Lexical Analysis

; \ COMP 524: Programming Language Concepts
I Bjorn B. Brandenburg

g

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

04: Lexical Analysis

COMP 524: Programming Language Concepts

The Big Picture

Character Stream ~.

-
o)
T
s oaries | <
Wit armedie o] <_
" itachine raiege | <
[ededrget erauege |

-

Scanner (lexical analysis)

Parser (syntax analysis

[Semantic analysis &
intermediate code gen.

Machine-independent

Target code generation.

[Machine-specific
timization (optional

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

The Big Picture

Character Stream ~

_ TokenSteam |
B

[Semantic analysis &
- .~ | intermediate code gen.
Lexical analysis:
grouping consecutive characters that “belong together.”

/

Scanner (lexical analysis)

Turn the stream of individual characters Iinto a
stream of tokens that have individual meaning.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Source Program

The compiler reads the program from a file.
= Input as a character stream.

| Source File I

v
L HWAwddE e e -

Compilation requires analysis of program structure.
= |dentify subroutines, classes, methods, etc.
= Thus, first step is to find units of meaning.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

| Source File |

y
SRS BBSEBBEBH

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ sequence means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

| Source File I

7
- HUEUUUEVEEWW -

No
- | Human Analogy:

} To understand the meaning of an English

} sentence, we do not look at individual

, characters. Rather, we look at individual words.
)

Human word = Program token

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

| Source File I

Operator:
Assignment

9_..9....@@@

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ followed by another means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

- ource Flle

Integer Literal |

/
- dUWULUEBEE W -

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ followed by another means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

Qalirce File

Operator: Minus

Ll e e e ew -

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ followed by another means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

Qf\l lre~o

Integer Literal

- PJUYUUWEWELQW -

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ followed by another means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

L};u weon Eiln I

Operator:
Multiplication

~HwEe P e e ey -

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ followed by another means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

| Source Fil= I

: |dentifier: foo

/
- UYWL -

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ followed by another means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Tokens

| Source File I -

Statement
separator/terminator

90.09000.@@[@}

Not every character has an individual meaning.
= |n Java, a '+ can have two interpretations:

» A single '+ means addition.

» A '+’ '+’ followed by another means increment.

= A sequence of characters that has an atomic
meaning Is called a token.
= Compiler must identify all input tokens.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Lexical vs. Syntactical Analysis

Why have a separate lexical analysis phase?

» In theory, token discovery (lexical analysis)
could be done as part of the structure discovery
(syntactical analysis, parsing).

» However, this is unpractical.

» It Is much easier (and much more efficient) to
express the syntax rules in terms of tokens.

» Thus, lexical analysis iIs made a separate step
because it greatly simplifies the subsequently
performed syntactical analysis.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Example: Java Language Specification

Lexical Structure

The following 37 tokens are the operators, formed from ASCII characters:

Operator: one of

= > < ! ~ ? .

== <= >= I= && |+ --

+ — = / & A % << >> >>>
+= -= = [= &= = A= %= <<= >>= >>>=

Syntactical Structure

UnaryExpression: UnaryExpressionNotPlusMinus :
PrelncrementExpression PostfixExpression
PreDecrementExpression ~ UnaryExpression
+ UnaryExpression | UnaryExpression
- UnaryExpression CastExpression

UnaryExpressionNotPlusMinus

PrelncrementExpression:
++ UnaryExpression

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

COMP 524: Programming Language Concepts

Example: Jav(
i

Token Specification:
nese strings mean something, but knowledge of

Lexical Structure tr

The following 37 tokens are the operators,

Operator: one of

= > < | ~ ?
== <= @ >= = && |
+ - * / &

+= -= F*= [= &= =

e exact meaning is not required to identify them.

formed from ASCII c-afacCters:

++ e
A % << >> >>>
A= %= <<= >>= >>>=

Syntactical Structure

UnaryExpression :
PrelncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

PrelncrementExpression:
++ UnaryExpression

UnaryExpressionNotPlusMinus :
PostfixExpression
~ UnaryExpression
' UnaryExpression
CastExpression

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

Example: Jav(

COMP 524: Programming Language Concepts

Token Specification:
nese strings mean something, but knowledge of
the exact meaning is not required to identify them.

Lexical Structure

Operator: one of

— > < |)
== <= >= = &&
+ - * / &
= -= F= [= &=

The following 37 tokens are the operators, formed from ASCII c* af@cCters:

? .
|+ -
A % << >> >>>
= A= %= <<= >>= >>>=

Meaning is given by where they can

Syntactical Structure

UnaryExpression :
PrelncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression

DresSIon:
naryExpression

Prelncrer
++

occur in the program (grammar) and
and language semantics.

| UnaryExpression
CastExpression

UnaryExpressior” omPlusMinus

UNC Chapel Hill

Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Lexical Analysis

The need to identify tokens raises two questions.
= How can we specify the tokens of a language?
= How can we recognize tokens in a character stream?

Token Specification Token Recognition

: . Deterministic Finite
Regular Expressions l DFA Construction Automata (DFA)
Language (several steps)
. Language
Design and .
L. Implementation
Specification

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammars and Languages

A regular expression is a kind of grammar.

= A grammar describes the structure of strings.

= A string that “matches” a grammar G’s structure is
said to be in the language L(G) (which is a set).

A grammar is a set of productions:

= Rules to obtain (produce) a string that is in L(G) via
repeated substitutions.

= There are many grammar classes (see COMP 455).

= Two are commonly used to describe programming
languages: regular grammars for tokens and
context-free grammars for syntax.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101

[digit - 0[1]2(3]4]5]6/7]8]9 J
L non_zero_digit » 1|2|3|4|5|6|7|8]|9 J
{ natural_number — non_zero_digit digit™ J
{ non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €) J

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Productions

[“dgit-0[1]2|3]4|5[6]7]8]9)
L non_zero_digit‘- 112]|3]|4|5|6|7|8]|9 J
{ natural_number — Yon_zero_digit digit™ J
{ non‘/ “A = B" Is called a production. e) }

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Non-Terminals

[(Gigit~)011121314]5]6]7|8] ¢ }
L non_ze-r digit—+1|2|3|4|5|6|7|8]|9 J
{ natural_. \umber — non_zero_digit digit™ J
{ non‘/ The “name” on_thc left Is called €) }
a non-terminal symbol.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Terminals

[digit = 011231415 §]7])|9 J

The symbols on the right are either terminal or non-
_ | terminal symbols. A terminal symbol is just a character.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Definition

[cfit-»0|‘~>|2|3|4|5|6|7|8|9 J

L)
L non_zero_digit -\1|2|3|4|5|6|7|8]|9 J

A -
" means “is a’
or “replace with’

{ non_neg_number _zero_digit) | €) J

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Choice

[digit + 011 (213 4156789 J

L non_zero_digit +1 2|3|4|5|6|7|8]|9 J

. -

“I” denotes or
L non_neg_numbelr, _zero_digit) | €) J

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

COMP 524: Programming Language Concepts

Grammar 101: Example

digit - 0]1|2]3|4|5|6]7|8]9

L)

non_zero_digit -\1]2|3|4|5|6|7]8]|9

{ non

UNC Chapel Hill

Thus, the first production means:
A digit is a “0” or ‘1’ or ‘2’ or ... or ’9’.

Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Optional Repetition

“*” denotes zero or more of a symbol.

digit > 0]1]2|3|4|:\6]|7|8]9

{ natural_number — non_zero_dig (digit*) }

L non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €) J

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Sequence

/

) Two symbols next to each other
{ means “followed by.”

L non_zero_digit #1|2|3|415|6|7|8]|9 J

{ natural_number €nhon_zero_digit digl'?"\) J

L non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €) J

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Example

Thus, this means:

A natural number is a non-zero digit }
followed by zero or more digits.

L non_zero digit +1|2|3|4|5|6|7|8]|9 J

{ <€ natural_number — non_zero_digit digit* ‘) }

L non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €) J

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Epsilon

[digit »0]1(2(3]4]|5(6]7]8]9 }

“€” Is special terminal that means empty.
{ 't corresponds to the empty string.

{ natural_number — non_zero_digit digit™ J

-

L non_neg_number — (0 | natural_number) ((. digit* non_zero_digit @) \

>

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Example

So, what does this mean?

[digit - 0[1]2 |314156/7]8]¢ J

L non_zero_digit > 112|3|4|5|6|7|8]|9 J

{ natural_number Ion_zero_digit digit* }
non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €)

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Grammar 101: Example

A non-negative number is a ‘0’ or a
natural number, followed by either
nothing or a ‘.’, followed by zero or more
digits, followed by (exactly one) digit.

{ natural_number - /on_zero_digit digit” J

non_neg_number — (0 | natural_number) ((. digit* non_zero_digit) | €)

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Regular Expression Rules

Base case: a regular expression (RE) is either
= a character (e.g., '0’, ‘1°, ...), or
= the empty string (i.e., ‘g’).

A compound RE is constructed by

= concatenation: two REs next to each other (e.g.,
“‘non_negative_digit digit’),

= alternation: two REs separated by
(e.g., “non_negative_digit| digit’),

= optional repetition: a RE followed by “*” (the Kleene star)
to denote zero or more occurrences, and

= parentheses (in order to avoid ambiguity).

next to each other

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Regular Expression Rules

Base case: a regular expression (RE) is either
= a character (e.g., '0’, ‘1°, ...), or
= the empty string (i.e.. ‘g’).

A co A RE is NEVER defined in terms of itself!

= ca [hus, REs cannot define recursive statements.
“n

= alternation: two REs separated by
(e.g., “non_negative_digit| digit’),

= optional repetition: a RE followed by “*” (the Kleene star)
to denote zero or more occurrences, and

= parentheses (in order to avoid ambiguity).

next to each other

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Example

Let’s create a regular expression corresponding to the
“City, State ZIP-code” line in mailing addresses.

E.g.: Chapel Hill, NC 27599-3175
Beverly Hills, CA 90210

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Example

Let’s create a regular expression corresponding to the
“City, State ZIP-code” line in mailing addresses.

E.g.: Chapel Hill, NC 27599-3175
Beverly Hills, CA 90210

city_line — city °, " state_abbrev ' * zip_code
city — letter (letter| * ° letter)”
state_abbrev — ‘AL’ | ‘AK’ | ‘AS’ | ‘AZ’ | ... | ‘WY’
Zlp_code — digit digit digit digit digit (extral €)
extra — - digit digit digit digit

aigit —»0111213141516171819
letter - AIBICI...IO1...

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Regular Sets and Finite Automata

If a grammar G is a regular expression,
then the language L(G) is called a regular set.

Fundamental equivalence:

For every regular set L(G), there exists a
deterministic finite automaton (DFA) that
accepts a string S if and only if SeL(G).

(See COMP 455 for proof.)

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA 101

Deterministic finite automaton:

= Has a finite number of states.

= Exactly one start state.

= One or more final states.

= Transitions: define how automaton switches between
states (given an input symbol).

0
[X

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA 101

Deterministic finite automaton:

= Has a finite number of states.

= Exactly one start state.

= One or more final states.

= Transitions: define how automz©n switches between
states (given an input symte

Start State

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA 101

Deterministic finite automaton:
= Has a finite number of states.
= Exactly one start state. Intermediate State
= One or more final states. (neither start nor final)
= Transitions: define how automa
states (given an input symbol).

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA 101

Deterministic finite automaton:

= Has a finite number of states

= Exactly one start state.

= One or more final states.

= Transitions: define how au
states (given an input symbol).

Final State
(indicated by double border)

0, 1

. 0
[X

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA 101

Deterministic finite automaton:

= Has a finite numberfleales

= Exactly one start st Transition

= One or more final st Given an input of ‘1’, if DFA is in

= Iransitions: define | state A, then transition to state B
states (given an inpL (and consume the input).

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Self Transition
Given an input of ‘0’, if DFA IS In
state A, then stay in state A
(and consume the input).

Deterministic

= Has a finite r

= Exactly one

= One or more final states.

= Transitions: define how zdtomaton switches between
states (given an mpu* symbol).

(&
)

0 0, 1

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA 101

Transitions must be unambiguous:
For each state and each input, there exist only one
transition. This is what makes the DFA deterministic.

Not a legal DFA| ——> @(%

0
[X

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA 101

-

Determinis Multiple Transitions
= Has a finliGjven an input of either ‘0’ or ‘1’, if DFA
= Exactly of s in state C, then stay in state C

= One or m (and consume the input).
= Transitio

states (given an input symbol).

een

0
[X

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA String Processing

0 0 0, 1

String processing.
= |nitially in start state.
= Sequentially make transitions each character in input string.

A DFA either accepts or rejects a string.

= Reject if a character is encountered for which no transition is
defined in the current state.

= Reject if end of input is reached and DFA is not in a final state.

= Accept if end of input is reached and DFA is in final state.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Example

0
[

current state

Input: @

’ Initially, DFA is in the start State A.
current input character The first input character is ‘1°.
This causes a transition to State B.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Example

0 0, 1
K [y
(D
current state
Input: @

f The next input character is ‘0’.
current input character This causes a self transition In
State B.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Example

0
)

current state

The end of the input is reached,
currentinput character |yt the DFA IS not In a final state:
the string '10’° is rejected!

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA-Equivalent Regular Expression

0 0 0, 1

What's the RE such that the RE’s language Is exactly
the set of strings that is accepted by this DFA?

0*10*1(110)"

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA-Equivalent Regular Expression
o
w-"

What's the RE anguage Is exactly
the set of string ad by this DFA?

OO (110)*

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Recognizing Tokens with a DFA

Table-driven implementation.
= DFA’s can be represented as a 2-dimensional table.

Current State On ‘0’ On‘1’ Note
A transition to A transition to B start
B transition to B transition to C —
C transition to C transition to C final

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Recognizing Tokens with a DFA

g
currentState = start state;

while end of input not yet reached: {
c = get next input character;
1f transitionTable[currentState][c] # null:
currentState = transitionTable[currentState][c]
else:
reject input

}

1f currentState i1s final:
accept input

else:
reject input

Current State On ‘0’ On‘1’ Note
A transition to A transition to B start
B transition to B transition to C —
C transition to C transition to C final

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Recognizing Tokens with a DFA

g
currentState = start state;

while end of input not yet reached: {
c = get next input character;
1f transitionTable[currentState][c] # null:
currentState = transitionTable[currentState][c]
else:
reject input

}

1f currentState i1s final:
accept input
else:
reject input
S—
C This accepts exactly one token in the input.

A real lexer must detect multiple successive tokens.

This can be achieved by resetting to the start state.
But what happens if the suffix of one token is the prefix of another?
(See Chapter 2 for a solution.)

UNC Chapw (NN DIUIIUCIIVUIY — vpMlilly 42V

04: Lexical Analysis COMP 524: Programming Language Concepts

Lexical Analysis

The need to identify tokens raises two questions.
= How can we specify the tokens of a language?
» With regular expressions.

= How can we recognize tokens in a character stream?
» With DFAs.

Token Specification Token Recognition

Deterministic Finite

DFA Construction Automata (DFA)

Regular Expressions

?

No single-step algorithm:
We first need to construct a Non-Deterministic Finite Automaton...

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Non-Deterministic Finite Automaton (NFA)

Like a DFA, but less restrictive:
= Transitions do not have to be unique: each state may have

multiple ambiguous transitions for the same input symbol.
(Hence, it can be non-deterministic.)
= Epsilon transitions do not consume any input.

(They correspond to the empty string.)
= Note that every DFA is also a NFA.

Acceptance rule:
= Accepts an input string if there exists

a series of transitions such that the
NFA is in a final state when the end of
iInput Is reached.

= Inherent parallelism: all possible paths A legal NFA fragment
are explored simultaneously.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Example

] E
(Start) @

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Example

current state

Input: @@

' Epsilon transition:
current input character Can transition from State 1 to State
2 without consuming any input.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Example

current state

Input: @@

’ Regular transition:
current input character Can transition from State 2 to State
3, which consumes the first ‘a’.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Example

(Start)

Input: @@

' Epsilon transition:
current input character | Cagn transition from State 3 to State 2
without consuming any input.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Example

current state

Input: @@

* Regular transition;
current input character Can transition from State 2 to State 3,
which consumes the second ‘a’.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Example

(Start)

Input: @@

' Epsilon transition from State 3 to 4.

current input character
End of input reached, but the NFA
can still carry out epsilon transitions.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Example

a
£ € 3
] 3
(Start)
current state
nput: (a)(a)
' Input Accepted:

current input character| There exists a sequence of transitions
such that the NFA is in a final state at the
end of input.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Equivalent DFA Construction

Constructing a DFA corresponding to a RE.
= |n theory, this requires two steps.
» From a RE to an equivalent NFA.

» From the NFA to an equivalent DFA.

To be practical, we require a third optimization step.
= Large DFA to minimal DFA.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

Example

COMP 524: Programming Language Concepts

NFA to DFA

0*1(110)*

RE to NFA

1

10,11@ 1 /0

O\1

@ 9,10, 1 1@ 0 N
(Start) 0

Final DFA '_ |

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Step 1: RE = NFA

Every RE can be converted to a NFA by
repeatedly applying four simple rules.

= Base case: a single character.

= Concatenation: joining two REs in sequence.
= Alternation: joining two REs in parallel.

= Kleene Closure: repeating a RE.

(recall the definition of a RE)

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

The Four NFA Construction Rules

Rule 1 —Base case: ‘a’ l

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

The Four NFA Construction Rules

i Rule 1—Base case: ‘a l
©—-—©

Simple two-state NFA (even DFA, t00).

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

The Four NFA Construction Rules

Rule 2 —Concatenation:; AB l
@i;@ followed by @i:@

A B

L U ©

~_—
AB

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

The F¢ Not just two states but any NFA ules
with a single final state.

Rule 2—Concate
N\
6\ followed by @

\
A B

L U ©

~_—
AB

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

The Four NFA Construction Rules

Rule 3--Alternation: “A|B” l

04: Lexical Analysis COMP 524: Programming Language Concepts

Thef Four NFA Construction Rules

Notice the epsilon transitions.

~

C_© T] ©iB}©

A

o

ﬁﬁf

04: Lexical Analysis COMP 524: Programming Language Concepts

The Four NFA Construction Rules

Rule 4 —Kleene Closure: “A*” l
A

/E T
-~ O@ O

A*

04: Lexical Analysis COMP 524: Programming Language Concepts

The Four NFA Construction Rules

Notice the epsilon transitions.

~

Rule 4 —Kleene Closure: “A*”

04: Lexical Analysis

The Four NFA Construction Rules

COMP 524: Programming Language Concepts

Rule 4 —Kleene Closure: “A*” l

A

s

repetition

3 one occurrence l

A*

UNC ChapS™ii

(| \JII\J@IIUUI& o Vrll Illv I | VY

04: Lexical Analysis COMP 524: Programming Language Concepts

Overview

Four rules:
= Create two-state NFAs
for individual symbols,

e.g., ‘a.

= Append consecutive
NFAs, e.g., AB.

= Alternate choices In /
parallel, e.g., AlB.

= Repeat Kleene Star,
e.g., A”.

(7)

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Construction Example

Regular expression: (a|b)(c|d)e*

Apply Rule 1:

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Construction Example

Regular expression: (a|b)(c|d)e*

g 1 < 0 c] 1 < 0]
alb cld

Apply Rule 2:

$5°C"

ol

(alb)(c|d)

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Construction Example

Regular expression: (a|b)(c|d)e*

/

Apply Rule 1: @

Apply Rule 4.

.

1 3
(Start) @

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA Construction Example

Regular expression: (a|b)(c|d)e*

a\b c\d

Apply Rule 2:

oo
£ 2 . ° £ 2 ’ s . Gc :
(i) = g vl O
D 9

(alb)(c|d)e”

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Step 2: NFA - DFA

Simulating NFA requires exploration of all paths.
= Either in parallel (memory consumption!).

= Or with backtracking (large trees!).

= Both are impractical.

Instead, we derive a DFA that encodes all possible paths.
= |nstead of doing a specific parallel search each time that
we simulate the NFA, we do it only once in general.

Key idea: for each input character, find sets of NFA states

that can be reached.

= These are the states that a parallel search would explore.

= Create a DFA state + transitions for each such set.

= Final states: a DFA state is a final state if its corresponding
set of NFA states contains at least one final NFA state.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

COMP 524: Programming Language Concepts

NFA-to-DFA-CONVERSION:
todo: stack of sets of NFA states.

push {NFA start state and all epsilon-reachable states} onto todo

while (todo is not empty):
curNFA: set of NFA states
curDFA: a DFA state

curNFA = todo.pop
mark curNFA as done

curDFA = find or create DFA state corresponding to curNFA

reachableNFA: set of NFA states
reachableDFA: a DFA state

for each symbol x for which at least one state in curNFA has a transition:
reachableNFA = find each state that is reachable from a state in curNFA

via one x transition and any number of epsilon transitions

if (reachableNFA i1s not empty and not done):
push reachableNFA onto todo

reachableDFA = find or create DFA state corresponding to reachableNFA

add transition on x from curDFA to reachableDFA
end for

end while

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

7
o d
continues. ..

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

@ NGy O

continues...

First Step: before any input is consumed

Find all states that are reachable from the
start state via epsilon transitions.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

O =Sy

continues...
)

First Step: before any input is consumed
Create corresponding DFA start state.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

7
o d
continues...

Next: find all input characters for which
tfransitions In start set exist.

‘a’ and ‘b’ in this case.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

continues...

-

For each such input character, determine

the set of reachable states
(including epsilon transitions).

On an ‘b’, NFA can reach states 5,6,7, and 9.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

continues. ..

Create DFA states for each

distinct reachable set of states.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

oSO

continues. ..

On an ‘a’, NFA can reach

./< &bw 6 7,D states 3,6,7, and 9.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

SO

/

continues. ..

b /////
\“.Q ; / Create DFA states for each
> 'ZD distinct reachable set of states.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

11

continues. ..

Repeat process for each newly-
discovered set of states.

13, 6, 7, 9]
done \< >

UNC Chapel Hill

Brandenburg — Spring 2010

)4 lexical Anc OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Reachable states:
ona‘c:8,11,12,14

()4 lexical Anag (OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Create state and transitions for
the set of reachable states.

@o, 11, 12, D

()4 lexical Anag (OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

3
d' '

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Reachable states: Create state and transitions for
ona‘d:10,11,12,14 the set of reachable states.

W] ([5679]\ @1112@
done \@6' 7'D @”']Z'D

()4 lexical Anag (OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

lel
(3 L= A e)
E
© =< |
€ € ot
O (0
)

Note: both new DFA states are final states because their
corresponding sets include NFA state 14, which is a final state.

()4 lexical Anag (OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

N . L
o f)) =gy Eg
b d ¢ £ 1
Repeat process for
State [3, 6, 7, 9].
done .
\0’

done RS)

()4 lexical Anag (OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

N g L
) T (e L)
by ° - o - i}
< ©
Reachable states: Reachable states:
ona‘d:10,11,12,14 ona‘c:8,11,12,14

done

\0'11,12,D

C
done NS)

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

11

done

There already exist DFA states corresponding to those sets!
Just add transitions to these states.

done

d

C
\0' d @ 11, 12, D

C

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Repeat process for Reachable states:
State [10, 11, 12, 14]. onan ‘e: 12,13, 14

done

— ,
@ 15, 6 7, 9] C @o, 11, 12, 1D
\@679] d @11,12,@

done

done

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

Create state and transitions for
the set of reachable states.

done

[5679] ([10, 11, 12, 14] S
3,6,7,9
done [] @11,12,@

done

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

ICI
© =g =
D € d'

Repeat process for Reachable states:
State [8, 11, 12, 14]. onan ‘e: 12,13, 14

done

5, 6,7, 9] [10, 11, 12, 14]
| e <IX
@11,12, 1D

)4 lexical Anc OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

ICI
< =g ==
€ 3 T :

State already exists.
Just create transition.

done d done
" 15, 6,7, 9] @o, 11, 12, 1D .
3,6,7,9
done \i | @ 11, 12, 1D

()4 lexical Anag (OMF

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

lel
E
3 € ot
,

Repeat process for Reachable states:
State [12, 13, 14]. on an ‘e’ 12, 13, 14 (itself!)
done d done
X [12, 13, 14]
a d 210
— \@6, 7, 9] @ 11, 12, 1D
done c

DFA Conversion Example

Regular expression: (a|b)(c|d)e*

There is no “escape” from the set of states [12, 13, 14]
on an ‘e’. Thus, create a self-loop.

e

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Conversion Example

Regular expression: (a|b)(c|d)e*
£ 2 < e £ ’ - ° = : ac :
D O

The result: an equivalent DFA!

done

e

5,6,7,9 [10, 11, 12, 14]
C= =TI

3,6,7,9
done \i | @ .1z, 1D done

done

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA = DFA Conversion

» Any NFA can be converted into an equivalent DFA
using this method.

» However, the number of states can increase
exponentially.

» With careful syntax design, this problem can be
avoided in practice.

» Limitation: resulting DFA is not necessarily optimal.

e

d

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

NFA = DFA Conversion

» Any NFA can be converted into an eauivalent DFA

usir
These two states are equivalent: for each
* FOV input element, they both lead to the same state.
exp
Wit Thus, having two states Is unnecessary.
avolaeC ol -

» Limitation: resulting DFA Is_t necessarily optimal.

Qo,n,n,D
@11,12,D

e

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Step 3: DFA Minimization

Goal: obtain minimal DFA.
= For each RE, the minimal DFA is unique (ignoring
simple renaming).

= DFA minimization: merge states that are
equivalent.

Key idea: it’s easier to split.
= Start with two partitions: final and non-final states.
= Repeatedly split partitions until all partitions °

contain only equivalent states.
= Two states S71, S2 are equivalent if all their

transitions “agree,” i.e., if there exists an input
symbol x such that the DFA transitions (on input °
X) to a state in partition P71 if in S71 and to state in

partition P2 if in S2 and P1£P2, then S§7 and S2
are not equivalent.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

Goal: obtain minimal DFA.

= For each RE, the minimal DFA is unique (ignoring

simple renaming).

= DFA minimization: merge states that are

equivalent.

Key idea: it’s easier to split.

= Start with two partitions: final and non-final states.

= Repeatedly split partitions until all partitions
contain only equivalent states.

= Two states S1, S2 are equivalent if all their
transitions “agree,” i.e., if there exists an input

symbol x such that the DFA transitions (on input
X) to a state in partition P71 if in S71 and to state in
partition P2 if in S2 and P1£P2, then S§71 and S2

are not equivalent.

COMP 524: Programming Language Concepts

Step 3: DFA Minimization

Part. 2

Part. 1

(o
b

-

@]

‘o o o

om
-bLbbb

@]
- e e -

. Part. 3

UNC Chapel Hill

Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

~Ci-— 2. REA Miimization

Goal: obtair ‘A and B are equivalent. [

= For each | Part. 2
simple renaming).
= DFA minimization: merge states that are

)
:
equivalent. _\ : °

b
Part. 1 »
Key idea: it’s easier to split.
= Start with two partitions: final and non-final state§.
= Repeatedly split partitions until all partitions @ a
contain only equivalent states.
= Two states S71, S2 are equivalent if all their

transitions “agree,” i.e., if there exists an input a el

-

om
-bLbb

MmN aliia¥P= nAa |)J-A =1a 1NN AN 1NN

C is not equivalent to either A or B.

@]
- e e -

Because it has a transition into Part.3.

. Part. 3

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

COMP 524: Programming Language Concepts

DFA Minimization Example

@, 13, 1D

UNC Chapel Hill

Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Minimization Example

Final

Non-Final

e

d
—

b [5, 6, 7,K [10, 11, 12, 14]
I
@ - d
\@6' 7, 9] ’ (8, 11, 12, 14]
e
J

Partition final and non-final states. '

bLbb

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Minimization Example

Non-Final Final &

e

- -

— d
b [51 6/ 71 9]

C

c d
\@ 6,7, 9]

C

Examine final states. l
All final states are equivalent! l

Qo, 11, 12, 1D
@ 11, 12, 1D

-

- e -

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Minimization Example

[1,2,4] Is not equivalent to any other state:
it is the only state with a transition to the non-final partition.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis

UNC Chapel Hill

COMP 524: Programming Language Concepts

DFA Minimization Example

[5,6,7,9] and [3,6,7,9] are equivalent.
Thus, we are done.

Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

DFA Minimization Example

Create one state for each partition.
We have obtained a minimal DFA for (a|b)(c|d)e*.

d 3
o [567F Qon 12, 1D
W [3, 6,7, 9] 811121D

e

-

0

= e e e -

<:?;:>
o
ol

b b b e e e e e e
()

A la, b
(Start)

- e -

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Recognizing Multiple Tokens

» Construction up to this point can only recognize a
single token type.

» Results in Accept or Reject, but does not yield
which token was seen.

» Real lexical analysis must discern between
multiple token types.

» Solution: annotate final states with token type.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Multi Token Construction

To build DFA for N tokens:
= Create a NFA for each token type RE as before.
= Join all token NFAs as shown below:

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Multi Token Construction

To bl
- Cre This is similar to NFA construction rule 3. o
- 0} Key difference: we keep all final states. '

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Multi Token Construction

To bl
- Cre This is similar to NFA construction rule 3. o
- 0} Key difference: we keep all final states. '

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Token Precedence

Consider the following regular grammar.
= Create DFA to recognize identifiers and keywords.

identifier — letter (letter | digit| _)*
keyword — if | else | while

aigit —»0111213141516171819
letter —alblcl...lz

Can you spot a problem?

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Token Precedence

Consider the following regular grammar.
= Create DFA to recognize identifiers and keywords.

identifier — letter (letter | digit| _)*
keyword — if | else | while

aigit —»0111213141516171819
letter —alblcl...lz

All keywords are also identifiers!
The grammar is ambiguous.
Example: for string ‘while’, there are two accepting
states in the final NFA with different labels.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Token Precedence

Consider the following regular grammar.
= Create DFA to recognize identifiers and keywords.

identifier — letter (letter | digit| _)*
keyword — if | else | while
aigit —-0111213141516171819
letter —alblcl...lz

Solution

= Assign precedence values to tokens (and labels).
= |In case of ambiquity, prefer final state with highest
precedence value.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Token Precedence

Consider the following regular grammar.
= Create DFA to recognize identifiers and keywords.

-

Note: during DFA optimization, two final states are
not equivalent if they are labeled with
different token types.

Solution

= Assign precedence values to tokens (and labels).

= In case of ambiguity, prefer final state with highest
precedence value.

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

() Multi Token Example

Java Integer Literals

1,2,3,4,5

6,7,8, 9 0
OI]I ’ I 4
Deamallntegertheral 5,6,7,8,9 Deamallntegertheral
O, , 2,3
4, , 6,7
0,1,2,3
Demmallntegertheral Octallntegertheral 4,5, 6,7
0,1,2,3,4,5
L) 6,7,8,9 A, B
! C,D,E, F,a, b
c,d, e f

~

~

y A 4
0,1,2,3,4,5
C G 6,7,8,9, A, B
Octalintegerliteral HexIntegerliteral C,D,E F qb

c,d e f
3
H
HexIntegerLiteral

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

() Multi Token Example

Java Integer Literals
1,2,3,4,5
6,7,8,9

OI 4 I I 4
@allnteger@ 5,6,7,8,9 @allnteger@
B
Demmallntegertheral Octallntegerliteral

L, |

0

y y

0,1,2,3,4,5

C G 6/ 71 81 91 AI B

Octalintegerliteral HexIntegerliteral C,D,E F qb
c,d e f

Final states labeled _— lL"

with token type. Quﬂb

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

@ Multi Token Example

Java Integer Literals

Final states can have
transitions into
non-final states.

y A 4
0,1,2,3,4,5
C G 6,7,8,9, A, B
Octalintegerliteral HexIntegerliteral C,D,E F qb

c,d e f
3
H
HexIntegerLiteral

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Extended Regular Expressions

some commonly used abbreviations

+ n ? 1 "]

+ Kleene Plus

name — letter+
IS the same as
name — letter letter”

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Extended Regular Expressions

some commonly used abbreviations

+ N ? 1 "]

n times

name — letter?
IS the same as
name — letter letter letter

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Extended Regular Expressions

some commonly used abbreviations

+ N ? 1 "]

? optionally

ZIP — digit (-digit?) ?
IS the same as
ZIP — digits (£ | -digit*)

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Extended Regular Expressions

some commonly used abbreviations

+ n ? 1 "]

[] one off

digit > [123456789]
IS the same as
dgit— 0111213141516171819

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Extended Regular Expressions

some commonly used abbreviations

+ N ? 1 "]

[A] not one off

notADigit =& [*123456789]
IS the same as
notADigit = Al B 1| C ...

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Extended Regular Expressions

ly used abbreviations

Every character , A
except those listed ' i ("]
between [and |.

not one off

notADig.t = [*123456789]
IS thec._3ame =2¢

notADigit 6 AIBIC ...

UNC Chapel Hill Brandenburg — Spring 2010

04: Lexical Analysis COMP 524: Programming Language Concepts

Limitations of REs

Suppose we wanted to remove extraneous, balanced

‘(“ ‘Y pairs around identifiers.

= Example: report (sum), ((sum)) and (((sum)))
simply as Identifier.

= But not: ((sum)

One might try:

identifier — (" letter+)™ suchthatn=m

-

This cannot be expressed with regular expressions!
Requires a recursive grammar: let the parser do It.

UNC Chapel Hill Brandenburg — Spring 2010

