Hashing

Dynamic Dictionaries

Operations:
* create
* insert
* find
* remove
* max/ min
* write out in sorted order

Only defined for object classes that are Comparable

Hash tables

Operations:
* create
* insert
e find
* remove
* max/lmin
s write-out-in-sorted-order

Only defined for object classes that are- Comparable have equals defined

Hash tables

public boolean equals(Object obj) Java specific: From thelava

documentation

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null object references:

It is reflexive: for any non-null reference value x, x.equals(x) should return true.

It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if
and only if y.equals(x) returns true.

It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.

It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return f£alse, provided no information used in equals
comparisons on the objects is modified.

For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation
on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and
y refer to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method whenever this method is overridden,
so as to maintain the general contract for the hashCode method, which states that equal objects must
have equal hash codes.

Hash tables — implementation

 Have atable(an array) of a fixed tableSize
e A hashfunction determineswherein thistable each

item should be stored

2174 % 10=4 0
hash(item) % tableSize]

]

[a positiveinteger]

john 25000

phil 31250 B
THE DESIGN QUESTIONS Z ——
1. ChoosingtableSize dave 27500

2. Choosingahash function mary 28200

3. Whatto dowhen a collision occurs

(¥ T =« B I . S 5 T = S

Hash tables — tableSize

Should depend on the (maximum) number of values to be stored
Let A = [number of values stored]/ tableSize
* Loadfactorof the hashtable
* Restrict A tobe at most1 (or %)
Require tableSizeto bea prime number
* to “randomize” awayany patternsthatmayarisein the hash function
values
The prime should be of the form (4k+3)

[for reasonsto be detailed later]

Hash tables — the hash function

If the objects to be stored have integer keys (e.g., student IDs) hash(k) =k is

)

generally OK, unless the keys have “patterns’

Otherwise, some “randomized” way to obtain aninteger

public static int hash(String key, int tableSize)

{
int hashVal = 0;

for(int i = 0; i < key.length(); i++)
hashVal += key.charAt(i);

return hashVal % tableSize;

O 0 N & Ut A LW N =

}

Figure 5.2 A simple hash function

Hash tables — the hash function

If the objects to be stored have integer keys (e.g., student IDs) hash(k) =k is

generally OK, unless the keys have “patterns”

Otherwise, some “randomized” way to obtain aninteger

public static int hash(String key, int tableSize)
{
return (key.charAt(0) + 27 % key.charAt(1) +
729 * key.charAt(2)) % tableSize;

b A LW N =

}

Figure 5.3 Another possible hash function—not too good

1 /**

2 * A hash routine for String objects.

3 * @param key the String to hash.

4 * @param tableSize the size of the hash table.

5 * @return the hash value.

6 * /

7 public static int hash(String key, int tableSize)
8 {

9 int hashVal = 0;
10
11 for(int i = 0; i < key.length(); i++)
12 hashVal = 37 = hashVal + key.charAt(i);
13
14 hashVal %= tableSize;
15 if(hashval < 0)
16 hashVal += tableSize;
17
18 return hashVal;
19 }

Figure 5.4 A good hash function

Hash tables — the hash function

If the objects to be stored have integer keys (e.g., student IDs) hash(k) =k is

generally OK, unless the keys have “patterns”

Otherwise, some “randomized” way to obtain aninteger

Java-specific
*Every class has a defaulthashCode () method thatreturnsaninteger
*May be (should be) overridden
*Required properties
consistent with the class’s equals () method
need not be consistent across differentruns ofthe program

different objects mayreturn the same value!

Hash tables — the hash function

=ki
From the Java 1.5.0 documentation | =Kls

.erns”
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang /Object.html#thashCode%28%29

As much as 1s reasonably practical, the hashCode method
defined by class object does return distinct integers for
distinct objects. (This 1s typically implemented by
converting the internal address of the object into an
integer, but this implementation technique 1s not required
by the Java™ programming language.)

-

need not be consistent across differentruns ofthe program

different objects mayreturn the same value!

Hash tables — collision resolution

The universe of possibleitems is usually far greater than tableSize
Collision: when multiple items hash on to the same location (aka cell or bucket)

Collision resolution strategies specify what to do in case of collision

1. Chaining(closed addressing)
2. Probing(open addressing)
a. Linear probing
b. Quadraticprobing
c. DoubleHashing
d. Perfect Hashing

e. Cuckoo Hashing

Hash tables — implementation

 Have atable(an array) of a fixed tableSize
e A hashfunction determines wherein thistable each

item should be stored

0

hash(item) % tableSize]

¥

[a positiveinteger]

3 john 25000
4 phil 31250

THE DESIGN QUESTIONS .
1. ChoosingtableSize 6 dave 27500
2. Choosingahash function 7 mary 28200

3. Whatto dowhen a collision occurs 8

9

Hash tables — tableSize

Restrict the load factor A = [number of values stored]/ tableSize to be
at most 1 (or %)

RequiretableSizeto be a prime number of the form (4k + 3)

Hash tables — the hash function

If the objects to be stored have integer keys (e.g., student IDs) hash(k) =k is

generally OK, unless the keys have “patterns”

Otherwise, some “randomized” way to obtain aninteger

Java-specific
*Every class has a defaulthashCode () method thatreturnsaninteger
*May be overridden
*Required properties
consistent with the class’s equals () method
need not be consistent across differentruns ofthe program

different objects mayreturn the same value!

Hash tables — collision resolution

The universe of possibleitems is usually far greater than tableSize
Collision: when multiple items hash on to the same location (aka cell or bucket)

Collision resolution strategies specify what to do in case of collision

1. Chaining(closed addressing)
2. Probing(open addressing)
a. Linear probing
b. Quadraticprobing
c. DoubleHashing
d. Perfect Hashing

e. Cuckoo Hashing

Hash tables — collision resolution: chaining

Maintain a linked list at each cell/ bucket
(The hash tableis an array of linked lists)

Insert: at front of list
- if pre-condition is “not already in list,” then faster

- in any case, later-inserted items often accessed more frequently (the LRU principle)

Example:Insert 0%, 12, 22, ..., 9% into an initially empty hash table with tableSize = 10

[Note: bad choice of tableSize— only to make the example easier!!]

Hash tables — collision resolution: chaining

Maintain a linked list at each cell/ bucket

(The hash tableis an array of II

Insert: at front of list
- if pre-cond is that not already in|
- in any case, later-inserted items
Example:Insert 0%, 12, 22, ..., 9% int{

[Note: bad choice of tableSize

0 0 [1-
1 81 1 [4+—=
2 T

3 I

4 64 4 [4—
5 25 [1—

6 36 16 [+—=
7 T

8 T

9 49 9 [+

Figure 5.5 A separate chaining hash table

Hash tables — collision resolution: chaining

Maintain a linked list at each cell/ bucket

(The hash tableis an array of linked lists)

Insert: at front of IistI The load factor: [number of items stored]/tableSize

- if pre-cond is that not already in list, then faster

-in any case, later-inserted items often acceSsed more frequently
Find and Remove: obvious implementations
Worst-case run-time: O(er operation (all elementsin the same list)
Average case: O(A) per operation

Design rule: for chaining, keep A < 1

If A becomes greater than 1, rehash (later)

Hash tables — collision resolution: probing

1. Chaining (closed addressing)

2. Probing (open addressing) Avoids the use of dynamicmemory

. Linear probing
, ' ' f(i) is a linear function of i — typically, (i) =i

c. Double Hashing

d. Perfect Hashing
e. Cuckoo Hashing

In case of collision, try alternative locations until an empty cell is found
* [Open address]
Probe sequence: hy(x), hi(x), hy(x), ..., with hi(x) = [hash(x) + f(i)] % tableSize

The function f(i) is different for the different probing methods

Example:insert 89, 18, 49, 58, and 69 into atable of size 10, usinglinear probing

Hash tables — collision resolution: linear probing

Empty Table After 89 After 18 After49 After 58 After 69

0 49 49 49
1 58 58
2 69
3
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

Figure 5.11 Hash table with linear probing, after each insertion

Example:insert 89, 18, 49, 58, and 69 into atable of size 10, usinglinear probing

Hash tables - review

Supports the basic dynamic dictionary ops: insert, find, remove
Does not need class to be Comparable
Three design decisions: tableSize, hash function, collision resolution

Table size

a prime of the form (4k+3), keeping load factor constraints in mind

Hash function
should “randomize” the items

Java’s hashCode() method
Collision resolution: chaining
Collision resolution: probing (open addressing) — linear probing

The clustering problem

Hash tables - clustering

Two causes of clustering:
multiple keys hash on to the same location (secondary clustering)
multiple keys hash on to the same cluster (primary clustering)
Secondary clustering caused by hash function; primary, by choice of probe sequence

Number of probes per operation increases with load factor

15.0
12.0
9.0

6.0

3.0

—
. —
—Aﬁ-’h—_—:’—'/
-

0.0

10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

Hash tables — collision resolution: probing

1. Chaining (closed addressing)
2. Probing (open addressing)
a. Linear probing

q. Quadratic probing > f(i) is a quadratic function of i (e.g., (i) = i2)

d. Perfect Hashing

e. Cuckoo Hashing

Example:insert 89, 18, 49, 58, and 69 into atable of size 10, using quadratic
probing

Hash tables — collision resolution: quadratic probing

Empty Table

O 00 1 & Ut b W N = O

Example:insert 89, 18, 49, 58, and 69 into atable of size 10, using quadratic
probing

Hash tables — collision resolution: quadratic probing

Two causes of clustering:
multiple keys hash on to the same location (secondary clustering)
multiple keys hash on to the same cluster (primary clustering)
Which one does quadratic probing solve?
primary clustering
Efficient implementation of i2 2 (i+1)2: (i+1) and (2i+1) in parallel, and then add i?2 and
(2i+1)
Choosing tableSize:
-prime: at least half the table gets probed
-prime of the form (4k+3) and probe sequence is = i2: entire table gets probed

Remove: lazy delete must be used

Hash tables — collision resolution: probing

1. Chaining (closed addressing)
2. Probing (open addressing) To get rid of secondary clustering
a. Linear probing

Use two hash functions: hash;(.) and hash,(.)
b. Quadratic probing

gc_ Double Hashing > Probe sequence “step” size is hash,(.)

- [Unlikely distinct items agree on both hashy(.) and hashy(.)]
e. Cuckoo Hashing

hash,(.) must never evaluate to zero!

A common (good) choice: R — (x mod R), for R a prime

smaller than tableSize

Example:insert 89, 18, 49, 58, and 69 into atable of size 10, usingdouble hashing
with hash,(x)=7—-xmod 7

Hash tables — collision resolution: double hashing

Empty Table

O O 1 O Ut B W N~ O

Example:insert 89, 18, 49, 58, and 69 into atable of size 10, usingdouble hashing
with hash,(x)=7-xmod 7

Hash tables — collision resolution: probing

1. Chaining (closed addressing)
2. Probing (open addressing)
a. Linear probing
b. Quadratic probing
c. Double Hashing
d. Perfect Hashing

(Cuckoo Hashing >

Hash tables — collision resolution: Cuckoo hashing

Goal: constant-time O(1) find in the worst case
Example application: network routingtables
[remove also takes O(1) time]

Insert has worst-case ©(N) run-time

Keep two hash tables, and use two different hash functions

Hash tables — collision resolution: Cuckoo hashing

W NEFELO

TABLE 1

TABLE 2

A

A: hash,(A)=0, hash,(A)=2

B: hash,(B)=0, hash,(B)=0

Hash tables — collision resolution: Cuckoo hashing

D W DN RO

TABLE 1

TABLE 2

A: hash,(A)=0, hash,(A)=2
B: hash,(B)=0, hash,(B)=0
C: hash,(C)=1, hash,(C)=4

D: hash,(D)= 1, hash,(D)=0

Hash tables — collision resolution: Cuckoo hashing

D W DN RO

TABLE 1 TABLE 2
D
A
F
C

A: hash,(A)=0, hash,(A)=2
B: hash,(B)=0, hash,(B)=0
C: hash,(C)=1, hash,(C)=4
D: hash,(D)= 1, hash,(D)=0
E: hash,(E)= 3, hash,(E)=2

F: hash,(F) =3, hash,(F)=4

Hash tables — collision resolution: Cuckoo hashing

D W DN RO

TABLE 1 TABLE 2
D
A E
F
C

A: hash,(A)=0, hash,(A)=2
B: hash,(B)=0, hash,(B)=0
C: hash,(C)=1, hash,(C)=4
D: hash,(D)= 1, hash,(D)=0
E: hash,(E)= 3, hash,(E)=2

F: hash,(F) =3, hash,(F)=4

Hash tables — collision resolution: Cuckoo hashing

D W DN RO

TABLE 1 TABLE 2
A
D
E
F
C

A: hash,(A)=0, hash,(A)=2
B: hash,(B)=0, hash,(B)=0
C: hash,(C)=1, hash,(C)=4
D: hash,(D)= 1, hash,(D)=0
E: hash,(E)= 3, hash,(E)=2

F: hash,(F) =3, hash,(F)=4

Hash tables — collision resolution: Cuckoo hashing

D W DN RO

TABLE 1 TABLE 2
A B
D
E
F
C

A: hash,(A)=0, hash,(A)=2
B: hash,(B)=0, hash,(B)=0
C: hash,(C)=1, hash,(C)=4
D: hash,(D)= 1, hash,(D)=0
E: hash,(E)= 3, hash,(E)=2

F: hash,(F) =3, hash,(F)=4

Hash tables — collision resolution: Cuckoo hashing

Insert
- Insert into Table 1, using hash,
- Ifcellis already occupied
- bump item into other table (using appropriate hash function)
- Repeat
- Rehash after k repetitions
Each table should be more than half empty

Stronger condition than load factor <%

Rehashing

When load factor becomes too large...
(Approximately) double tableSize
Scan old table, inserting each non-deleted iteminto the newtable
Worst-case time?
- O(N?)
Average-case: O(N)
Amortized analysis

Average cost per insert, over a sequence of repeated re-hashings

[Not great for interactive applications...]

Hash tables - review

Supports the basic dynamic dictionary ops: insert, find, remove
Three design decisions: tableSize, hash function, collision resolution
Table size: a prime of the form (4k+3), keeping load factor constraints in mind

Hash function

Java’s hashCode() method
item goes to hash(item) % tableSize
Collision: multiple items at the same location
Collision resolution:-chaining

-probing (open addressing)
- Linear probing
- Quadratic probing
- Double Hashing
- Cuckoo Hashing

Java-specific—hashCode () andequals ()

public class Employee {
String name;
int id;

public Employee (String n, int i) {name = n; id = 1i;}

}

public static void main (String[] args) {
Employee el=new Employee ("weiss", 001) ;
Employee e2 = el;
System.out.println(el.hashCode() + ", " + e2.hashCode()) ;s
System.out.println (el == e2);
System.out.println (el.equals(e2)) ;

Hash tables — collision resolution: linear probing

f(i) can be any linear function (a * i+ b)
If gcd(a, tableSize) = 1, then linear probing will probe the entire table

Primary clustering: blocks of occupied cells start forming even in a relatively empty table

} any item hashing here...

Hash tables — collision resolution: linear probing

f(i) can be any linear function (a * i+ b)
If gcd(a, tableSize) = 1, then linear probing will probe the entire table

Primary clustering: blocks of occupied cells start forming even in a relatively empty table

}any item hashing here... grows the cluster by one

Hash tables — collision resolution: linear probing

f(i) can be any linear function (a * i+ b)
If gcd(a, tableSize) = 1, then linear probing will probe the entire table

Primary clustering: blocks of occupied cells start forming even in a relatively empty table

} any item hashing here... mergesthe two clusters

Hash tables - clustering

Two causes of clustering:
multiple keys hash on to the same location (secondary clustering)
multiple keys hash on to the same cluster (primary clustering)
Secondary clustering caused by hash function; primary, by choice of probe sequence

Number of probes per operation increases with load factor

15.0
12.0
9.0

6.0

3.0

—
. —
—Aﬁ-’h—_—:’—'/
-

0.0

10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 .85 .90 .95

Hash tables — linear probing: remove

insert A; hash(A)=4
insert B; hash(B)=5
insert C; hash(C)=4
remove B

find C

c Remove must be implemented as lazy delete!!

- Load factor computed including lazy-deleted items

- Ininserts, may “reclaim” lazy-deleted cells

O 00 N O U1 A W N = O
prd

