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The Big Picture

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis & 
intermediate code gen.

Machine-independent 
optimization (optional)

Target code generation.

Machine-specific 
optimization (optional)

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language
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Lexical analysis:
grouping consecutive characters that “belong together.”

Turn the stream of individual characters into a
stream of tokens that have individual meaning.
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Source Program
The compiler reads the program from a file.
➡  Input as a character stream.

4

1 2

Source File

3 - 7 5 * f… …o o ;=

Compilation requires analysis of program structure.
➡ Identify subroutines, classes, methods, etc.
➡ Thus, first step is to find units of meaning.
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ sequence means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
5
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Source File

3 - 7 5 * f… …o o ;=



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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1 2

Source File

3 - 7 5 * f… …o o ;=

Human Analogy:
To understand the meaning of an English 

sentence, we do not look at individual 
characters. Rather, we look at individual words.

Human word = Program token
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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1 2

Source File

3 - 7 5 * f… …o o ;=

Operator: 
Assignment
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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1 2

Source File

3 - 7 5 * f… …o o ;=

Integer Literal
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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1 2

Source File

3 - 7 5 * f… …o o ;=

Operator: Minus
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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3 - 7 5 * f… …o o ;=

Integer Literal
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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1 2

Source File

3 - 7 5 * f… …o o ;=

Operator: 
Multiplication
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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1 2

Source File

3 - 7 5 * f… …o o ;=

Identifier: foo
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Tokens

Not every character has an individual meaning.
➡ In Java, a ʻ+ʼ can have two interpretations:
‣A single ʻ+ʼ means addition.
‣A ʻ+ʼ ʻ+ʼ followed by another means increment.

➡ A sequence of characters that has an atomic 
meaning is called a token.

➡ Compiler must identify all input tokens.
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1 2

Source File

3 - 7 5 * f… …o o ;=

Statement
separator/terminator
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Lexical vs. Syntactical Analysis

‣ In theory, token discovery (lexical analysis) 
could be done as part of the structure discovery 
(syntactical analysis, parsing).
‣However, this is unpractical.
‣ It is much easier (and much more efficient) to 
express the syntax rules in terms of tokens.
‣ Thus, lexical analysis is made a separate step 
because it greatly simplifies the subsequently 
performed syntactical analysis.

14

Why have a separate lexical analysis phase?
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Example: Java Language Specification

LEXICAL STRUCTURE Operators 3.12

31

3.11   Separators

The following nine ASCII characters are the separators (punctuators):

Separator: one of
! " # $ % & ' ( )

3.12   Operators

The following 37 tokens are the operators , formed from ASCII characters:

Operator: one of
* + , - . / 0
** ,* +* -* 11 22 33 44
3 4 5 6 1 2 7 8 ,, ++ +++
3* 4* 5* 6* 1* 2* 7* 8* ,,* ++* +++*

EXPRESSIONS Prefix Increment Operator ++ 15.15.1

487

A variable that is declared !"#$% cannot be decremented (unless it is a defi-
nitely unassigned (§16) blank final variable (§4.12.4)), because when an access of
such a !"#$% variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15   Unary Operators

The unary operators include &, ', &&, '', (, ), and cast operators. Expressions
with unary operators group right-to-left, so that '(* means the same as '+(*,.

UnaryExpression-
PreIncrementExpression
PreDecrementExpression
&.UnaryExpression
'.UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
&&.UnaryExpression

PreDecrementExpression:
''.UnaryExpression

UnaryExpressionNotPlusMinus-
PostfixExpression
(.UnaryExpression
).UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:

CastExpression:
+.PrimitiveType.,.UnaryExpression
+.ReferenceType., UnaryExpressionNotPlusMinus

15.15.1   Prefix Increment Operator ++

A unary expression preceded by a && operator is a prefix increment expression.
The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
increment expression is the type of the variable. The result of the prefix increment
expression is not a variable, but a value.

EXPRESSIONS Prefix Increment Operator ++ 15.15.1

487

A variable that is declared !"#$% cannot be decremented (unless it is a defi-
nitely unassigned (§16) blank final variable (§4.12.4)), because when an access of
such a !"#$% variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15   Unary Operators

The unary operators include &, ', &&, '', (, ), and cast operators. Expressions
with unary operators group right-to-left, so that '(* means the same as '+(*,.

UnaryExpression-
PreIncrementExpression
PreDecrementExpression
&.UnaryExpression
'.UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
&&.UnaryExpression

PreDecrementExpression:
''.UnaryExpression

UnaryExpressionNotPlusMinus-
PostfixExpression
(.UnaryExpression
).UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:

CastExpression:
+.PrimitiveType.,.UnaryExpression
+.ReferenceType., UnaryExpressionNotPlusMinus

15.15.1   Prefix Increment Operator ++

A unary expression preceded by a && operator is a prefix increment expression.
The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
increment expression is the type of the variable. The result of the prefix increment
expression is not a variable, but a value.

Lexical Structure

Syntactical Structure
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Example: Java Language Specification

LEXICAL STRUCTURE Operators 3.12

31

3.11   Separators

The following nine ASCII characters are the separators (punctuators):

Separator: one of
! " # $ % & ' ( )

3.12   Operators

The following 37 tokens are the operators , formed from ASCII characters:

Operator: one of
* + , - . / 0
** ,* +* -* 11 22 33 44
3 4 5 6 1 2 7 8 ,, ++ +++
3* 4* 5* 6* 1* 2* 7* 8* ,,* ++* +++*

EXPRESSIONS Prefix Increment Operator ++ 15.15.1

487

A variable that is declared !"#$% cannot be decremented (unless it is a defi-
nitely unassigned (§16) blank final variable (§4.12.4)), because when an access of
such a !"#$% variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15   Unary Operators

The unary operators include &, ', &&, '', (, ), and cast operators. Expressions
with unary operators group right-to-left, so that '(* means the same as '+(*,.

UnaryExpression-
PreIncrementExpression
PreDecrementExpression
&.UnaryExpression
'.UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
&&.UnaryExpression

PreDecrementExpression:
''.UnaryExpression

UnaryExpressionNotPlusMinus-
PostfixExpression
(.UnaryExpression
).UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:

CastExpression:
+.PrimitiveType.,.UnaryExpression
+.ReferenceType., UnaryExpressionNotPlusMinus

15.15.1   Prefix Increment Operator ++

A unary expression preceded by a && operator is a prefix increment expression.
The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
increment expression is the type of the variable. The result of the prefix increment
expression is not a variable, but a value.

EXPRESSIONS Prefix Increment Operator ++ 15.15.1

487

A variable that is declared !"#$% cannot be decremented (unless it is a defi-
nitely unassigned (§16) blank final variable (§4.12.4)), because when an access of
such a !"#$% variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15   Unary Operators

The unary operators include &, ', &&, '', (, ), and cast operators. Expressions
with unary operators group right-to-left, so that '(* means the same as '+(*,.

UnaryExpression-
PreIncrementExpression
PreDecrementExpression
&.UnaryExpression
'.UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
&&.UnaryExpression

PreDecrementExpression:
''.UnaryExpression

UnaryExpressionNotPlusMinus-
PostfixExpression
(.UnaryExpression
).UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:

CastExpression:
+.PrimitiveType.,.UnaryExpression
+.ReferenceType., UnaryExpressionNotPlusMinus

15.15.1   Prefix Increment Operator ++

A unary expression preceded by a && operator is a prefix increment expression.
The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
increment expression is the type of the variable. The result of the prefix increment
expression is not a variable, but a value.

Lexical Structure

Syntactical Structure

Token Specification:
These strings mean something, but knowledge of 
the exact meaning is not required to identify them.
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Example: Java Language Specification

LEXICAL STRUCTURE Operators 3.12

31

3.11   Separators

The following nine ASCII characters are the separators (punctuators):

Separator: one of
! " # $ % & ' ( )

3.12   Operators

The following 37 tokens are the operators , formed from ASCII characters:

Operator: one of
* + , - . / 0
** ,* +* -* 11 22 33 44
3 4 5 6 1 2 7 8 ,, ++ +++
3* 4* 5* 6* 1* 2* 7* 8* ,,* ++* +++*

EXPRESSIONS Prefix Increment Operator ++ 15.15.1

487

A variable that is declared !"#$% cannot be decremented (unless it is a defi-
nitely unassigned (§16) blank final variable (§4.12.4)), because when an access of
such a !"#$% variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15   Unary Operators

The unary operators include &, ', &&, '', (, ), and cast operators. Expressions
with unary operators group right-to-left, so that '(* means the same as '+(*,.

UnaryExpression-
PreIncrementExpression
PreDecrementExpression
&.UnaryExpression
'.UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
&&.UnaryExpression

PreDecrementExpression:
''.UnaryExpression

UnaryExpressionNotPlusMinus-
PostfixExpression
(.UnaryExpression
).UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:

CastExpression:
+.PrimitiveType.,.UnaryExpression
+.ReferenceType., UnaryExpressionNotPlusMinus

15.15.1   Prefix Increment Operator ++

A unary expression preceded by a && operator is a prefix increment expression.
The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
increment expression is the type of the variable. The result of the prefix increment
expression is not a variable, but a value.

EXPRESSIONS Prefix Increment Operator ++ 15.15.1

487

A variable that is declared !"#$% cannot be decremented (unless it is a defi-
nitely unassigned (§16) blank final variable (§4.12.4)), because when an access of
such a !"#$% variable is used as an expression, the result is a value, not a variable.
Thus, it cannot be used as the operand of a postfix decrement operator.

15.15   Unary Operators

The unary operators include &, ', &&, '', (, ), and cast operators. Expressions
with unary operators group right-to-left, so that '(* means the same as '+(*,.

UnaryExpression-
PreIncrementExpression
PreDecrementExpression
&.UnaryExpression
'.UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
&&.UnaryExpression

PreDecrementExpression:
''.UnaryExpression

UnaryExpressionNotPlusMinus-
PostfixExpression
(.UnaryExpression
).UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:

CastExpression:
+.PrimitiveType.,.UnaryExpression
+.ReferenceType., UnaryExpressionNotPlusMinus

15.15.1   Prefix Increment Operator ++

A unary expression preceded by a && operator is a prefix increment expression.
The result of the unary expression must be a variable of a type that is convertible
(§5.1.8) to a numeric type, or a compile-time error occurs. The type of the prefix
increment expression is the type of the variable. The result of the prefix increment
expression is not a variable, but a value.

Lexical Structure

Syntactical Structure

Token Specification:
These strings mean something, but knowledge of 
the exact meaning is not required to identify them.

Meaning is given by where they can 
occur in the program (grammar) and 

and language semantics.



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

Lexical Analysis

The need to identify tokens raises two questions.
➡ How can we specify the tokens of a language?
➡ How can we recognize tokens in a character stream?

18

Regular Expressions

Language 
Design and 

Specification

Token Specification

Deterministic Finite 
Automata (DFA)

Language 
Implementation

Token Recognition

DFA Construction

(several steps)
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Grammars and Languages

A regular expression is a kind of grammar.
➡ A grammar describes the structure of strings.
➡ A string that “matches” a grammar Gʼs structure is 

said to be in the language L(G) (which is a set).

19

A grammar is a set of productions:
➡ Rules to obtain (produce) a string that is in L(G) via 

repeated substitutions.
➡ There are many grammar classes (see COMP 455).
➡ Two are commonly used to describe programming 

languages: regular grammars for tokens and 
context-free grammars for syntax.
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Grammar 101

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

20
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Grammar 101: Productions

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

21

“A → B” is called a production.
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Grammar 101: Non-Terminals

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

22

The “name” on the left is called
a non-terminal symbol.
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Grammar 101: Terminals

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

23

The symbols on the right are either terminal or non-
terminal symbols. A terminal symbol is just a character.
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Grammar 101: Definition

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

24

“→” means “is a”
or “replace with”
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Grammar 101: Choice

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

25

“|” denotes or
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Grammar 101: Example

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

26

Thus, the first production means:

A digit is a “0” or ‘1’ or ‘2’ or … or ’9’.
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Grammar 101: Optional Repetition

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

27

“*” denotes zero or more of a symbol.
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Grammar 101: Sequence

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

28

Two symbols next to each other 
means “followed by.”
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Grammar 101: Example

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

29

Thus, this means:

A natural number is a non-zero digit 
followed by zero or more digits.
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Grammar 101: Epsilon

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

30

“ε” is special terminal that means empty.
It corresponds to the empty string.
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Grammar 101: Example

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

31

So, what does this mean?
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Grammar 101: Example

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

natural_number → non_zero_digit digit*

non_neg_number → (0 | natural_number) ( ( . digit* non_zero_digit) | ε ) 

32

A non-negative number is a ‘0’ or  a 
natural number, followed by either 

nothing or a ‘.’, followed by zero or more 
digits, followed by (exactly one) digit.
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Regular Expression Rules

Base case: a regular expression (RE) is either
➡ a character (e.g., ʻ0ʼ, ʻ1ʼ, ...), or
➡ the empty string (i.e., ʻεʼ).

A compound RE is constructed by
➡ concatenation: two REs next to each other (e.g., 

“non_negative_digit digit”),
➡ alternation: two REs separated by “|” next to each other 

(e.g., “non_negative_digit | digit”),
➡ optional repetition: a RE followed by “*” (the Kleene star) 

to denote zero or more occurrences, and
➡ parentheses (in order to avoid ambiguity).

33
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Regular Expression Rules

Base case: a regular expression (RE) is either
➡ a character (e.g., ʻ0ʼ, ʻ1ʼ, ...), or
➡ the empty string (i.e., ʻεʼ).

A compound RE is constructed by
➡ concatenation: two REs next to each other (e.g., 

“non_negative_digit digit”),
➡ alternation: two REs separated by “|” next to each other 

(e.g., “non_negative_digit | digit”),
➡ optional repetition: a RE followed by “*” (the Kleene star) 

to denote zero or more occurrences, and
➡ parentheses (in order to avoid ambiguity).

34

A RE is NEVER defined in terms of itself!
Thus, REs cannot define recursive statements.
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Example

35

Letʼs create a regular expression corresponding to the 
“City, State ZIP-code” line in mailing addresses.

E.g.:# Chapel Hill, NC 27599-3175
! ! Beverly Hills, CA 90210
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Example

36

Letʼs create a regular expression corresponding to the 
“City, State ZIP-code” line in mailing addresses.

E.g.:# Chapel Hill, NC 27599-3175
! ! Beverly Hills, CA 90210

city_line## # → city  ʻ, ʻ state_abbrev ʻ ʻ zip_code
city! ! ! ! → letter (letter | ʻ ʻ letter)*
state_abbrev! → ʻALʼ | ʻAKʼ | ʻASʼ | ʻAZʼ | … | ʻWYʼ
zip_code! ! → digit digit digit digit digit (extra | ε )
extra!! ! ! → ʻ-ʼ digit digit digit digit
digit! ! ! ! → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter!! ! ! → A | B | C | … | ö | …
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Fundamental equivalence:

For every regular set L(G), there exists a 
deterministic finite automaton (DFA) that 

accepts a string S if and only if S∈L(G).

If a grammar G is a regular expression,
then the language L(G) is called a regular set.

(See COMP 455 for proof.)
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1

Start State
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1

Intermediate State
(neither start nor final)
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1

Final State
(indicated by double border)
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1

Transition
Given an input of ‘1’, if DFA is in 

state A, then transition to state B
(and consume the input).
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1

Self Transition
Given an input of ‘0’, if DFA is in 
state A, then stay in state A

(and consume the input).
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1

Transitions must be unambiguous:
For each state and each input, there exist only one 
transition. This is what makes the DFA deterministic.

Z

Y

X
1

1Not a legal DFA!
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DFA 101
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Deterministic finite automaton:
➡ Has a finite number of states.
➡ Exactly one start state.
➡ One or more final states.
➡ Transitions: define how automaton switches between 

states (given an input symbol).

A
(Start)

0

B1

0

C1

0, 1

Multiple Transitions
Given an input of either ‘0’ or ‘1’, if DFA 

is in state C, then stay in state C
(and consume the input).



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

DFA String Processing

String processing.
➡ Initially in start state.
➡ Sequentially make transitions each character in input string.

A DFA either accepts or rejects a string.
➡ Reject if a character is encountered for which no transition is 

defined in the current state.
➡ Reject if end of input is reached and DFA is not in a final state.
➡ Accept  if end of input is reached and DFA is in final state.

46

A
(Start)

0

B1

0

C1

0, 1
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A
(Start)

0

B1

0

C1

0, 1

1Input: 0

current input character

current state

Initially, DFA is in the start State A.
The first input character is ʻ1ʼ.

This causes a transition to State B.
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A
(Start)

0

B1

0

C1

0, 1

1Input: 0

current input character

current state

The next input character is ʻ0ʼ.
This causes a self transition in 

State B.
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A
(Start)

0

B1

0

C1

0, 1

1Input: 0

current input character

current state

The end of the input is reached, 
but the DFA is not in a final state:

the string ʼ10ʼ is rejected!
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A
(Start)

0

B1

0

C1

0, 1

Whatʼs the RE such that the REʼs language is exactly 
the set of strings that is accepted by this DFA?

0*10*1(1|0)*
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DFA-Equivalent Regular Expression
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A
(Start)

0

B1

0

C1

0, 1

Whatʼs the RE such that the REʼs language is exactly 
the set of strings that is accepted by this DFA?

0*10*1(1|0)*
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Recognizing Tokens with a DFA

Table-driven implementation.
➡ DFAʼs can be represented as a 2-dimensional table.

52

A
(Start)

0

B1

0

C1

0, 1

Current State On ‘0’ On ‘1’ Note
A transition to A transition to B start
B transition to B transition to C —
C transition to C transition to C final
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Recognizing Tokens with a DFA

Table-driven implementation.
➡ DFAʼs can be represented as a 2-dimensional table.

53

A
(Start)

0

B1

0

C1

0, 1

Current State On ‘0’ On ‘1’ Note
A transition to A transition to B start
B transition to B transition to C —
C transition to C transition to C final

currentState = start state;
while end of input not yet reached: {
c = get next input character;
if transitionTable[currentState][c] ≠ null:
currentState = transitionTable[currentState][c]

else:
reject input

}
if currentState is final:
accept input

else:
reject input
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Recognizing Tokens with a DFA

Table-driven implementation.
➡ DFAʼs can be represented as a 2-dimensional table.

54

A
(Start)

0

B1

0

C1

0, 1

Current State On ‘0’ On ‘1’ Note
A transition to A transition to B start
B transition to B transition to C —
C transition to C transition to C final

currentState = start state;
while end of input not yet reached: {
c = get next input character;
if transitionTable[currentState][c] ≠ null:
currentState = transitionTable[currentState][c]

else:
reject input

}
if currentState is final:
accept input

else:
reject input

This accepts exactly one token in the input.
A real lexer must detect multiple successive tokens.

This can be achieved by resetting to the start state.
But what happens if the suffix of one token is the prefix of another? 

(See Chapter 2 for a solution.)
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Lexical Analysis
The need to identify tokens raises two questions.
➡ How can we specify the tokens of a language?
‣ With regular expressions.

➡ How can we recognize tokens in a character stream?
‣ With DFAs.

55

Deterministic Finite 
Automata (DFA)Regular Expressions DFA Construction

Token Specification Token Recognition

No single-step algorithm:
We first need to construct a Non-Deterministic Finite Automaton…
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Non-Deterministic Finite Automaton (NFA)

Like a DFA, but less restrictive:
➡ Transitions do not have to be unique: each state may have 

multiple ambiguous transitions for the same input symbol. 
(Hence, it can be non-deterministic.)

➡ Epsilon transitions do not consume any input.
(They correspond to the empty string.)

➡ Note that every DFA is also a NFA.

56

Z Y

X

1 1

V

A legal NFA fragment.

ε

Acceptance rule:
➡ Accepts an input string if there exists 

a series of transitions such that the 
NFA is in a final state when the end of 
input is reached.

➡ Inherent parallelism: all possible paths 
are explored simultaneously.
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aInput: a
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NFA Example
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aInput: a

current input character

current state

Epsilon transition:
Can transition from State 1 to State 

2 without consuming any input.
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NFA Example
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aInput: a

current input character

current state

Regular transition:
Can transition from State 2 to State 

3, which consumes the first ʻaʼ.
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NFA Example
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aInput: a

current input character

current state

Epsilon transition:
Can transition from State 3 to State 2 

without consuming any input.
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NFA Example
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aInput: a

current input character

current state

Regular transition:
Can transition from State 2 to State 3, 

which consumes the second ʻaʼ.
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NFA Example
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aInput: a

current input character

current state

Epsilon transition from State 3 to 4:
End of input reached, but the NFA 

can still carry out epsilon transitions.
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NFA Example
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aInput: a

current input character

current state

Input Accepted:

There exists a sequence of transitions 
such that the NFA is in a final state at the 

end of input.
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Equivalent DFA Construction

Constructing a DFA corresponding to a RE.
➡ In theory, this requires two steps.
‣From a RE to an equivalent NFA.
‣From the NFA to an equivalent DFA.

To be practical, we require a third optimization step.
➡ Large DFA to minimal DFA.

64
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Example

65

0*1(1|0)*
RE to NFA

NFA to DFA

Optimization

Final DFA
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Step 1: RE ➔ NFA
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Every RE can be converted to a NFA by 
repeatedly applying four simple rules.
➡ Base case:  a single character.
➡ Concatenation: joining two REs in sequence.
➡ Alternation: joining two REs in parallel.
➡ Kleene Closure: repeating a RE.

(recall the definition of a RE)
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The Four NFA Construction Rules

S

Rule 1—Base case: ‘a’

a

67
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The Four NFA Construction Rules

S

Rule 1—Base case: ‘a’

a

68

Simple two-state NFA (even DFA, too).
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The Four NFA Construction Rules

Rule 2—Concatenation: AB

S

A

S

B

S

AB

followed by

69
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The Four NFA Construction Rules

Rule 2—Concatenation: AB

S

A

S

B

S

AB

70

Not just two states, but any NFA 
with a single final state.

followed by
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The Four NFA Construction Rules

Rule 3--Alternation: “A|B”

S

A

S

B

B
S

or

A

A|B

ε

ε

ε

ε

71
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The Four NFA Construction Rules

Rule 3--Alternation: “A|B”

S

A

S

B

B
S

or

A

A|B

ε

ε

ε

ε

72

Notice the epsilon transitions. 
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The Four NFA Construction Rules

Rule 4—Kleene Closure: “A*”

S

A

S A

A*

ε ε

ε

ε

73



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

The Four NFA Construction Rules

Rule 4—Kleene Closure: “A*”

S

A

S A

A*

ε ε

ε

ε

74

Notice the epsilon transitions. 
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The Four NFA Construction Rules

Rule 4—Kleene Closure: “A*”

S

A

S

zero occurrences

A

A*

ε ε

ε

ε

75

one occurrence
repetition
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Overview S

S

B
S

Aε

ε

ε

ε

S Aε ε

ε

ε

a

BA

76

Four rules:
➡ Create two-state NFAs 

for individual symbols,
e.g., ʻaʼ.

➡ Append consecutive 
NFAs, e.g., AB.

➡ Alternate choices in 
parallel, e.g., A|B.

➡ Repeat Kleene Star,
e.g., A*.
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NFA Construction Example
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Regular expression: (a|b)(c|d)e*

Apply Rule 1:

Apply Rule 3:

a|b c|d

B

Aε

ε

ε

ε
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NFA Construction Example
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Regular expression: (a|b)(c|d)e*

Apply Rule 2:
BA

(a|b)(c|d)

a|b c|d
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NFA Construction Example

79

Regular expression: (a|b)(c|d)e*

Apply Rule 1:

Apply Rule 4:

S A
ε ε

ε

ε

e*



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

NFA Construction Example

80

Regular expression: (a|b)(c|d)e*

e*(a|b)(c|d)

Apply Rule 2:
BA

(a|b)(c|d)e*
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Step 2: NFA ➔ DFA

81

Simulating NFA requires exploration of all paths.
➡ Either in parallel (memory consumption!).
➡ Or with backtracking (large trees!).
➡ Both are impractical.

Instead, we derive a DFA that encodes all possible paths.
➡ Instead of doing a specific parallel search each time that 

we simulate the NFA, we do it only once in general.

Key idea: for each input character, find sets of NFA states 
that can be reached.
➡ These are the states that a parallel search would explore.
➡ Create a DFA state + transitions for each such set.
➡ Final states: a DFA state is a final state if its corresponding 

set of NFA states contains at least one final NFA state.
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82

NFA-to-DFA-CONVERSION:
" " todo: stack of sets of NFA states.
" "
  push {NFA start state and all epsilon-reachable states} onto todo

" "
" " while (todo is not empty):
" " " curNFA: set of NFA states

  curDFA: a DFA state

" "   curNFA = todo.pop
mark curNFA as done

curDFA = find or create DFA state corresponding to curNFA

reachableNFA: set of NFA states
     "reachableDFA: a DFA state

for each symbol x for which at least one state in curNFA has a transition:
" " " " reachableNFA = find each state that is reachable from a state in curNFA
                       via one x transition and any number of epsilon transitions

" " " " if (reachableNFA is not empty and not done):
push reachableNFA onto todo

" " " " reachableDFA = find or create DFA state corresponding to reachableNFA
add transition on x from curDFA to reachableDFA

end for
end while



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…

First Step: before any input is consumed

Find all states that are reachable from the 
start state via epsilon transitions.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…

First Step: before any input is consumed

Create corresponding DFA start state.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…

Next: find all input characters for which 
transitions in start set exist.

ʻaʼ and ʻbʼ in this case.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…

For each such input character, determine 
the set of reachable states

(including epsilon transitions).

On an ʻbʼ, NFA can reach states 5,6,7, and 9.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…

Create DFA states for each 
distinct reachable set of states.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…

On an ʻaʼ, NFA can reach 
states 3,6,7, and 9.
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DFA Conversion Example

90

Regular expression: (a|b)(c|d)e*

continues…

Create DFA states for each 
distinct reachable set of states.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

continues…

Repeat process for each newly-
discovered set of states.

done
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

Reachable states:
on a ʻcʼ: 8,11,12,14

done
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

Create state and transitions for 
the set of reachable states.

done
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

Reachable states:
on a ʻdʼ: 10,11,12,14

done
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

Reachable states:
on a ʻdʼ: 10,11,12,14

Create state and transitions for 
the set of reachable states.

done
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

Note: both new DFA states are final states because their 
corresponding sets include NFA state 14, which is a final state.

done

done
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

Repeat process for 
State [3, 6, 7, 9].
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

Reachable states:
on a ʻdʼ: 10,11,12,14

Reachable states:
on a ʻcʼ: 8,11,12,14
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

There already exist DFA states corresponding to those sets!
Just add transitions to these states.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

done

Repeat process for 
State [10, 11, 12, 14].

Reachable states:
on an ʻeʼ: 12, 13, 14
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

done

Create state and transitions for 
the set of reachable states.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

done

Repeat process for 
State [8, 11, 12, 14].

Reachable states:
on an ʻeʼ: 12, 13, 14

done

98
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

done

done

State already exists. 
Just create transition.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

done

done

done

Repeat process for 
State [12, 13, 14].

Reachable states:
on an ʻeʼ: 12, 13, 14 (itself!)
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

done

done

done

There is no “escape” from the set of states [12, 13, 14] 
on an ʻeʼ. Thus, create a self-loop.
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DFA Conversion Example
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Regular expression: (a|b)(c|d)e*

done

done

done

done

done

done

The result: an equivalent DFA!
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NFA ➔ DFA Conversion

107

‣Any NFA can be converted into an equivalent DFA 
using this method.
‣However, the number of states can increase 
exponentially.
‣With careful syntax design, this problem can be 
avoided in practice.
‣ Limitation: resulting DFA is not necessarily optimal.
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NFA ➔ DFA Conversion

108

‣Any NFA can be converted into an equivalent DFA 
using this method.
‣However, the number of states can increase 
exponentially.
‣With careful syntax design, this problem can be 
avoided in practice.
‣ Limitation: resulting DFA is not necessarily optimal.

These two states are equivalent: for each 
input element, they both lead to the same state.

Thus, having two states is unnecessary.
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Step 3: DFA Minimization
Goal: obtain minimal DFA.
➡ For each RE, the minimal DFA is unique (ignoring 

simple renaming).
➡ DFA minimization: merge states that are 

equivalent.

Key idea: itʼs easier to split.
➡ Start with two partitions: final and non-final states.
➡ Repeatedly split partitions until all partitions 

contain only equivalent states.
➡ Two states S1, S2 are equivalent if all their 

transitions “agree,” i.e., if there exists an input 
symbol x such that the DFA transitions (on input 
x) to a state in partition P1 if in S1 and to state in 
partition P2 if in S2 and P1≠P2, then S1 and S2 
are not equivalent.
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Step 3: DFA Minimization
Goal: obtain minimal DFA.
➡ For each RE, the minimal DFA is unique (ignoring 

simple renaming).
➡ DFA minimization: merge states that are 

equivalent.

Key idea: itʼs easier to split.
➡ Start with two partitions: final and non-final states.
➡ Repeatedly split partitions until all partitions 

contain only equivalent states.
➡ Two states S1, S2 are equivalent if all their 

transitions “agree,” i.e., if there exists an input 
symbol x such that the DFA transitions (on input 
x) to a state in partition P1 if in S1 and to state in 
partition P2 if in S2 and P1≠P2, then S1 and S2 
are not equivalent.

Part. 1

Part. 2

Part. 3

A and B are equivalent.

C is not equivalent to either A or B.

Because it has a transition into Part.3.
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DFA Minimization Example

112
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DFA Minimization Example
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Partition final and non-final states.

FinalNon-Final
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DFA Minimization Example
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Examine final states.

All final states are equivalent!

FinalNon-Final
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DFA Minimization Example
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[1,2,4] is not equivalent to any other state:
it is the only state with a transition to the non-final partition.

FinalNon-Final
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DFA Minimization Example

116

[5,6,7,9] and [3,6,7,9] are equivalent.
Thus, we are done.

Final
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DFA Minimization Example

117

Create one state for each partition.
We have obtained a minimal DFA for (a|b)(c|d)e*.
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Recognizing Multiple Tokens

118

‣Construction up to this point can only recognize a 
single token type.
‣Results in Accept or Reject, but does not yield 
which token was seen.

‣Real lexical analysis must discern between 
multiple token types.
‣Solution: annotate final states with token type.
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Multi Token Construction
To build DFA for N tokens:
➡ Create a NFA for each token type RE as before.
➡ Join all token NFAs as shown below:

119

Type 1

S

NFA 1ε

ε
Type 2NFA 2

Type NNFA N

ε …
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Multi Token Construction
To build DFA for N tokens:
➡ Create a NFA for each token type RE as before.
➡ Join all token NFAs as shown below:

120

Type 1

S

NFA 1ε

ε
Type 2NFA 2

Type NNFA N

ε …

This is similar to NFA construction rule 3.
Key difference: we keep all final states.
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Multi Token Construction
To build DFA for N tokens:
➡ Create a NFA for each token type RE as before.
➡ Join all token NFAs as shown below:

121

Type 1

S

NFA 1ε

ε
Type 2NFA 2

Type NNFA N

ε …

This is similar to NFA construction rule 3.
Key difference: we keep all final states.
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Token Precedence
Consider the following regular grammar.
➡ Create DFA to recognize identifiers and keywords.

122

identifier## # → letter (letter | digit | _)*
keyword## # → if | else | while
digit! ! ! ! → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter!! ! ! → a | b | c | … | z

Can you spot a problem?



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

Token Precedence
Consider the following regular grammar.
➡ Create DFA to recognize identifiers and keywords.

123

identifier## # → letter (letter | digit | _)*
keyword## # → if | else | while
digit! ! ! ! → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter!! ! ! → a | b | c | … | z

All keywords are also identifiers!
The grammar is ambiguous.

Example: for string ʻwhileʼ, there are two accepting 
states in the final NFA with different labels.
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Token Precedence
Consider the following regular grammar.
➡ Create DFA to recognize identifiers and keywords.

124

identifier## # → letter (letter | digit | _)*
keyword## # → if | else | while
digit! ! ! ! → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter!! ! ! → a | b | c | … | z

Solution
➡ Assign precedence values to tokens (and labels).
➡ In case of ambiguity, prefer final state with highest 

precedence value.
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Token Precedence
Consider the following regular grammar.
➡ Create DFA to recognize identifiers and keywords.

125

identifier## # → letter (letter | digit | _)*
keyword## # → if | else | while
digit! ! ! ! → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter!! ! ! → a | b | c | … | z

Solution
➡ Assign precedence values to tokens (and labels).
➡ In case of ambiguity, prefer final state with highest 

precedence value.

Note: during DFA optimization, two final states are 
not equivalent if they are labeled with

different token types.
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Multi Token Example

126

Java Integer Literals
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Multi Token Example
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Java Integer Literals

Final states labeled 
with token type.
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Multi Token Example
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Java Integer Literals

Final states can have 
transitions into

non-final states.
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+ Kleene Plus

name →  letter+
is the same as

name →  letter letter*

Extended Regular Expressions

129

some commonly used abbreviations
+ ? [] [^]n
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n times

name →  letter3

is the same as
name →  letter letter letter

Extended Regular Expressions

130

some commonly used abbreviations
+ ? [] [^]n



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts04: Lexical Analysis

Extended Regular Expressions

131

some commonly used abbreviations
+ ? [] [^]n

? optionally

ZIP →  digit5 (-digit4)?
is the same as

ZIP →  digit5 ( ε | -digit4 )
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Extended Regular Expressions

132

some commonly used abbreviations
+ ? [] [^]n

[] one off

digit →  [123456789]
is the same as

digit →  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Extended Regular Expressions

133

some commonly used abbreviations
+ ? [] [^]n

[^] not one off

notADigit →  [^123456789]
is the same as

notADigit → A | B | C ...
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Extended Regular Expressions

134

some commonly used abbreviations
+ ? [] [^]n

[^] not one off

notADigit →  [^123456789]
is the same as

notADigit → A | B | C ...

Every character 
except those listed 
between [^ and ].
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Limitations of REs
Suppose we wanted to remove extraneous, balanced 
ʻ(ʻ ʻ)ʼ pairs around identifiers.
➡ Example: report (sum), ((sum)) and (((sum))) 

simply as Identifier.
➡ But not: ((sum)

One might try:

135

identifier   →  (n letter+ )m      such that n = m

This cannot be expressed with regular expressions!
Requires a recursive grammar: let the parser do it.


