Programming Languages

— An Overview —

COMP 524: Programming Language Concepts
Bjorn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.
Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

A Brief History of Modern Computing

Early computers required rewiring. _ e

= For example, ENIAC (Electronic Numerical S
Integrator and Computer, 1946) e
programed with patch cords.

= Reprogramming took weeks.

= Used to compute artillery tables.

Von Neumann: stored program computers.
= |nnovation: program is data.

= Program stored in core memory.

= Allowed for “rapid” reprogramming.

Early programming.

= Programmers wrote bare machine code.
= Essentially, strings of zeros and ones.)

= Created with punchcards. S ke oo C1e 18 one bt

Credit: H.J. Sommer lll, Professor of Mechanical
Engineering, Penn State University

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Machine Code

I DO O T I, O, O R TR O T DD CC RO (O) (O) e Ol [T

goooiwoa0 0000r00000000006’000600060000000000000000000000000006000’.‘]0000

A R BHUR RN L MAENANMNMINTTNIRINMUMLANY ERIQEORUOeGsUTUIRNNNMNLNENRNEREDUHB TR OMINRARPININDN

IRRRIIREE BRI R R IRRRIIRERIERRIIRERIIRRRI 1B E S IBERIERRIEERIIERRILRER
2222221212 2220222212222)222212222222202222 2222222212222222212222

B'RE- LR BRI b ,‘!:.";;.'*_‘),‘I:'.'i NN RE] I B R L) lfl!“l)l‘ﬁ“.llh M3 i R JURSESR DR SR B U RIS R A LR

J333P333 3333133333333 3333133333333 333313333p3333p3333133133

R R E R EEEHEEE! EE RN EEILEEE A LA L LA A A A 44444
1enanune o ol 2 20 2des 20 30 vwfon 59 o0 22fe 30 35 nfe o0 0 anfer @ O dafey o6 0 wefe W w0 N TN A (T T

55555555 3555155555555 5555[555515555(5555 3555155555555)555515555

66666666 BOE66I6666{666666666666/6666(66666666 6l6606|6606/6666/6566616666

6
! ! EER [RNE I 31177311.1!”1!!1:!31:‘nuuﬁl NG g U eSS VRINUMUNN HESBIERD DS E ey Ien nin

1117177 777777777777777777777777777777771777!77777777777‘777}'777;~F

8888 gapgesss BBBSBBSBESBEIGBSB.BSSS888388888988888888888886888888888838

P13 4 ' fgnugiiun s LRl MU NG I‘lb)"!'-uu...’lﬂ"lﬂul'l!d‘l‘l'.‘lhukl..-.')‘A&.‘A"h)".\li-0‘(!‘”'!40!‘]0""1171l-'t.')ll'v‘

99951999519999%9399 9999.99E9§9999999999

DM DANMARE 00923 _

A punch card.
Source: Wikimedia Commons

Limitations.

= Hard for humans to read and write.
= Very error-prone.

= Slow development.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

AGA49568 <main>:

aA49588: %ebp
aa49581: %esp, %ebp
Assembly Code E—
aa49585: %edi
aa49586: %edi,%edi
oBa49588: %esi
. i i 80849589: %esi,%esi
Idea: use t!1e c':omputer to simplify S e
g84958c: d84calB <_i686.get_pc_thunk.bx>
programmln_g' 8640591 : $9x0253,Yobx e
= Possible since programs are data. REgsE $8x28be, %esp
604959d: %edi,-Bx288c(%ebp)
- Computer transforms human- gg:gg"g’ ﬁax”f;f;ég,‘?;sg ;
. . . ab: heax, —8x289c(%ebp
readable input into machine code. Rt Y%eax, %eax
68495ae: %eax,-Bx28a@(%ebp)
80495b4: -Bx3f3c(%ebx), %eax
_ . . 60495ba: %eax, (%esp)
First step: direct mapp|ng_ 8A495hd: 8849158 <getenv@plt>
. . g a8495¢c2: “eax,%weax
= Use mnemonic abbreviations for [EiEse 8649804 <main+Bx344>
. . 68495ca: Ax8(%ebp), %eax
instructions. gB49546: e
. . . xclnebp), %eax
» One abbreviations for each 80495d3: %eax, Bx+(%esp)
. . 8049547 -Bx2088c(%ebp), %eax
|r155trlj(:t|C)r]. 60495dd: %eax, Bx8(%esp)
g8495el: d84a448 <SelectVersion>
- Also encode operands o (o
6A495fA: %eax, (%esp)
a8495f3: d849468 <JLI|_MemAl loceplt>
= Computer assembles real o b e P
i i g8495fa: %eax, hecx
pr()_gram by _rr‘applng eac_h Ilne 60495fc: Ax8(%ebp), %eax
to its machine code equivalent, B Ny
thus Creating a new program. 8049602: 8049622 <main+Bxa2>
o 6849684: BxB(%esi),%esi
= Assemblers are still in use today. EESEE 8xB(%edi), ted

6e49618: Axci(%ebp),%eax

Tuesday, January 12, 2010

Assembly Code

Idea: use the ¢ Example:

programming! Intel x86-32 machine code and

= Possible sinc assembly language of javac program.

= Computer trarrsre OTTTE TERTEE
68495a6:

readable input into machine code.

First step: direct mapping.
= Use mnemonic abbreviations for
Instructions.
» One abbreviations for each
Instruction.

» Also encode operands.

= Computer assembles real
program by mapping each line
to its machine code equivalent,
thus creating a new program.

= Assemblers are still in use today.

AGA49568 <main>
6A495388:
68495481 :
6A49563:
68495385:

ONANCOL o

g8495ac:
d8495ae:
08495b4:
88495ba:
88495bd:
g8495¢c2:
88495c4:
88495ca:
88495cd:
08495da:
88495d3:
88495d7:
88495dd:
g8495el:
08495e6:
08495e9:
0a495f@:
aa495f3:
oa495f5:
g8495fa:
g8495fc:
oa495f f:
08496688
0a49682:
68496684
0849668a:
0849618:

Machine Code

31
96
3l
93
ed
gl
gl
a9
a3
a9
3l
a9
ad
a9
ed
a9
af
ab
a9
ab
a9
ad
a9
ed
ab
ad
a9
ed
31
a9
ab
48
39
Td
ad
ad
ab

B Instructions
[p
vedi,%edi Operands
hesi

%wesi,%esi
%ebx
d84calB <
$0x92b3, %ebx
$8x28bc, %esp
%edi,-Bx288c(%ebp)
POxfffffffo,%esp

%eax, -Ax289c({%ebp)
“eax,%weax
%eax,-Bx28a@(%ebp)
-Bx3f3c(%ebx), %eax
%eax, (%esp)

6849156 <getenveplt>
“eax,%weax

d8498ct <main+Bx34%>
Ax8(%ebp), %eax

%eax, (Yesp)
Axc(%ebp),%eax

%eax, Bx4{%esp)
-Bx2088c(%ebp), %eax
%eax, Bx8(%esp)

d84a448 <SelectVersion>
Ax8(%ebp),%eax
Ax4(,%eax,4), %eax

%eax, (%esp)

d849468 <JLI|_MemAl loceplt>
“edx, %edx

%eax,%ecx
Ax8(%ebp),%eax

weax

“eax,%esi

0849622 <main+Bxa2>
AxA(%esi),%esi
AxA(%edi),%edi
Axci(%ebp),%eax

y0.get_pc_thunk.bx>

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Towards Higher-Level Languages

Limitations of assembly code. Macro expansion:

St||| hard to read Programmer defines parametrized

N abbreviation; assembler replaces each
No error checking. occurrence of abbreviation with definition.
Machine specific, not portable. et

» Hardware architecture changed A macro with two parameters on Linux.

frequenﬂy In the ear|y days Implements the write system call.

.macro write str, str_size

Tedious to write. il o e
» Macros somewhat alleviate this. movl $1, %ebx

movl \str, %ecx
movl \str_size, %edx

Desired: higher-level representation. nt 30x80

= Machine independent.

= More like mathematical formulas.
> Usable by Scientists_ write <address of string>, <length>

= Catch common errors. instead of the whole system call sequence.

Source: http://www.ibm.com/developerworks/library/I-gas-nasm.html

Subsequently, strings can be output with

UNC Chapel Hill Brandenburg — Spring 2010 6

Tuesday, January 12, 2010

http://www.ibm.com/developerworks/library/l-gas-nasm.html
http://www.ibm.com/developerworks/library/l-gas-nasm.html

02: Programming Languages COMP 524: Programming Language Concepts

High-Level Language

Key properties.
Provides facilities for data and control flow abstraction.

Machine-independent specification.
One high-level statement typically corresponds to many machine

Instructions.
Human-friendly syntax.
Programming model / semantics not defined in terms of machine

capabilities.

Translation to machine code.
= Checked and translated by compiler.
» Alternatively, interpreted (next lecture).

= Initially, slower than handwritten assembly code.
= Today, compiler-generated code outperforms most human-written

assembly code.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Early High-Level Languages

FORTRAN ALGOL
= John Backus (IBM), 1954. = John Backus (IBM), Friedrich Bauer (TU
= Formula Translating System Munich), etal., 1958.
= For numerical computing. = Algorithmic Language
= Focus: efficiency. = For specification of algorithms.
= Focus: clear and elegant design.
LISP

= John McCarthy (MIT), 1958. COBOL
= List Processor. = Grace Hopper (US Navy), 1959.

= For symbolic computing. = Common Business-QOriented Language.
= Focus: abstraction. = For data processing in businesses.
= Focus: english-like syntax.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages

Early High-Le

COMP 524: Programming Language Concepts

ALGOL was highly influential and (revised versions)
were the de-facto standard for the description of
algorithms for most of the 20th century.

F

FORTRAN

= John Backus (IBM), 1954.
= Formula Translating System
= For numerical computing.

= Focus: efficiency.

LISP

= John McCarthy (MIT), 1958.
= List Processor.

= For symbolic computing.

= Focus: abstraction.

ALGOL

= John Backus (IBM), Friedrich Bauer (TU
Munich), etal., 1958.

= Algorithmic Language

= For specification of algorithms.

= Focus: clear and elegant design.

| =

COBOL

= Grace Hopper (US Navy), 1959.

= Common Business-Oriented Language.
= For data processing in businesses.

= Focus: english-like syntax.

FORTRAN, LISP, and COBOL are still in wide-spread use today!

(in revised forms)

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Definition

What is a Programming Language?
- Java? Yes.
= HTML? No.
= Javascript? Yes.
= LaleX? Yes.

s

A programming language is a formal language that
is both

= universal (any computable function can be defined)
= Implementable (on existing hardware platforms).

Turing-complete: can simulate any Turing machine.
(of course, real hardware has space constraints)

lllustration source: Wikimedia Commons

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Practical Languages

To be of practical interest, a language should also:

“Naturally” express algorithms. Be efficiently implementable.

= With respect to its intended = Acceptable definitions of “efficient”
problem domain. vary by problem domain.

= This is often achieved by = For example, in high-performance
mimicking existing notation or computing, there is typically no
adopting core concepts (e.g., “efficient enough.”
function definitions, predicates). In contrast, in work on artificial
In essence, a language must intelligence, efficiency was often only

appeal to its intended users to a secondary concern in the past.
be successful.

“do what “do exactly

| mean” what | say”
Design Tradeoff

UNC Chapel Hill

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Programming Language Spectrum

Declarative Languages | Imperative Languages
focus on what the computer should do | focus on how the computer should do

4 4

Functional Procedural / Von Neumann
(Ex: LISP/Scheme, ML, Haskell) (Ex: Fortran, Pascal, C)

Logic and constraint-based Object-Oriented
(Ex: Prolog) (Ex: Smalltalk, Eiffel, C++, Java)

Dataflow Scripting
(Ex: Id, Val) (Ex: Shell, TCL, Perl, Python)

“do what “do exactly
| mean” what | say”

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages B ‘ B nge Concepts

Procedural Languagess:

P ro rq n Direct evolution from assembly
g (and thus how computers work internally):
a program is a sequential computation that directly manipulates
simple typed data (memory locations); abstraction is achieved by

Declarative L calling subroutines as service providers.
fOCUSOﬂWhattheCom JUId JC ' U JU JUIC |t
r

Functional Procedural / Von Neumann
(Ex: LISP/Scheme, ML, Haskell) (Ex: Fortran, Pascal, C)

Logic and constraint-based Object-Oriented
(Ex: Prolog) (Ex: Smalltalk, Eiffel, C++, Java)

Dataflow Scripting
(Ex: Id, Val) (Ex: Shell, TCL, Perl, Python)

“do what “do exactly
| mean” what | say”

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

8 guage Spectrum

Object-Oriented Languages:

D¢ Human-inspired model: problems are solved Imperative Languages

focuy DY ateamof objects that collaborate by f505 on how the computer should do it
sending messages to each other.

a8 4
Objects represent “subcontractors” that do Procedural / Von Neumann

one job (pOSSIny with the help of other (Ex: Fortran, Pascal, C)
“experts”) and encapsulate all related state.

~—
-

The benefit of object-orientation is twofold:
that large, complex problems can be - Object-Oriented
decomposed in a “natural’ way; and (Ex: Smalltalk, Eiffel, C++, Java)

\ message passing can be compiled into

— efficient procedural code.

Scripting
(Ex: Shell, TCL, Perl, Python)

“do what “do exactly
| mean” what | say”

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts
4

Programming La

Functional Languages:

Mathematics-inspired model: program defined in
terms of mathematical functions (equivalences).

DeCIaratlve Languages \ There is no concept of memory:
focus on what the computer should _ functions simply map values onto other values.

There is no concept of time:

Functional mathematical functions just are;
(Ex: LISP/Scheme, ML, Haskell) there is no “before” and “after.”

There is no concept of state:
functions are only defined in terms of their

Logic and constraint-based arguments and other functions.

(Ex: Prolog)

The computer’s job is to compute the result of
applying the program (a function) to the input.
Dataflow . | -
(Ex: Id, Val) How this is done is not specified in the program.
’ Control flow is implicit and based on recursion.

“do what “do exactly
| mean” what | say”

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Programming Language Spectrum

Declarative Languages | Imperative Languages
focus on what the computer should do | focus on how the computer should do it

r r
Functional Procedural / Von Neumann]
(EX: LlSP/SCheme, ML’ Haske”) - (Ev: Enrtran Paceal)

> Logic Languages:

Inspired by propositional logic. Program is

Logic and constraint-based defined in terms of

(Ex: Prolog)

— b facts (the “knowledge base’),
| (

Dataflow rules (implications, “if X then also Y”), and a
(Ex: Id, Val)

goal (query, “is Y true?”, “what makes Y true?”).

The computer’s job is to construct a proof
““ based on the given axioms (facts + rules).
do what

| mean”

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

anguage Spectrum

Dataflow Languages:

Similar to gate networks (hardware). Imperative Languages
Tokens (units of data) are streamed through a focus on how the computer should do it

network of primitive functional units. ~

Procedural / Von Neumann

“Unix pipes + loops + multiple inputs / outputs.” (Ex: Fortran, Pascal, C)

—_——

Logic and co Straint-based Object-Oriented
(Ex: F folog) (Ex: Smalltalk, Eiffel, C++, Java)

—

———

Dataflow Scripting
(Ex: Id, Val) (Ex: Shell, TCL, Perl, Python)

“do what “do exactly
| mean” what | say”

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

P ro 9 Scripting Languages: 9 e S P e Ch‘U m

Fuzzy category of high-level languages

Dec|arati that focus heavily on developer productivity fe tive Languages

“rapid devel t”). _
focus on what SRR ow the computer should do it

r Often used for integration of components
F (“glue languages”), more recently for web

(Ex: LISP/St development.

; Traditionally imperative model, but there
is a trend to include object-oriented and

Logic and functional design elements. Object-Oriented

(malltalk, Eiffel, C++, Java)

edural / Von Neumann
x: Fortran, Pascal, C)

—

Dataflow Scripting
(Ex: Id, Val) (Ex: Shell, TCL, Perl, Python)

“do what “do exactly
| mean” what | say”

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Programming Language Spectrum

Declarative Languages | Imperative Languages
focus on what the computer should do | focus on how the computer should do it

4 4

Functional Procedural / Von Neumann
(Ex: LISP/Scheme, ML, Haskell) (Ex: Fortran, Pascal, C)

Logic and constraint-based Object-Oriented
(Ex: Prolog) (Ex: Smalltalk, Eiffel, C++, Java)

Dataflow Scripting
(Ex: Id, Val) (Ex: Shell, TCL, Perl, Python)

-
Note: this is a very coarse-grained view.
= most real-world languages are not pure (i.e., they mix categories).
= there exist many sub-categories (e.g., synchronous reactive FP).

UNC Chapel Hill Brandenburg — opring 2U1V
Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Design Considerations

What are the primary use cases?

Communicate ideas.

= Programs are read more
often than written. « Readability '

= Maintenance costs.

Exactly specify algorithms. —
= Succinct and precise. « Expressivity '

= No ambiguity.

Create useful programs. ———
= Development must be Writability

economically viable. Reliability

UNC Chapel Hill Brandenburg — Spring 2010 20

Tuesday, January 12, 2010

COMP 524: Programming Language Concepts

02: Programming Languages

Readability Factors

What does this code fragment do?

Simp"‘_’ity- _ Java: many ways to increment.
= Limited number of concepts / variants. X, X+, X = X + 1) X += 1;

Orthogonality. ,
I ava.

= Are concepts independent of each other? (R R sy S

= Lack of special cases.

. s
Syntax design. Example: variable name for “global

= |dentifier restrictions (e.g., hyphen vs minus). input database file”
= Tersen . frequency of operator symbols.
erseness, 1req y P e FORTRAN 77: GIDBFL (max 6 chars.)
» For example, x| vs. x.length(). Ve,
» But: x.add(y.times(z))vs. X + y * Zz.| LISP: *input-database-file*

Explicit constraints.
= Assumptions made explicit and checked.

= Enforced “design by contract.”

Eiffel keywords:
invariant, require, ensure

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Eiffel: Checked Constraints Example

indexing ... class
COUNTER
feature
decrement is
-- Decrease counter by one.

require
item > 0 Precondition
do

item := item - 1

ensure
item = old item - 1 PO“COﬂd“iOﬂ
end

invariant

item >= 0 Invariant

Source: http.//archive.eiffel.com/eiffel/nutshell. html

end

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

http://archive.eiffel.com/eiffel/nutshell.html
http://archive.eiffel.com/eiffel/nutshell.html

02: Programming Languages COMP 524: Programming Language Concepts

Example: Expressivity

Quicksort in Haskell Quicksort in C

V- a
gsort [] [] gsort(a, lo, hi) int af[], hi, lo;{
gsort (x:xs) gsort 1t x ++ [x] ++ gsort ge x int h, w, p, t;

if (lo < hi) {

[y | v <= xs, y < X] lo;

ly | v <= xs, Yy >= X] hi;

alhi];

gsort(a, lo, w-1);

(we will discuss Haskell in gsort(a, w+l, hi)
detail later in the semester)

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages

Quicksort in Haskell

COMP 524: Programming Language Concepts

Example: Expressivity

p

gsort
gsort

[]

(X:X8)

[]
gsort 1t x ++

ly | v <= Xs,
[y | v <= xs,

[x] ++ gsort ge x

y < x]
y >= x]

Quicksort in C

/

gsort(a, lo, hi)

int h, w, p, t;

if

(lo < hi) {
lo;
hi;

int all],

hi,

lo; {

alhi];
o {

while (w < h)

(
while (
<

' For any ordered]
datatype. e

Only for int. e al

alw] = alhi];
alhi] = t;

gsort(a, lo, w-1);
gsort(a, wtl, hi);

(we will discuss Haskell in
detail later in the semester)

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Writability Factors

Faciliti_es for abstraction Haskell: allows numeric integration to
= Define each concept only once. be defined once for any function

Repetition avoidance.

-

= DRY principle: “don’t repeat yourself” Ruby: The “Ruby on Rails” web

= (Code generation. framework drastically reduced the need
= (Generic programming. for configuration files.
-

Sparse type declarations, type inference.

-

Quality of development tools. D: designed as a C successor, it has
- Effici f i ted cod been hindered by the existence of
"_:'er_‘?y O CEOmpI. er-generatea code. incompatible compilers and libraries.
Availability of libraries.
Leniency of compiler / language system.
Turnaround time of edit-compile-test cycle.

Number of available compiler / tool chains.

gcc: some warnings not used in Linux
due to excessive false positives.

Documentation. Java: javadoc support ensures
- Availability and quality. standardized, indexable documentation.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Reliability Factors

Static error de_tectlon. Example: detect use of uninitialized variables.
= Type checking.

Constraint checking.

-
= Model-driven development. Model-checking is a technique to automatically
= Model extraction prove safety and liveness properties.

Dynamic error detection.

. C: lack of run-time checking has caused billions
= Array bounds checking. J

in damages due to security incidences.

= Integer overflow detection.

-
Ease of error handling. In Erlang, processes can be linked: if one fails,

= Structured exception handling. then eTﬂL!inked prc;c?islefsdareda}’lso tterminated.
= Error propagation. IS prevents “half-dead” systems.

Versmn_lng _Of components. _ Example: detect when interface has changed.
= Avoid mismatch in assumptions.

- r
Ease of testing. Haskell: the QuickCheck liorary aids debugging
= Unit testing support. by automatically generating counter examples to

= Test case generation. invariants based on type signatures.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Language Design Tradeoff

program
safety

developer ' program
productivity efficiency

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

02: Programming Languages COMP 524: Programming Language Concepts

Summary

History.

= Programming language development started with a desire for
higher levels of abstraction.

= Compiling very high levels of abstraction into efficient

machine code is challenging.

Programming Language Spectrum.

= | anguage design involves many tradeoffs.

= The result: many competing languages, all slightly different.
= Qften variations on a theme.

Categories.
= Declarative: what to do.
» Functional, logic-based, dataflow.

Imperative: how to do it.
» Procedural, object-oriented, scripting.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, January 12, 2010

