
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Programming Languages
— An Overview —

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

A Brief History of Modern Computing
Early computers required rewiring.
➡ For example, ENIAC (Electronic Numerical

Integrator and Computer, 1946)
programed with patch cords.

➡ Reprogramming took weeks.
➡ Used to compute artillery tables.

2

Magnetic core memory. Each core is one bit.
Source: Wikimedia Commons
Credit: H.J. Sommer III, Professor of Mechanical
 Engineering, Penn State University

Von Neumann: stored program computers.
➡ Innovation: program is data.
➡ Program stored in core memory.
➡ Allowed for “rapid” reprogramming.

Early programming.
➡ Programmers wrote bare machine code.
➡ Essentially, strings of zeros and ones.
➡ Created with punchcards.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Machine Code

Limitations.
➡ Hard for humans to read and write.
➡ Very error-prone.
➡ Slow development.

3

A punch card.
Source: Wikimedia Commons

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Assembly Code

4

Idea: use the computer to simplify
programming!
➡ Possible since programs are data.
➡ Computer transforms human-

readable input into machine code.

First step: direct mapping.
➡ Use mnemonic abbreviations for

instructions.
‣ One abbreviations for each

instruction.
‣ Also encode operands.

➡ Computer assembles real
program by mapping each line
to its machine code equivalent,
thus creating a new program.

➡ Assemblers are still in use today.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Assembly Code

5

Idea: use the computer to simplify
programming!
➡ Possible since programs are data.
➡ Computer transforms human-

readable input into machine code.

First step: direct mapping.
➡ Use mnemonic abbreviations for

instructions.
‣ One abbreviations for each

instruction.
‣ Also encode operands.

➡ Computer assembles real
program by mapping each line
to its machine code equivalent,
thus creating a new program.

➡ Assemblers are still in use today.

Machine Code
Instructions

Operands

Example:
Intel x86-32 machine code and

assembly language of javac program.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Towards Higher-Level Languages
Limitations of assembly code.
➡ Still hard to read.
➡ No error checking.
➡ Machine specific, not portable.
‣ Hardware architecture changed

frequently in the early days.
➡ Tedious to write.
‣ Macros somewhat alleviate this.

6

Macro expansion:
Programmer defines parametrized
abbreviation; assembler replaces each
occurrence of abbreviation with definition.

Example:
A macro with two parameters on Linux.
Implements the write system call.

.macro write str, str_size
 movl $4, %eax
 movl $1, %ebx
 movl \str, %ecx
 movl \str_size, %edx
 int $0x80
 .endm

Subsequently, strings can be output with

write <address of string>, <length>

instead of the whole system call sequence.
Source: http://www.ibm.com/developerworks/library/l-gas-nasm.html

Desired: higher-level representation.
➡ Machine independent.
➡ More like mathematical formulas.
‣ Usable by scientists.

➡ Catch common errors.

Tuesday, January 12, 2010

http://www.ibm.com/developerworks/library/l-gas-nasm.html
http://www.ibm.com/developerworks/library/l-gas-nasm.html

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

High-Level Language
Key properties.
➡ Provides facilities for data and control flow abstraction.
➡ Machine-independent specification.
➡ One high-level statement typically corresponds to many machine

instructions.
➡ Human-friendly syntax.
➡ Programming model / semantics not defined in terms of machine

capabilities.

Translation to machine code.
➡ Checked and translated by compiler.

‣ Alternatively, interpreted (next lecture).
➡ Initially, slower than handwritten assembly code.
➡ Today, compiler-generated code outperforms most human-written

assembly code.

7
Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Early High-Level Languages

FORTRAN
➡ John Backus (IBM), 1954.
➡ Formula Translating System
➡ For numerical computing.
➡ Focus: efficiency.

LISP
➡ John McCarthy (MIT), 1958.
➡ List Processor.
➡ For symbolic computing.
➡ Focus: abstraction.

8

ALGOL
➡ John Backus (IBM), Friedrich Bauer (TU

Munich), etal., 1958.
➡ Algorithmic Language
➡ For specification of algorithms.
➡ Focus: clear and elegant design.

COBOL
➡ Grace Hopper (US Navy), 1959.
➡ Common Business-Oriented Language.
➡ For data processing in businesses.
➡ Focus: english-like syntax.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Early High-Level Languages

FORTRAN
➡ John Backus (IBM), 1954.
➡ Formula Translating System
➡ For numerical computing.
➡ Focus: efficiency.

LISP
➡ John McCarthy (MIT), 1958.
➡ List Processor.
➡ For symbolic computing.
➡ Focus: abstraction.

9

FORTRAN, LISP, and COBOL are still in wide-spread use today!
(in revised forms)

ALGOL was highly influential and (revised versions)
were the de-facto standard for the description of

algorithms for most of the 20th century.

ALGOL
➡ John Backus (IBM), Friedrich Bauer (TU

Munich), etal., 1958.
➡ Algorithmic Language
➡ For specification of algorithms.
➡ Focus: clear and elegant design.

COBOL
➡ Grace Hopper (US Navy), 1959.
➡ Common Business-Oriented Language.
➡ For data processing in businesses.
➡ Focus: english-like syntax.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Definition

What is a Programming Language?
➡ Java?
➡ HTML?
➡ Javascript?
➡ LaTeX?

10

Yes.
No.
Yes.
Yes.

A programming language is a formal language that
is both
➡ universal (any computable function can be defined)
➡ implementable (on existing hardware platforms).

Illustration source: Wikimedia Commons

Turing-complete: can simulate any Turing machine.
(of course, real hardware has space constraints)

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Practical Languages

11

To be of practical interest, a language should also:

“Naturally” express algorithms.
➡ With respect to its intended

problem domain.
➡ This is often achieved by

mimicking existing notation or
adopting core concepts (e.g.,
function definitions, predicates).

➡ In essence, a language must
appeal to its intended users to
be successful.

Be efficiently implementable.
➡ Acceptable definitions of “efficient”

vary by problem domain.
➡ For example, in high-performance

computing, there is typically no
“efficient enough.”

➡ In contrast, in work on artificial
intelligence, efficiency was often only
a secondary concern in the past.

Design Tradeoff

“do what
I mean”

“do exactly
what I say”

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

12

“do what
I mean”

“do exactly
what I say”

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

13

“do what
I mean”

“do exactly
what I say”

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do it

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Procedural Languagess:

Direct evolution from assembly
(and thus how computers work internally):

a program is a sequential computation that directly manipulates
simple typed data (memory locations); abstraction is achieved by

calling subroutines as service providers.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

14

“do what
I mean”

“do exactly
what I say”

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do it

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Object-Oriented Languages:

Human-inspired model: problems are solved
by a team of objects that collaborate by

sending messages to each other.

Objects represent “subcontractors” that do
one job (possibly with the help of other

“experts”) and encapsulate all related state.

The benefit of object-orientation is twofold:
that large, complex problems can be
decomposed in a “natural” way; and

message passing can be compiled into
efficient procedural code.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

15

“do what
I mean”

“do exactly
what I say”

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do it

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Functional Languages:

Mathematics-inspired model: program defined in
terms of mathematical functions (equivalences).

There is no concept of memory:
functions simply map values onto other values.

There is no concept of time:
mathematical functions just are;
there is no “before” and “after.”

There is no concept of state:
functions are only defined in terms of their

arguments and other functions.

The computer’s job is to compute the result of
applying the program (a function) to the input.

How this is done is not specified in the program.
Control flow is implicit and based on recursion.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

16

“do what
I mean”

“do exactly
what I say”

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do it

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Logic Languages:

Inspired by propositional logic. Program is
defined in terms of

facts (the “knowledge base”),

rules (implications, “if X then also Y”), and a

goal (query, “is Y true?”, “what makes Y true?”).

The computer’s job is to construct a proof
based on the given axioms (facts + rules).

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

17

“do what
I mean”

“do exactly
what I say”

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do it

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Dataflow Languages:

Similar to gate networks (hardware).

Tokens (units of data) are streamed through a
network of primitive functional units.

“Unix pipes + loops + multiple inputs / outputs.”

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

18

“do what
I mean”

“do exactly
what I say”

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do it

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Scripting Languages:

Fuzzy category of high-level languages
that focus heavily on developer productivity

(“rapid development”).

Often used for integration of components
(“glue languages”), more recently for web

development.

Traditionally imperative model, but there
is a trend to include object-oriented and

functional design elements.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Programming Language Spectrum

19

Declarative Languages Imperative Languages
focus on what the computer should do focus on how the computer should do it

Procedural / Von Neumann
(Ex: Fortran, Pascal, C)

Object-Oriented
(Ex: Smalltalk, Eiffel, C++, Java)

Functional
(Ex: LISP/Scheme, ML, Haskell)

Logic and constraint-based
(Ex: Prolog)

Dataflow
(Ex: Id, Val)

Scripting
(Ex: Shell, TCL, Perl, Python)

Note: this is a very coarse-grained view.
➡ most real-world languages are not pure (i.e., they mix categories).
➡ there exist many sub-categories (e.g., synchronous reactive FP).

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Design Considerations

Communicate ideas.
➡ Programs are read more

often than written.
➡ Maintenance costs.

Exactly specify algorithms.
➡ Succinct and precise.
➡ No ambiguity.

Create useful programs.
➡ Development must be

economically viable.
20

What are the primary use cases?

Readability

Writability

Expressivity

Reliability

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Readability Factors

21

Java: many ways to increment.
++x; x++; x = x + 1; x += 1;

Java:
ArrayList<int> vs. ArrayList<Integer>

Example: variable name for “global
input database file”

FORTRAN 77: GIDBFL (max 6 chars.)
vs.

LISP: *input-database-file*

Eiffel keywords:
invariant, require, ensure

What does this code fragment do?
Simplicity.
➡ Limited number of concepts / variants.

Orthogonality.
➡ Are concepts independent of each other?
➡ Lack of special cases.

Syntax design.
➡ Identifier restrictions (e.g., hyphen vs minus).
➡ Terseness; frequency of operator symbols.

‣ For example, |x| vs. x.length().
‣ But: x.add(y.times(z)) vs. x + y ∗ z.

Explicit constraints.
➡ Assumptions made explicit and checked.
➡ Enforced “design by contract.”

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Eiffel: Checked Constraints Example

22

indexing ... class
 COUNTER
feature
 decrement is
 -- Decrease counter by one.
 require
 item > 0
 do
 item := item - 1
 ensure
 item = old item - 1
 end

 ...
invariant

 item >= 0

end
Source: http://archive.eiffel.com/eiffel/nutshell.html

Precondition

Postcondition

Invariant

Tuesday, January 12, 2010

http://archive.eiffel.com/eiffel/nutshell.html
http://archive.eiffel.com/eiffel/nutshell.html

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Example: Expressivity

23

qsort [] = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
 where
 lt_x = [y | y <- xs, y < x]
 ge_x = [y | y <- xs, y >= x]

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;
 if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

Quicksort in CQuicksort in Haskell

(we will discuss Haskell in
detail later in the semester)

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Example: Expressivity

24

qsort [] = []
qsort (x:xs) = qsort lt_x ++ [x] ++ qsort ge_x
 where
 lt_x = [y | y <- xs, y < x]
 ge_x = [y | y <- xs, y >= x]

qsort(a, lo, hi) int a[], hi, lo;{
 int h, w, p, t;
 if (lo < hi) {
 w = lo;
 h = hi;
 p = a[hi];
 do {
 while ((w < h) && (a[w] <= p))
 w = w+1;
 while ((h > w) && (a[h] >= p))
 h = h-1;
 if (w < h) {
 t = a[w];
 a[w] = a[h];
 a[h] = t;
 }
 } while (w < h);

 t = a[w];
 a[w] = a[hi];
 a[hi] = t;

 qsort(a, lo, w-1);
 qsort(a, w+1, hi);
 }
}

Quicksort in CQuicksort in Haskell

Only for int.

For any ordered
datatype.

(we will discuss Haskell in
detail later in the semester)

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Writability Factors

25

Haskell: allows numeric integration to
be defined once for any function

Java: javadoc support ensures
standardized, indexable documentation.

D: designed as a C successor, it has
been hindered by the existence of

incompatible compilers and libraries.

gcc: some warnings not used in Linux
due to excessive false positives.

Ruby: The “Ruby on Rails” web
framework drastically reduced the need

for configuration files.

Facilities for abstraction
➡ Define each concept only once.

Repetition avoidance.
➡ DRY principle: “donʼt repeat yourself”
➡ Code generation.
➡ Generic programming.
➡ Sparse type declarations, type inference.

Quality of development tools.
➡ Efficiency of compiler-generated code.
➡ Availability of libraries.
➡ Leniency of compiler / language system.
➡ Turnaround time of edit-compile-test cycle.
➡ Number of available compiler / tool chains.

Documentation.
➡ Availability and quality.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Reliability Factors

26

In Erlang, processes can be linked: if one fails,
then all linked processes are also terminated.

This prevents “half-dead” systems.

Example: detect use of uninitialized variables.

Model-checking is a technique to automatically
prove safety and liveness properties.

C: lack of run-time checking has caused billions
in damages due to security incidences.

Example: detect when interface has changed.

Haskell: the QuickCheck library aids debugging
by automatically generating counter examples to

invariants based on type signatures.

Static error detection.
➡ Type checking.
➡ Constraint checking.
➡ Model-driven development.
➡ Model extraction.

Dynamic error detection.
➡ Array bounds checking.
➡ Integer overflow detection.

Ease of error handling.
➡ Structured exception handling.
➡ Error propagation.

Versioning of components.
➡ Avoid mismatch in assumptions.

Ease of testing.
➡ Unit testing support.
➡ Test case generation.

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Language Design Tradeoff

27

developer
productivity

program
efficiency

program
safety

Tuesday, January 12, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts02: Programming Languages

Summary
History.
➡ Programming language development started with a desire for

higher levels of abstraction.
➡ Compiling very high levels of abstraction into efficient

machine code is challenging.

Programming Language Spectrum.
➡ Language design involves many tradeoffs.
➡ The result: many competing languages, all slightly different.
➡ Often variations on a theme.

Categories.
➡ Declarative: what to do.

‣ Functional, logic-based, dataflow.
➡ Imperative: how to do it.

‣ Procedural, object-oriented, scripting.

28
Tuesday, January 12, 2010

