patterns	that	may	arise	in	the	hash	function	

values

• The	prime	should	be	of	the	form	(4k+3)

[for	reasons	to	be	detailed	later]



Hash	tables	– the	hash	function

If	the	objects	to	be	stored	have	integer	keys (e.g.,	student	IDs)	hash(k)	=	k	is	

generally	OK,	unless	the	keys	have	“patterns”

Otherwise,	some	“randomized”	way	to	obtain	an	integer



Hash	tables	– the	hash	function

If	the	objects	to	be	stored	have	integer	keys (e.g.,	student	IDs)	hash(k)	=	k	is	

generally	OK,	unless	the	keys	have	“patterns”

Otherwise,	some	“randomized”	way	to	obtain	an	integer



Hash	tables	– the	hash	function

If	the	objects	to	be	stored	have	integer	keys (e.g.,	student	IDs)	hash(k)	=	k	is	

generally	OK,	unless	the	keys	have	“patterns”

Otherwise,	some	“randomized”	way	to	obtain	an	integer



Hash	tables	– the	hash	function

If	the	objects	to	be	stored	have	integer	keys (e.g.,	student	IDs)	hash(k)	=	k	is	

generally	OK,	unless	the	keys	have	“patterns”

Otherwise,	some	“randomized”	way	to	obtain	an	integer

Java-specific

•Every	class	has	a	default	hashCode()method	that	returns	an	integer

•May	be	(should be)	overridden

•Required	properties

consistent	with	the	class’s	equals()method

need	not	be	consistent	across	different	runs	of	the	program

different	objects	may	return	the	same	value!



Hash	tables	– the	hash	function

If	the	objects	to	be	stored	have	integer	keys (e.g.,	student	IDs)	hash(k)	=	k	is	

generally	OK,	unless	the	keys	have	“patterns”

Otherwise,	some	“randomized”	way	to	obtain	an	integer

Java-specific

•Every	class	has	a	default	hashCode()method	that	returns	an	integer

•May	be	(should be)	overridden

•Required	properties

consistent	with	the	class’s	equals()method

need	not	be	consistent	across	different	runs	of	the	program

different	objects	may	return	the	same	value!

From	the	Java	1.5.0	documentation		

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html#hashCode%28%29



Hash	tables	– collision	resolution

The	universe of	possible	items	is	usually	far	greater	than	tableSize

Collision:	when	multiple	items	hash	on	to	the	same	location	(aka	cell	or	bucket)

Collision	resolution	strategies	specify	what	to	do	in	case	of	collision		

1. Chaining	(closed	addressing)

2. Probing	(open	addressing)

a. Linear	probing

b. Quadratic	probing

c. Double	Hashing

d. Perfect	Hashing

e. Cuckoo	Hashing



Hash	tables	– implementation	

• Have	a	table	(an	array)	of	a	fixed	tableSize

• A hash	function	determines	where	in	this	table	each	

item	should	be	stored

itemhash(item)

[a	positive	integer]

%	tableSize

THE	DESIGN	QUESTIONS

1. Choosing	tableSize

2. Choosing	a	hash	function

3. What	to	do	when	a	collision occurs



Hash	tables	– tableSize

Restrict	the	load	factorλ =	[number	of	values	stored]/	tableSize		 to	be	

at	most	1	(or	½)	

Require	tableSize	to	be	a	prime	number	of	the	form	(4k	+	3)



Hash	tables	– the	hash	function

If	the	objects	to	be	stored	have	integer	keys (e.g.,	student	IDs)	hash(k)	=	k	is	

generally	OK,	unless	the	keys	have	“patterns”

Otherwise,	some	“randomized”	way	to	obtain	an	integer

Java-specific

•Every	class	has	a	default	hashCode()method	that	returns	an	integer

•May	be	overridden

•Required	properties

consistent	with	the	class’s	equals()method

need	not	be	consistent	across	different	runs	of	the	program

different	objects	may	return	the	same	value!



Hash	tables	– collision	resolution

The	universe of	possible	items	is	usually	far	greater	than	tableSize

Collision:	when	multiple	items	hash	on	to	the	same	location	(aka	cell	or	bucket)

Collision	resolution	strategies	specify	what	to	do	in	case	of	collision		

1. Chaining	(closed	addressing)

2. Probing	(open	addressing)

a. Linear	probing

b. Quadratic	probing

c. Double	Hashing

d. Perfect	Hashing

e. Cuckoo	Hashing



Hash	tables	– collision	resolution: chaining

Maintain	a	linked	list at	each	cell/	bucket		

(The	hash	table	is	an array	of	linked	lists)

Insert:	at	front	of	list

- if	pre-condition	 is	“not	already	in	list,” then	 faster

- in	any	case,	later-inserted	items	often	accessed	more	frequently	 (the	LRU principle)

Example:	Insert	02,	12, 22,	…,	92 into	an	initially	empty	hash	table	with	tableSize =	10

[Note:	bad	choice	of	tableSize	– only	to	make	the	example	easier!!]



Maintain	a	linked	list at	each	cell/	bucket		

(The	hash	table	is	an array	of	linked	lists)

Insert:	at	front	of	list

- if	pre-cond	is	that	not	already	in	list,	then	faster

- in	any	case,	later-inserted	items	often	accessed	more	frequently

Example:	Insert	02,	12, 22,	…,	92 into	an	initially	empty	hash	table	with	tableSize =	10

[Note:	bad	choice	of	tableSize	– only	to	make	the	example	easier!!]

Hash	tables	– collision	resolution: chaining



Maintain	a	linked	list at	each	cell/	bucket		

(The	hash	table	is	an array	of	linked	lists)

Insert:	at	front	of	list

- if	pre-cond	is	that	not	already	in	list,	then	faster

-in	any	case,	later-inserted	items	often	accessed	more	frequently

Find	and	Remove:	obvious	implementations

Worst-case	run-time:	Θ(N)	per	operation	(all	elements	in	the	same	list)

Average	case:	O(λ) per	operation
Design	rule:	for	chaining,	keep	λ ≤	1
If	λ becomes	greater	than	1,	rehash (later)

Hash	tables	– collision	resolution: chaining

The	load	factor:	[number	of	items	stored]/tableSize



Hash	tables	– collision	resolution:	probing

1. Chaining	 (closed	addressing)
2. Probing	 (open	 addressing)

a. Linear	probing
b. Quadratic	probing
c. Double	Hashing
d. Perfect	Hashing
e. Cuckoo	Hashing

In	case	of	collision,	 try	alternative	locations until	an	empty	cell	is	found

• [Open address]	

Probe	sequence:	ho(x),	 h1(x),	h2(x),	…,	with	hi(x)	=	[hash(x)	+	f(i)]	%	tableSize

The	function	 f(i)	 is	different for	the	different	probing	methods

Avoids the	use	of	dynamic	memory

f(i)	 is	a	linear function	of	i	– typically,	f(i)	=	i	

Example:	insert	89,	18,	49,	58,	and 69 into		a	table	of	size	10,	using	linear	probing



Hash	tables	– collision	resolution:	linear	probing

1. Chaining (closed addressing)
2. Probing (open addressing)

a. Linear probing
b. Quadratic probing
c. Double Hashing
d. Perfect Hashing
e. Cuckoo Hashing

In case of collision, try alternative locations until an empty cell is found

• [Open address] 

Probe sequence: ho(x), h1(x), h2(x), …, with hi(x) = [hash(x) + f(i)] % tableSize

The function f(i) is different for the different probing methods

Avoids the use of dynamic memory

f(i) is a linear function of i – typically, f(i) = i 

Example:	insert	89,	18,	49,	58,	and 69 into		a	table	of	size	10,	using	linear	probing



Hash	tables	- review

Supports	 the	basic	dynamic	dictionary	ops:	insert,	find,	 remove

Does	not need	class	to	be	Comparable	

Three	design	decisions:	 tableSize,	hash	function,	 collision	 resolution

Table	size

a	prime of	the	form	(4k+3),	keeping	load	factor constraints	in	mind

Hash	function

should	“randomize”	the	items

Java’s	hashCode() method

Collision	 resolution:	 chaining

Collision	 resolution:	probing (open	addressing)	– linear	probing

The	clustering problem



Hash	tables	- clustering

Two	causes	of	clustering:

multiple	keys	hash	on	to	the	same	location	(secondary clustering)

multiple	keys	hash	on	to	the	same	cluster	(primary clustering)

Secondary clustering	caused	by	hash	function;	primary,	by	choice	of	probe	sequence

Number	of	probes	per	operation	increases with	 load	factor



Hash	tables	– collision	resolution:	probing

1. Chaining	 (closed	addressing)
2. Probing	 (open	 addressing)

a. Linear	probing
b. Quadratic	probing
c. Double	Hashing
d. Perfect	Hashing
e. Cuckoo	Hashing

f(i)	 is	a	quadratic	function	of	 i	(e.g.,	f(i)	=	i2)	

Example:	insert	89,	18,	49,	58,	and 69 into		a	table	of	size	10,	using	quadratic	
probing



Hash	tables	– collision	resolution:	quadratic	probing

Example:	insert	89,	18,	49,	58,	and 69 into		a	table	of	size	10,	using	quadratic	
probing



Hash	tables	– collision	resolution:	quadratic	probing

Two	causes	of	clustering:

multiple	keys	hash	on	to	the	same	location	(secondary clustering)

multiple	keys	hash	on	to	the	same	cluster	(primary clustering)

Which	one	does	quadratic	probing	 solve?

primary	clustering

Efficient	implementation of	i2 à (i+1)2:	(i+1)	and	(2i+1)	 in	parallel,	and	then	add	i2 and	

(2i+1)

Choosing	 tableSize:

-prime:	at	least	half	the	table	gets	probed

-prime	of	 the	form	 (4k+3)	and	probe	sequence	 is	± i2:	entire	table	gets	probed

Remove:	lazy	delete must	be	used



Hash	tables	– collision	resolution:	probing

1. Chaining	 (closed	addressing)
2. Probing	 (open	 addressing)

a. Linear	probing
b. Quadratic	probing
c. Double	Hashing
d. Perfect	Hashing
e. Cuckoo	Hashing

To	get	rid	of	secondary clustering

Use	two	hash	functions:	 hash1(.) and	hash2(.)

Probe	sequence	“step”	size	is	hash2(.)

- [Unlikely	distinct	items	agree	on	both hash1(.)	and	hash2(.)]

hash2(.) must	never	evaluate	to	zero!

A	common	(good)	choice:	R	– (x	mod	R), for	R	a	prime	

smaller	than	tableSize

Example:	insert	89,	18,	49,	58,	and 69 into		a	table	of	size	10,	using	double	hashing	
with	hash2(x)	=	7	– x	mod	7



Hash	tables	– collision	resolution:	double	hashing

Example:	insert	89,	18,	49,	58,	and 69 into		a	table	of	size	10,	using	double	hashing	
with	hash2(x)	=	7	– x	mod	7



Hash	tables	– collision	resolution:	probing

1. Chaining	 (closed	addressing)
2. Probing	 (open	 addressing)

a. Linear	probing
b. Quadratic	probing
c. Double	Hashing
d. Perfect	Hashing
e. Cuckoo	Hashing



Hash	tables	– collision	resolution:	Cuckoo	hashing

Goal:	constant-time	O(1)	find in	the	worst	case

Example	application:	network	routing	tables

[remove also	takes	O(1)	time]

Insert	has	worst-case	Θ(N)	run-time

Keep	two hash	tables,	and	use	two	different	hash	functions



Hash	tables	– collision	resolution:	Cuckoo	hashing

TABLE	1 TABLE	2

0
1
2
3
4

A:	hash1(A)	=	0,	hash2(A)	=	2	

A B:	hash1(B)	=	0,	hash2(B)	=	0	B



Hash	tables	– collision	resolution:	Cuckoo	hashing

TABLE	1 TABLE	2

0
1
2
3
4

A:	hash1(A)	=	0,	hash2(A)	=	2	

A

B:	hash1(B)	=	0,	hash2(B)	=	0	B

C:	hash1(C)	=	1,	hash2(C)	=	4	
C

D:	hash1(D)	=	1,	hash2(D)	=	0	

D



Hash	tables	– collision	resolution:	Cuckoo	hashing

TABLE	1 TABLE	2

0
1
2
3
4

A:	hash1(A)	=	0,	hash2(A)	=	2	

A

B:	hash1(B)	=	0,	hash2(B)	=	0	B

C:	hash1(C)	=	1,	hash2(C)	=	4	

C

D:	hash1(D)	=	1,	hash2(D)	=	0	

D

E:	hash1(E)	=	3,	hash2(E)	=	2	
E

F:	hash1(F)	=	3,	hash2(F)	=	4	

F



Hash	tables	– collision	resolution:	Cuckoo	hashing

TABLE	1 TABLE	2

0
1
2
3
4

A:	hash1(A)	=	0,	hash2(A)	=	2	

A

B:	hash1(B)	=	0,	hash2(B)	=	0	B

C:	hash1(C)	=	1,	hash2(C)	=	4	

C

D:	hash1(D)	=	1,	hash2(D)	=	0	

D

E:	hash1(E)	=	3,	hash2(E)	=	2	

E

F:	hash1(F)	=	3,	hash2(F)	=	4	

F



Hash	tables	– collision	resolution:	Cuckoo	hashing

TABLE	1 TABLE	2

0
1
2
3
4

A:	hash1(A)	=	0,	hash2(A)	=	2	

A B:	hash1(B)	=	0,	hash2(B)	=	0	B

C:	hash1(C)	=	1,	hash2(C)	=	4	

C

D:	hash1(D)	=	1,	hash2(D)	=	0	

D

E:	hash1(E)	=	3,	hash2(E)	=	2	

E

F:	hash1(F)	=	3,	hash2(F)	=	4	

F



Hash	tables	– collision	resolution:	Cuckoo	hashing

TABLE	1 TABLE	2

0
1
2
3
4

A:	hash1(A)	=	0,	hash2(A)	=	2	

A B:	hash1(B)	=	0,	hash2(B)	=	0	B

C:	hash1(C)	=	1,	hash2(C)	=	4	

C

D:	hash1(D)	=	1,	hash2(D)	=	0	

D

E:	hash1(E)	=	3,	hash2(E)	=	2	

E

F:	hash1(F)	=	3,	hash2(F)	=	4	

F



Hash	tables	– collision	resolution:	Cuckoo	hashing

Insert

- Insert	into	Table	1,	using	hash1

- If	cell	is	already	occupied	

- bump item	into	other	 table	(using	appropriate	hash	function)

- Repeat

- Rehash after	k	repetitions	

Each	table	should	 be	more	than	half	empty	

Stronger condition	 than	load	factor	≤	½	



Rehashing

When	load	factor	becomes	too	large…

(Approximately)	double tableSize

Scan old	table,	inserting	each	non-deleted	item	into	the	new	table

Worst-case time?

- O(N2)	

Average-case:		O(N)

Amortized	analysis

Average	cost	per	insert,	over	a	sequence	of	repeated	re-hashings

[Not	great	for	interactive	applications…]





Hash	tables	- review

Supports	 the	basic	dynamic	dictionary	ops:	insert,	find,	 remove

Three	design	decisions:	 tableSize,	hash	function,	 collision	 resolution

Table	size:	a	prime of	the	form	(4k+3),	keeping	load	factor constraints	in	mind

Hash	function

Java’s	hashCode() method

item goes	to	hash(item)	%	tableSize

Collision:	multiple	 items	at	the	same	location

Collision	 resolution:-chaining

Collision	 resolution:	 -probing (open	addressing)
- Linear	probing

- Quadratic	probing

- Double	Hashing

- Cuckoo	Hashing



Java-specific	– hashCode() and	equals()

public class Employee {
String name;
int id;
public Employee(String n, int i){name = n; id = i;}

public boolean equals(Employee e){
return (name == e.name && id == e.id);

}
}

…
…

public static void main(String[] args) {
Employee e1=new Employee("weiss", 001);
Employee e2=new Employee("weiss", 001);
System.out.println(e1.hashCode() + ", " + e2.hashCode());
System.out.println(e1 == e2);
System.out.println(e1.equals(e2));

Employee e2 = e1;



f(i)	 can	be	any	linear function	 (a	*	i	+	b)

If	gcd(a,	tableSize)	=	1,	then	linear	probing	 will	probe	 the	entire	table

Primary	clustering:	blocks	of	occupied	cells	start	forming	 even	in	a	relatively	empty	table

Hash	tables	– collision	resolution:	linear	probing

any	item	hashing	 here…



f(i)	 can	be	any	linear function	 (a	*	i	+	b)

If	gcd(a,	tableSize)	=	1,	then	linear	probing	 will	probe	 the	entire	table

Primary	clustering:	blocks	of	occupied	cells	start	forming	 even	in	a	relatively	empty	table

Hash	tables	– collision	resolution:	linear	probing

any	item	hashing	 here… grows the	cluster	by	one



f(i)	 can	be	any	linear function	 (a	*	i	+	b)

If	gcd(a,	tableSize)	=	1,	then	linear	probing	 will	probe	 the	entire	table

Primary	clustering:	blocks	of	occupied	cells	start	forming	 even	in	a	relatively	empty	table

Hash	tables	– collision	resolution:	linear	probing

any	item	hashing	 here… merges	the	two	clusters



Hash	tables	- clustering

Two	causes	of	clustering:

multiple	keys	hash	on	to	the	same	location	(secondary clustering)

multiple	keys	hash	on	to	the	same	cluster	(primary clustering)

Secondary clustering	caused	by	hash	function;	primary,	by	choice	of	probe	sequence

Number	of	probes	per	operation	increases with	 load	factor



Hash	tables	– linear	probing:	remove

0

1

2

3

4

5

6

7

8

9

insert	A;	hash(A)	=	4

A

insert	B;	hash(B)	=	5

B

insert	C;	hash(C)	=	4

C

remove	B
find	C

Remove	must be	implemented	as	lazy	delete!!

- Load	factor	computed	 including	 lazy-deleted	items

- In	inserts,	may	“reclaim”	lazy-deleted	cells


