Syntax Analysis

; \ COMP 524: Programming Language Concepts
I Bjorn B. Brandenburg
| The University of North Carolina at Chapel Hill

Based on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stofts.

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

The Big Picture
s)

Scanner (lexical analysis)

Token Stream <
<
N Semantic analysis & -
_ / intermediate code gen.
-

Modified intermediate form ~.

Machine language /
™S Machine-specific
_

Parser (syntax analysis

Machine-independent

Target code generation.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

The Big Picture
" CraacerSvean |
o
TR)<

T

Scanner (lexical analys@]

\

| Parser ‘sxntax analxsis‘ l

—~—

n n
~—~mrmtiA ANRAL =

intermediate code gen.

Syntax Analysis: Discovery of Program Structure

Turn the stream of individual input tokens into a

complete, hierarchical representation
of the program (or compilation unit).

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, Ap ,

05: Syntax Analysis COMP 524: Programming Language Concepts

Syntax Specification and Parsing

Syntax Specification Syntax Recognition
How can we succinctly How can a compiler discover
describe the structure of If a program conforms to the

legal programs? specification?

Context-free Grammars LL and LR Parsers

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Context-Free Grammars
regular grammar + recursion

Review: grammar.

= Collection of productions.

= A production defines a non-terminal (on the left, the “head”) in
terms of a string terminal and non-terminal symbols.

= Terminal symbols are elements of the alphabet of the grammar.

= A non-terminal can be the head of multiple productions.

f Example: Natural Numbers l
{ digit »0]112(3]4]5|6(7|8]9
{ non_zero_digit > 1|2|3|4|5|6|7|8]9 :
{ natural_number — non_zero_digit digit™ }

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Context-Free Grammars
regular grammar + recursion

Regular grammars.

= Restriction: no unrestricted recursion.

= A non-terminal symbol cannot be defined in terms of itself.
(except for special cases that equivalent to a Kleene Closure)

= Serious limitation: e.g., cannot express matching parenthesis.

f Example: Natural Numbers l
{ digit »0]112(3]4]5|6(7|8]9
{ non_zero_digit > 1|2|3|4|5|6|7|8]9 :
{ natural_number — non_zero_digit digit™ }

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, Ap ,

05: Syntax Analysis COMP 524: Programming Language Concepts

Context-Free Grammars
regular grammar + recursion

Context-free Grammars (CFGs) allow recursion.

Arithmetic expression with parentheses '

[expr — id | number | ‘=" expr | (‘expr ‘)’ | expr op expr J

Lop_’c_‘_!lc_! c*!lc/!J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Context-Free Grammars
regular grammar + recursion

Recursion
“An expression is a a minus sign p) allow recursion.
followed by an expression.”

r

Arithmetic press}& with parentheses

—
expr —)id | numbe §| ‘=" expr| I‘ expr ‘)’ | expr op expr J
N
Op_’c+!|5_! c*!‘c/!J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Context-Free Grammars
regula

Can express maitching
parenthesis requirement.

Context-free Gr:

Arithmetic expression with parent!ieses |

{expr — id | number | ‘-’ exp‘q “(‘expr ‘)’ | Xprop expr J

Lop_’c_‘_!lc_! c*!lc/!J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Context-Free Grammars
regular grammar + recursion

Key difference to lexical grammar:
terminal symbols are tokens,
not individual characters.

acursion.

r

Arithmetic expres son with parentheses

(M’expr\‘(‘expr‘)’lexprop expr J

Lop_’c_‘_!l‘_! c*!‘c/!J

{expr -

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Context-Free Grammars

One of the non-terminals, usually the first one, is
called the start symbol, and it defines the
construct defined by the grammar.

Arithmet £ expression with parentheses '
—
({expr — ic)| number |- expr|‘(‘expr ‘)’ | expr op expr J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

BNF vs. EBNF

Backus-Naur-Form (BNF)
= Qriginally developed for ALGOL 58/60 reports.
= Textual notation for context-free grammars.

{expr — id | number | ‘-’ expr|‘ (‘expr ‘)’ | expr op expr J

IS written as

<expr> ::= id | number | - <expr> |(<expr>) |
<expr> <op> <expr>

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

BNF vs. EBNF

Backus-Naur-Form (BNF)
= Qriginally developed for ALGOL 58/60 reports.
= Textual notation for context-free grammars.

{expr — id | number |‘-"expr|‘ (‘expr ‘)’ | expr op expr J

IS written as

<expr> ::= id | number | - <expr> |(<expr>) |
<expr> <op> <expr>

Strictly speaking, it does not include the Kleene Star
and similar “notational sugar.”

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

BNF vs. EBNF

Extended Backus-Naur-Form (EBNF)

= Many authors extend BNF to simplify grammars.

= One of the first to do so was Niklaus Wirth.

= There exists an ISO standard for EBNF (ISO/IEC 14977).
= But many dialects exist.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

BNF vs. EBNF

Extended Backus-Naur-Form (EBNF)

= Many authors extend BNF to simplify grammars.

= One of the first to do so was Niklaus Wirth.

= There exists an ISO standard for EBNF (ISO/IEC 14977).
= But many dialects exist.

Features

= Terminal symbols are quoted.

= Use of ‘=" instead of ": : =" to denote —.

= Use of ‘,” for concatenation.

= [A] means A can occur optionally (zero or one time).
= {A} means A can occur repeatedly (Kleene Star).

= Parenthesis are allowed for grouping.

= And then some...

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis

COMP 524: Programming Language Concepts

BNF vs. EBNF

Extended Backus-Naur-Form (EBNF)

= Many authors extend BNF to simplify grammars.

F

= Use of ‘=' instead of ‘: : =’ to denote —.

= Use of ‘,” for concatenation.

= [A] means A can occur optionally (zero or one time).
= {A} means A can occur repeatedly (Kleene Star).

= Parenthesis are allowed for grouping.

= And then some...

C Chapel Hill
day, April 14, 2010

- We will use mostly BNF-like grammars with the
addition of the Kleene Star, €, and parenthesis.

Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example: EBNF to BNF Conversion

L id_list = id(, id)" J

IS equivalent to

L id list = id J

L id _list = id list, 1d J

(Remember that non-terminals can be the head of multiple productions.)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Derivation

A grammar allows programs to be derived.

= Productions are rewriting rules.

= A program is syntactically correct if and only if it can
be derived from the start symbol.

Derivation Process
=Begin with string consisting only of start symbol.

s

while string contains a non-terminal symbol:
Choose one non-terminal symbol X.

Choose production where X 1s the head.
Replace X with right-hand side of production.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, Ap ,

05: Syntax Analysis COMP 524: Programming Language Concepts

Derivation

If we always choose the left-most ved.
non-terminal symbol, then it is called

a left-most derivation. only if it can be

Derivation Ffocess
=Begin with /string consisting only of start symbol.

£

wale strl contains a non-terminal symbol:
Choose oje non-terminal symbol X.
“hnne—_groduction where X i1s the head.
Replace X with right-hand side of production.

-

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis

COMP 524: Programming Language Concepts

Derivation

A grammar allows programs to be derived.
= Productions are rewriting rules.

= A program is sy
be derived from

Derivation Proc
= Begin with strin

If we always choose the right-most
non-terminal symbol, then it is called
a right-most or canonical derivation.

-

UNC Chapel Hill

Wednesday, A

wale striny contains a non-terminal symbol:
Choose o'Je non-terminal symbol X.
“hnne~ oduction where X 1s the head.
Replace X with right-hand side of production.

Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:

expr — id|number|‘-"expr|‘(‘expr‘)’|exprop expr
Op _"+,“—,|‘*,“/,
Program

slope * x + intercept

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:

expr — id|number|‘-"expr|‘(‘expr‘)’ | expr op expr '

Op _"+,“—,|‘*,“/,

Program

slope * x + intercept

{ expr = expr op expr J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:

expr — id|number|‘-"expr|‘(‘expr‘)’ | expr op expr '

Op N ‘+,“—, c*!‘c/!

Program .
slope * x + intercept = denotes “derived from”

{ ex;(:e}prap expr J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic arammar:

expr — ri?'number | ‘=" expr|‘ (‘“expr‘)’ | exprop expr
Op N c_!lc*!‘c/!

Program

slope * x + intercept

{ expr = expr op expr J

L = expr op id J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:

ex,or = id | number | ‘=" expr | ‘ (‘expr ‘)’ | expr op expr
_’ ' G*! G J
)
Program

slope * x + intercept

{ expr = expr op expr J

{ = expr op id J

{ = expr + 1d J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:

expr — id|number|‘-"expr|‘(‘expr‘)’ | expr op expr '

Op _"+,“—,|‘*,“/,

Program { = expr op expr + 1d J

slope * x + intercept

{ expr = expr op expr J

{ = expr op id J

{ = expr + 1d J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic arammar:

expr — ri?'number | ‘=" expr|‘ (‘“expr‘)’ | exprop expr
Op N c_!lc*!‘c/!

Program { = expr op expr + id J

slope * x + intercept

L = exprop id + id J

{ expr = expr op expr J

{ = expr op id J

{ = expr + 1id J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:
expr — id|number|‘~"expr|‘(‘expr‘)’|exprop expr
Op N “|‘,“—,I‘*, c/!

(Program { = expr op expr + id J

slope * x + intercept

L = exprop id + id J

{ expr = expr op expr J { = expr * 1d + id J
{ = expr op id J
{ = expr + id }

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic arammar:
expr — |id fhumber | ‘- expr|‘ (‘expr ‘)’ | expr op expr
Op N c_!lc*!‘c/!

Program = expr op expr + id

slope * x + intercept

= expr op id + id

{ expr = expr op expr J = expr * 1d + 1d

= i1d * 1d + 1d

|
|
|
|

N N N Y

{ = expr op id J

{ = expr + 1id J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:
expr — id|number|‘-"expr|‘(‘expr‘)’|exprop expr
Op N c_l_!‘c_! c*!‘c/!

Substitute values of identifier tokens.

Program = expr op expr + 1d

slope * x + intercept

= exprop id + id }

{ expr = expr op expr J L = expr * id + id J

{ — expr op id } [\I = id * id + id 1

{ = expr + id } m

2

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Derivation

Arithmetic grammar:

expr — id|number|‘-"expr|‘(‘expr‘)’|exprop expr
Op) N c_l_!‘c_! c*!‘c/!
This is a right-most derivation.
(Program = expr op expr + 1d
slope * x + intercept
{ = expr op id + id J
{ expr = expr op expr J { = expr * 1d + 1d J
{ — exprop id } { — id * id + id }
{ = expr + id J { slope * X + intercept J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, Ap ,

05: Syntax Analysis COMP 524: Programming Language Concepts

Parse Iree

A parse tree is a hierarchical representation of the
derivation that does not show the derivation order.

expr ‘ op ' ‘ expr '
/L NN | |
‘ expr ' | ' ‘ expr ' | id (intercept) '

op
id (slope) ‘ id (X) '

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

expr

05: Syntax Analysis COMP 524: Programming Language Concepts

Parse Iree

A parse tree is a hierarchical representation of the
derivation that does not show the derivation order.

expr

\

/ Properties
expr E = Each interior node is a non-terminal
symbol.
/ \ = |ts children are the right-hand side of
the production that it was replaced with.
expr expr = Leaf nodes are terminal symbols
(tokens).
= Many-to-one: many derivations can

op
id (slope) | id () ' yield identical parse trees.

= The parse tree defines the structure
of the program.

-

UNC Chapel Hill Brandenb'"=

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Parse Iree

This parse tree represents the formula
slope * x + intercept.

expr

/ \
expr ‘ op l ‘ expr l
/N N | |
E(F] L[_J E(F] | id (intercept) l

Oop
id (slope) ‘ id (X) '

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Parse Iree

Let’'s do a left-most derivation of
slope * x + intercept.

Arithmetic grammar:
expr — id|number|‘-"expr|‘(‘expr‘)’|expr op expr
Op —b"l‘—,“*,“/,

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Parse Iree

Let’s do a left-most derivation of
slope * x + intercept.

‘ expr ' | op ' expr

id (slope) expr | expr '

id (X) | id (intercept) '

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Parse Tree (Ambiguous)

This parse tree represents the formula slope * (x + intercept),
which is not equal to slope * x + intercept.

/9"'—)\

| expr ' | op ' expr
| \ |

id (slope) expr | expr '

id (X) | id (intercept) '

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Parse Tree (Ambiguous)

This parse tree represents the formula slope * (x + intercept),
which is not equal to slope * x + intercept.

Ambiguity
= The parse tree defines the structure
of the program.
= A program should have only one valid
interpretation!
= [Two solutions:
= Make grammar unambiguous,
l.e., ensure that all derivations yield
identical parse trees.
= Provide disambiguating rules.

\

expr

|
| op ' expr

id (intercept)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April

05: Syntax Analysis COMP 524: Programming Language Concepts

Disambiguating the Grammar

» The problem with our original grammar is that it does not fully
express the grammatical structure (i.e., associativity and
precedence).

» To create an unambiguous grammar, we need to fully specify the
grammar and differentiate between terms and factors.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Disambiguating the Grammar

» The problem with our original grammar is that it does not fully
express the grammatical structure (i.e., associativity and
precedence).

» To create an unambiguous grammar, we need to fully specify the
grammar and differentiate between terms and factors.

-

{ expr — term | expr add_op term }

term — factor | term mult_op factor J

factor + id | number | - factor | (expr)J

|
|
Ladd_op—» +\—}
|

mult_op = * |/ J

UNC Chapel Hill pranaenburg — opring 4uUiv

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Disambiguating the Grammar

» The problem with our original grammar is that it does not fully
express the grammatical structure (i.e., associativity and
preced

To cre: This gives precedence to multiply.

grammar ana d.erentiate between term‘fand faciors.

-

cify the

{ expr © term | expr add_op term

term — ctorl term mult_op factor \

factor — 1d | number | - factor | (expr)J

|
|
Laddop—» +\—}
|

mult_op — *\/J

UNC Chapel Hill pranaenburg — opring 4uUiv

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Example Parse Tree

3+4*5 '
/ : — \
‘ expr ' ‘ add_op l | term l

‘ term ' . ‘ term ” mul_op l‘ factor '

factor l factor ' . [number(s l
| number (3) ' | number (4) '

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

NAAD EN A Do oo e /&

05: Syntax Analysis

ancepts

E, Multiplication precedes addition.

ﬂ]/ o
‘ expr ' | add_op] | term l
\

‘ term ' | ‘ term '| mul_op l‘ factor '

‘ factor ' ‘ factor ' . [number(s)

number (3) [number (4

T —

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis

COMP 524: Programming Language Concepts

Another Example

Lets try deriving “3*4+5*6+7".

expr — term | expr add_op term J

term — factor | term mult_op factor J

factor » id | number | - factor | (expr)J

add_op — +|-J

mult_op — *I/J

UNC Chapel Hill

Brandenburg — Spring 2010

3*%4+5*6+7 ' /| expr '~
‘ expr ' | add_op ' M

@] ‘ add_op ' M a | factor '
/ /N \ |
/N \ | | |
o) o)] o]] o

| | | |

|

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Parser

The purpose of the parser is to
construct the parse tree
that
corresponds to the input token stream.

(If such a tree exists, I.e., for correct input.)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2

05: Syntax Analysis COMP 524: Programming Language Concepts

Parser

The purpose of the parser is to
construct the parse tree
that
corresponds to the input token stream.

(If such a tree exists, I.e., for correct input.)

This is a non-trivial problem:
for example, consider “3*4” and “3+4".

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

a) oncepts

3*4

/TN
| | | / \
@J ‘ factor ' @] mul_op ' ‘ factor '
| |

‘factor' factor'

UNC Chapel Hill

Wednesday, Ap :

Brandenburg — Spring 2010 48

) oncepts

2N e

‘ term ' | factor ' | term '| mul_op ' ‘ factor '
| |

By

How can a computer derive these trees
by examining one token at a time?

UNC Chdpel Hl” WIMIIMUIINUVI Yy VMl &V v
a pril 14, 2010

Wednesday, A

— * —) oncepts
6+4 6 *4

‘ expr l | expr '
/ | \

‘ term | factor l | term l| mul_op ' ‘ factor '
| |

-

In order to derive these trees, the first character that
we need to examine is the math operator in the middile.

UN

Wednesday, A

C Ch(][.)el (I DIUIIUCHUUIQ — 0Pllll9 LVIV
a pril 14, 2010

) oncepts

/2N ke

‘ term ' | factor ' | term '| mul_op ' ‘ factor '
| |

| |

Writing ad-hoc parsers is difficult,
tedious, and error-prone.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Complexity of Parsing

Arbitrary CFGs can be parsed in O(n?3) time.
= n is length of the program (in tokens).

= Earley’s algorithm.

= Cocke-Younger-Kasami (CYK) algorithm.

= This is too inefficient for most purposes.

Efficient parsing is possible.

= There are (restricted) types of grammars that
can be parsed in linear time, i.e., O(n).

= Two Important classes:
» LL: “Left-to-right, Left-most derivation”

» LR: “Left-to-right, Right-most derivation”

= These are sufficient to express most
programming languages.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Complexity of Parsing

The class of all grammars for which a left-most
derivation always yields a parse tree.

= This Is too Iinefficient 1)r most purposes.

Efficient parsing is poss ble.
= There are (restricted) tyc &s of grammars that
can be parsed in linear tne. .e., O(n).

= Two important CW\
» LL: “Left-to-rig.\t, Left-most derivation”)
» LR: “Left-to-right, RIght= lon”

= These are sufficient to express most
programming languages.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis

Complexity of Parsing

Arbitrary CFGs can be parsed in O(n?3) time.
= n IS lenagth of the program (in tokens).

-

The class of all grammars for which a right-most
derivation always yields a parse tree.

Efficient parsing is poss
= There are (restricted) tyj

can be parsed in linear 1
= Two Important classes: /

» LL: “Lef’[-tO-l‘igW
» LR: “Left-to-right, Right-most derivation”)
= These are sufficient

programming languages.

s of grammars that
e, i.e., O(n).

C Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

05: Syntax Analysis

COMP 524: Programming Language Concepts

LL-Parsers vs. LR-Parsers

-

UNC Chapel Hill

Wednesday, April 14, 2010

LL-Parsers

= Find left-most derivation.

= Create parse-tree in top-down
order, beginning at the root.

= Can be either constructed
manually or automatically
generated with tools.

= Easy to understand.

= LL grammars sometimes appear
“unnatural.”

= Also called predictive parsers.

-

LR-Parsers

= Find right-most derivation.

= Create parse-tree in bottom-up
order, beginning at leaves.

= Are usually generated by tools.

= Operating is less intuitive.

= LR grammars are often “natural.”

= Also called shift-reduce parsers.

= Strictly more expressive: every LL
grammar is also an LR grammar,
but the converse is not true.

Both are used In practice.
We focus on LL.

Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

LL vs. LR Example

A simple grammar for a list of identifiers.

-

{ id_list = idid list tail J

{ id _list tail—, 1d id _list tail J

{ id_list _tail = ; J

Input

A, B, C;

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April

05: Syntax Analysis COMP 524: Programming Language Concepts

-

LL Examp|e { id_list = idid_list_tail J

g L id _list tail—,id id _list tail }

L id_list _tail = ; J

the
(as of yet empty)

parse tree current token

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

-

LL Examp|e { id_list = idid_list_tail J
- L id_list_tail—, 1d id_list_tail J
‘ Id_list ' { id_list_tail = : J
-
) current token

Step 1
Begin with root (start symbol).

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

LL Examp|e (id_list = idid_list_tail J

v
g id _list tail—,id id _list tail J

1ad_list

N

id (A) | id_list_tail '

L id_list tail = ; J

current token

Step 2

Apply id_list production. This
matches the first identifier to the
expected id token.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

LL Example {id_list -+ id id_/ist_tai/}
. [id_list_tail-', id id_/ist_tail}
a_list L id_list_tail = J
id (A) | id_list_tail '
/
D id (B) || /d_list_tail
current token
Step 3
Apply a production for id_list_tall.
There are two to choose from.
Predict that the first one applies.

N— This matches two more tokens.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

LL Examp|e { id_list = idid_list_tail J

(

id_list_tail—, id id_list_tail J

id_list

id (A) | id_list_tail '

_— -

D ‘ id (B) ' id_list_tail

_— -

D id (C) || id_list_tail

Step 4

Substitute the id_list _tail, predicting the first
production again. This matches a comma and C.

id_list tail = ; J

current token

—

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

LL Examp|e { id_list = idid_list_tail J
. {id_list_tail-’, id id_Iist_tailJ
Ia_list Lid_list_tail - J
N
id (A) id |

ist_tail

D id B) | id_list_tail
/

™~
D \ idg ' id_list_tail '
|

current token

Step 5

D Substitute the final id_list_tail. This
time predict the other
production, which matches the ;.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

LL Parse Tree { id_list = id id_list_tail J
g L id _list tail—,id id _list tail J
— P
Ia_list % { id_list_tail = ; J

N

2, f
id (A) | | id_list_tail s A, B, C

- %,)
id (B) | id_list_tail d’/;a
%
O

N
id (C) || id_list_tail

g

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

/

LL Parse Tree { id_list = idid _list_tail J
4 L id_list _tail—,id id _list tail J
P
Id_list % { id_list_tail = ; J
‘O
Oé §
id (A) id_list_tail » A, B, C;
— %,)
id (B) || id_list_tail 0/;2/
N %,
%

D id (C) | id_list_tail

N o
Notice that the input tokens are placed Ig
the tree from the left to right.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

-

LR Example [id_list = 1d id_list_tail J

{ id_list tail—,1d i1d _list tail J

{ id_list _tail = ; J

forest (a stack)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, Ap ,

05: Syntax Analysis COMP 524: Programming Language Concepts

-

LR Examp|e [id_list = idid_list_tail J

{ id _list tail—, 1d id _list tail J

Forest = set of (partial) trees. { id_list_tail = J

forest (a stack)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, Ap ,

05: Syntax Analysis COMP 524: Programming Language Concepts

-

LR Example {id_/ist -+ id id_/ist_tai/}
“ L id _list tail—,id id _list tail }
Step 1 — |
_ | L id_list _tail = ; J
Shift encountered token into forest.

(A,B,C;

current token

forest (a stack)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis

COMP 524: Programming Language Concepts

LR Example

Step 2

Determine that no right-hand
side of any production
matches the top of the forest.
Shift next token into forest.

forest (a stack)

UNC Chapel Hill

Wednesday, A

Brandenburg — Spring 2010

-~

{ id _list = idid list tail J

L id _list tail—,id id _list tail J

L id_list _tail = ; J

current token

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

LR Examp|e { id_list = idid_list_tail J

S teps 3-6 L id _list tail—,id id _list tail J

No right hand side
matches top of forest.
Repeatedly shift next A, B,

token into forest. -

L id_list _tail = ; J

rrent token

/ Y
aw) Jwe])[(o))

forest (a stack)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

) LR Example [id_/ist - id id_list_tail}
St ep 7 L id_list_tail—, 1d id_list_tail J
Detect that last production matches 4 id list_tail = J

the top of the forest.
Reduce top token to partial tree.

current token

‘ id (A) 'O | id (B) 'DI id (C) ' id_list_tail '
|
)

forest (a stack)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

-~

LR Examp|e { id_list = idid_list_tail J

Step 8 ’d_list_tail —,id id_list_tail J

Detect that second production
matches. Reduce top of forest.

L id_list tail = ; J

current token

OB

/\;—l
) [6o)

forest (a stack)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05

: Syntax Analysis COMP 524: Programming Language Concepts

-~

LR Example
Step 9

Detect that second production
matches. Reduce top of forest.

{ id _list = idid list tail J

’d_list_tail—' ,1d id_list_tail J
N

d _list taill = ; J

UN

id (B) / \ id_list_tall
) (=)

current token

forest (a stack)

C Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

/

LR Example Lid_list - id id_/ist_tai/}
ﬁ _list_tail—, id id_list_tail J
: — £ _list_tail = ; J
N

current token

Q
@
|5.'
(7\)'
~
)

L) (et
Step 10

Detect that first production

forest (a stack) matches. Reduce top of forest.
UNC Chapel Hill Brandenburg — < iy <v.iv

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

/

LR Parse Tree { id_list = idid list_tail }

{ id _list tail—,id id _list tail J

/ S { id_list_tail = J
id_list O/;eo
2. (
O\ % A, B, C;
\ id (A) l \ id_list_tail '\ OO
N %

AN NG
%
D ‘ id (B) ' / \ ‘id_list_tail |

The problem with this grammar is that it can require
- an arbitrarily large number of terminals to be
shifted before reduction takes place.

BINIEREN O

Wednesday, Ap , 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

An Equivalent Grammar
better suited to LR parsing

-

{id_list — id_list_prefix ; J

{ id_list_prefix — id_list_prefix, id J

L id_list_prefix = id J

This grammar limits the number of
“suspended” non-terminals.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

An Equivalent Grammar
better suited to LR parsing

-

{id_list — id_list_prefix ; J

{ id_list_prefix — id_list_prefix, id J

L id_list_prefix = id J

However, this creates a problem for the LL parser.

When the parser discovers an “id” it cannot predict the
number of id_list_prefix productions that it needs to match.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Two Approaches to LL Parser Construction

Recursive Descent.

= A mutually recursive set of subroutines.

= One subroutine per non-terminal.

= Case statements based on current token to predict subsequent
productions.

Table-Driven.

= Not recursive; instead has an explicit stack of expected symbols.
= A loop that processes the top of the stack.

= Terminal symbols on stack are simply matched.

= Non-terminal symbols are replaced with productions.

= Choice of production is driven by table.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

“recursive descent”

“climb from root to leaves, calli?:g a subroutine for every level”

Identifier List Grammar.
= Recall our LL-compatible original version.

-

{ id _list = idid list tail J

{ id _list tail—,1d id _list tail J

{ id_list_tail = J

Recursive Descent Approach.

=\Ne need one subroutine for each non-terminal.

= Each subroutine adds tokens into the growing parse tree
and/or calls further subroutines to resolve non-terminals.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

“recursive descent”

“climb from root to leaves, calli?:g a subroutine for every level”

Identifier List Grammar.
= Recall our LL-compatible original version.

- N

-

Possibly itself.
Recursive descent: either directly or indirectly.

Recursive Des tent Approach.
= \\e need one ,ubroutine for each non-terminal.
= Each siihzzawrremadds tokens Into the growingparse-w<l
and/ € calls further subroutines to resolve non-terminals.
UNC Chapel Hill

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

y

Helper routine “match”. { id list = idid list tail J
= Used to consume expected terminals/
tokens. {id_/ist_tai/—», id id_/ist_tai/}
= Given an expected token type (e.g., id, ‘;,
or ‘"), checks if next token is of correct type. { id list tail = - J
= Raises error otherwise. I

-

subroutine match(expected type):
token = get next token()

1f (token.type == expected type):
make token a child of left-most non-terminal in tree
else:

throw ParseException(“expected “ + expected type)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

-

Helper routin Example of a match failure: d_list_tail }
= Used to cor
tokens. @ public klass Error { 1d id_list tall J
= Given an ex) L9 Syntax error on token "klass", class expected
or‘,’), check '
= Raises erro |

-

subroutini Eclipse: class token expected, but got id

token =
1f (token.type == expected type):

make token a child of left-most non-terminal in tree
else:

throw ParseException(“expected “ + expected type)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

y

Parsing id_list Lid_list - idid_list_tail}

= Trivial, there is only one production.

= Simply match an id, and then delegate L id_list_tail—, id id_list _tail J
parsing of the tail to the subroutine for
id_list_tall.

{ id_list _tail = ; J

-

subroutine parse id list():
match (ID TOKEN)
parse 1d list tail()

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

y

Parsing id_list [id_/ist - idid_list_tail}
= Trivial. there Is onlv one production. ,
- Sln‘r st tail—,1d id _list tail J

oar¢ This delegation is the "descent”
id_l part in recursive descent parsing. Jist_tail = ; }

(

subfoutine parse 1i1d list():

ma b= o - e
parse 1d list tail(

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

y

Parsing id_list _tail [id list » id id list_tai }
= There are two productions to choose

from. { id_list_tail—, id id_list_tail J
= This require predicting which one is

the correct one. { Iad_list_tail — ; J

= This requires looking ahead and
examining the next token (without
consuming it).

-

subroutine parse id list tail():
tvpe = peek at next token type()
case type of
COMMA TOKEN:
match (COMMA TOKEN); match(ID TOKEN); parse id list tail()
SEMICOLON TOKEN:
match (SEMICOLON TOKEN) ;

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Recursive Descent Example

y

Parsing id_list _tail [id list » id id list_tai }
= There are two productions to choose

from. (id_list_tail— , id id_list_tail 1
= This require predicting wh(

the correct one. This delegation is the “recursive”

= This requires looking ahez part in recursive descent parsing.
examining the next token

consuming it).

-

subroutine parse id list tail():
tvpe = peek at next token type()
case type of \J

COMMA TOKEN: g
match (COMMA TOKEN); match(ID TOKEN (; parse id list tail()

SEMICOLON TOKEN:
match (SEMICOLON TOKEN) ;

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

. ™~ s ™ |

Recur:

We need one token “lookahead.”
Parsing id_list tall.

"fThelfe are two prodl pgrsers that require k tokens lookahead
rom. are called LL(k) (or LR(k)) parsers.

= This require predict
the correct one.

= This requires lookin Thus, this is a LL(7) parser.
examining the next
consuming it).
, -~
sut ine parse 1id list tai :
type = peek at next token type()
-~ tvpe of
COMMA " :
match (COMMA TOKEN); match(ID TOKEN); parse id list tail()
SEMICOLON TOKEN:
match (SEMICOLON TOKEN) ;

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

LL(k) Parsers

Recall our non-LL compatible grammar.
= Better for LR-parsing, but problematic for predictive parsing.

-

{id_list — id_list_prefix ; J

{ id_list_prefix — id_list_prefix, id J

{ id_list_prefix = id J

Cannot be parsed by LL(1) parser.

= Cannot predict which id_list_production to choose if next token
Is of type id.

=However, a LL(2) parser can parse this grammar. Just look at

the second token ahead and disambiguate based on ;" vs. ;.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

LL(k) Parsers

Recall our non-LL compatible grammar.
od'f sing.

Bottom-line:

can enlarge class of supported grammars by
using k > 1 lookahead, but at the expense of
reduced performance / backtracking.

Most production LL parsers use k = 1.

Cai

= Cannot predict which /d_list_production to choose IT next token
Is of type id.

=However, a LL(2) parser can parse this grammar. Just look at

the second token ahead and disambiguate based on ;" vs. ;.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Predict Sets

subroutine parse 1d list tail():
tyvpe = peek at next token type()

C'l

€ COMMA TOKEN:)

S~ OKEN); match(ID TOKEN); parse id list tail()
¢ SEMICOLON TOKEN:

Ll O TR — N_TOKEN) 7

(

The question is how do we label the case statements In
general, i.e., for arbitrary LL grammars?

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

First, Follow, and Predict

sets of terminal symbols

FIRST(A):
= The terminals that can be the first token of a valid derivation

starting with symbol A.
= Trivially, for each terminal T, FIRST(T) ={T}.

FOLLOW(A):
= The terminals that can follow the symbol A in any valid
derivation. (A is usually a non-terminal.)

PREDICT(A- x):

= The terminals that can be the first tokens as a result of the
production A - «. (is a string of symbols)

= The terminals in this set form the label in the case statements
to predict A - «.

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

First, Follow, and Predict
sets of terminal symbols

/

Note: For a non-terminal A, the set FIRST(A) is the union of
the predict sets of all productions with A as the head:

If there exist three productions A- «, A- 3, and A- A, then

FIRST(A) =
PREDICT(A - o) U PREDICT(A - B) U PREDICT(A - \)

PREDICT(A- x):

= The terminals that can be the first tokens as a result of the
production A - «. (is a string of symbols)

= The terminals in this set form the label in the case statements
to predict A - «.

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

PREDICT(A — o

If otis g, I.e., If Ais derived to “nothing™:

PREDICT(A — £) = FOLLOW(A)

Otherwise, if o is a string of symbols that starts with X:

(

PREDICT(A — X...) = FIRST(X)

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Inductive Definition of FIRST(A)

If Ais a terminal symbol, then:
FIRST(A) = {A} |

It Ais a non-terminal symbol and there exists a
production A = X..., then

FIRST(X) C FIRST(A)

(X can be terminal or non-terminal)

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

-

Notation: X is the first symbol of the production body.

If Ais a terminal sym/jol, then:

FIRST(A) = {A}

It Ais a non-terminal symbh2! -hd there exists a

production A 6 X..., Den

FIRST(X) C FIRST(A)

(X can be terminal or non-terminal)

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Inductive Definition of FOLLOW/(A)

If the substring AX exists anywhere in the grammar, then

FIRST(X) C FOLLOW(A)

If there exists a production X = ...A, then

(

FOLLOW(X) C FOLLOW(A)

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

-

Notation: A is the last symbol of the production body.

If the substring AX exists anywhere in the gram nar, then

-

FIRST(X) C FOLLOW(A)

’
If there exists a production X 6 ...A, 'hen

FOLLOW(X) C FOLLOW(A)

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Computing First, Follow, and Predict

Inductive Definition.

=FIRST, FOLLOW, and PREDICT are defined in terms of each other.
= Exception: FIRST for terminals.

= This the base case for the induction.

Iterative Computation.

= Start with FIRST for terminals and set all other sets to be empty.
= Repeatedly apply all definitions (i.e., include known subsets).

= [erminate when sets do not change anymore.

UNC Chapel Hill Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Predict Set Example

-

&'d_list — id_list_prefix; J

[1] &'d_list _prefix = id_list_prefix, id J

2]

&'d_list _prefix = id J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, Ap ,

05: Syntax Analysis COMP 524: Programming Language Concepts

Predict Set Example

-

&d_list — |d_list_prefix; J

[1] &d_list_prefix — id_list_prefix, id J

2]

&d_list_prefix — id J

Base case: FIRST(id) ={id}
Induction for [2]: FIRST(id) C FIRST(id_list_prefix) = {id}

Induction for [1]: FIRST(id_list_prefix) C FIRST(id_list_prefix)

Predict sets for (2) and (1) are identical: not LL(1)!

UNGS _ 99
Wednesday, April 14, 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Left Recursion

Leftmost symbol is a recursive non-terminal symbol.
= This causes a grammar not to be LL(1).

=Recursive descent would enter infinite recursion.

=|t is desirable for LR grammars.

y

&d_list — id_list_prefix; J

E’d_/ist_prefix — Id_list_prefix, id J

E’d_/ist_prefix — id J

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

“To parse an id_list_prefix, call the
Leftm o i i p . ymbol.
= This parser for id_list_prefix, which calls the

parser for id_list_prefix, which...”
=RecL on.
=|tis

y

Ed_list - i [st _prefix; }

€ ‘id_list_prefix — id_list_prefix, id

id_list_prefix = id

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Left-Factoring

Introducing “tail” symbols to avoid left recursion.
=Split a recursive production in an unambiguous prefix
and an optional tail.

{ expr — term | expr add_op term J

IS equivalent to

prefix { expr — term expr_tail }
tail { expr_tail = € J
tail { expr_tail = add_op expr }

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Another Predict Set Example

-

[1] { cond — if expr then statement j

[2] [cond — if expr then statement else statement j

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2

05: Syntax Analysis COMP 524: Programming Language Concepts

Another Predict Set Example

y

[1] { cond — if expr then statement J

[2] { cond — if expr then statement else statement J

PREDICT([1]) = {if} PREDICT([2]) = {if}

If the next token is an if, which production is the right one? l

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Common Prefix Problem

Non-disjoint predict sets.
= In order to predict which production will be applied, all
predict sets for a given non-terminal need to be disjoint!

-

If there exist two productions A- o, A- P
such that there exists a terminal x for which

x € PREDICT(A - &) N PREDICT(A - B),

then an LL(1) parser cannot properly predict which
production must be chosen.

Can also be addressed with left-factoring...

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts
[
Dangling else

Even if left recursion and common prefixes have

been removed, a language may not be LL(1).

=|n many languages an else statement in if-then-else
statements is optional.

=Ambiguous grammar: which if to match else to?

4)

1f AAA then
1f BBB then
CCC
else
DDD

-)

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Dangling else

p

4)

1f AAA then
1f BBB then
CCC
else
DDD

»Can be handled with a tricky LR grammar.
» There exists no LL(1) parser that can parse such statements.

» Even though a proper LR(1) parser can handle this, it may not
handle it iIn a method the programmer desires.

»Good language design avoids such constructs.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, A

05: Syntax Analysis COMP 524: Programming Language Concepts

Dangling else

» To write this code correctly (based on indention)
“begin” and “end” statements must be added.

» This Is LL compatible.

UNC Chapel Hill

Wednesday, A

a s
if AAA then if AAA then
if BBB then bégln
slele if BBB then
else CCC
DDD end
g else
DDD
\

Brandenburg — Spring 2010

05: Syntax Analysis COMP 524: Programming Language Concepts

Dangling else

{ statement — ... | cond | ... J

{ cond — if expr then block_statement J

{ cond — if expr then block_statement else block_statement J

{ block_statement = begin statement™ end J

A grammar that avoids the “dangling else” problem.

UNC Chapel Hill Brandenburg — Spring 2010

Wednesday, April 14, 2010

