
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Syntax Analysis

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

The Big Picture

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language

2
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

The Big Picture

Scanner (lexical analysis)

Parser (syntax analysis)

Semantic analysis &
intermediate code gen.

Machine-independent
optimization (optional)

Target code generation.

Machine-specific
optimization (optional)

Symbol Table

Character Stream

Token Stream

Parse Tree

Abstract syntax tree

Modified intermediate form

Machine language

Modified target language

3

Syntax Analysis: Discovery of Program Structure

Turn the stream of individual input tokens into a
complete, hierarchical representation

of the program (or compilation unit).

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Syntax Specification and Parsing

4

Syntax Specification
How can we succinctly
describe the structure of

legal programs?

Syntax Recognition
How can a compiler discover
if a program conforms to the

specification?

Context-free Grammars LL and LR Parsers

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Context-Free Grammars

Review: grammar.
➡Collection of productions.
➡A production defines a non-terminal (on the left, the “head”) in

terms of a string terminal and non-terminal symbols.
➡Terminal symbols are elements of the alphabet of the grammar.
➡A non-terminal can be the head of multiple productions.

5

regular grammar + recursion

Example: Natural Numbers

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Context-Free Grammars

Review: grammar.
➡Collection of productions.
➡A production defines a non-terminal (on the left, the “head”) in

terms of a string terminal and non-terminal symbols.
➡Terminal symbols are elements of the alphabet of the grammar.
➡A non-terminal can be the head of multiple productions.

6

regular grammar + recursion

Example: Natural Numbers

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

non_zero_digit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

natural_number → non_zero_digit digit*

Regular grammars.
➡ Restriction: no unrestricted recursion.
➡ A non-terminal symbol cannot be defined in terms of itself.

(except for special cases that equivalent to a Kleene Closure)
➡ Serious limitation: e.g., cannot express matching parenthesis.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Context-Free Grammars

7

expr → id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr

op → ‘+’ | ‘-’ | ‘*’ | ‘/’

Arithmetic expression with parentheses

regular grammar + recursion

Context-free Grammars (CFGs) allow recursion.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Context-Free Grammars

8

expr → id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr

op → ‘+’ | ‘-’ | ‘*’ | ‘/’

Arithmetic expression with parentheses

regular grammar + recursion

Context-free Grammars (CFGs) allow recursion.
Recursion

“An expression is a a minus sign
followed by an expression.”

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Context-Free Grammars

9

expr → id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr

op → ‘+’ | ‘-’ | ‘*’ | ‘/’

Arithmetic expression with parentheses

regular grammar + recursion

Context-free Grammars (CFGs) allow recursion.

Can express matching
parenthesis requirement.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Context-Free Grammars

10

expr → id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr

op → ‘+’ | ‘-’ | ‘*’ | ‘/’

Arithmetic expression with parentheses

regular grammar + recursion

Context-free Grammars (CFGs) allow recursion.
Key difference to lexical grammar:

terminal symbols are tokens,
not individual characters.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Context-Free Grammars

11

expr → id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr

op → ‘+’ | ‘-’ | ‘*’ | ‘/’

Arithmetic expression with parentheses

regular grammar + recursion

Context-free Grammars (CFGs) allow recursion.

One of the non-terminals, usually the first one, is
called the start symbol, and it defines the

construct defined by the grammar.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

BNF vs. EBNF
Backus-Naur-Form (BNF)
➡Originally developed for ALGOL 58/60 reports.
➡Textual notation for context-free grammars.

12

expr → id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr

is written as

<expr> ::= id | number | - <expr> |(<expr>) |
 <expr> <op> <expr>

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

BNF vs. EBNF
Backus-Naur-Form (BNF)
➡Originally developed for ALGOL 58/60 reports.
➡Textual notation for context-free grammars.

13

expr → id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr

is written as

<expr> ::= id | number | - <expr> |(<expr>) |
 <expr> <op> <expr>

Strictly speaking, it does not include the Kleene Star
and similar “notational sugar.”

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

BNF vs. EBNF
Extended Backus-Naur-Form (EBNF)
➡ Many authors extend BNF to simplify grammars.
➡ One of the first to do so was Niklaus Wirth.
➡ There exists an ISO standard for EBNF (ISO/IEC 14977).
➡ But many dialects exist.

14
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

BNF vs. EBNF
Extended Backus-Naur-Form (EBNF)
➡ Many authors extend BNF to simplify grammars.
➡ One of the first to do so was Niklaus Wirth.
➡ There exists an ISO standard for EBNF (ISO/IEC 14977).
➡ But many dialects exist.

Features
➡ Terminal symbols are quoted.
➡ Use of ʻ=ʻ instead of ʻ::=ʼ to denote →.
➡ Use of ʻ,ʼ for concatenation.
➡ [A] means A can occur optionally (zero or one time).
➡ {A} means A can occur repeatedly (Kleene Star).
➡ Parenthesis are allowed for grouping.
➡ And then some…

15
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

BNF vs. EBNF
Extended Backus-Naur-Form (EBNF)
➡ Many authors extend BNF to simplify grammars.
➡ One of the first to so was Niklaus Wirth.
➡ There exists an ISO standard for EBNF (ISO/IEC 14977).
➡ But many dialects exist.

Features
➡ Terminal symbols are quoted.
➡ Use of ʻ=ʻ instead of ʻ::=ʼ to denote →.
➡ Use of ʻ,ʼ for concatenation.
➡ [A] means A can occur optionally (zero or one time).
➡ {A} means A can occur repeatedly (Kleene Star).
➡ Parenthesis are allowed for grouping.
➡ And then some…

16

We will use mostly BNF-like grammars with the
addition of the Kleene Star, ε, and parenthesis.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example: EBNF to BNF Conversion

id_list → id (, id)*

id_list → id

id_list → id_list, id

17

is equivalent to

(Remember that non-terminals can be the head of multiple productions.)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Derivation
A grammar allows programs to be derived.
➡Productions are rewriting rules.
➡A program is syntactically correct if and only if it can

be derived from the start symbol.

Derivation Process
➡Begin with string consisting only of start symbol.

18

while string contains a non-terminal symbol:
Choose one non-terminal symbol X.
Choose production where X is the head.
Replace X with right-hand side of production.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Derivation
A grammar allows programs to be derived.
➡Productions are rewriting rules.
➡Program is syntactically correct if and only if it can be

derived from the start symbol.

Derivation Process
➡Begin with string consisting only of start symbol.

19

while string contains a non-terminal symbol:
Choose one non-terminal symbol X.
Choose production where X is the head.
Replace X with right-hand side of production.

If we always choose the left-most
non-terminal symbol, then it is called

a left-most derivation.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Derivation
A grammar allows programs to be derived.
➡Productions are rewriting rules.
➡A program is syntactically correct if and only if it can

be derived from the start symbol.

Derivation Process
➡Begin with string consisting only of start symbol.

20

while string contains a non-terminal symbol:
Choose one non-terminal symbol X.
Choose production where X is the head.
Replace X with right-hand side of production.

If we always choose the right-most
non-terminal symbol, then it is called
a right-most or canonical derivation.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

Program
slope * x + intercept

21

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

Program
slope * x + intercept

22

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

Program
slope * x + intercept

23

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

⇒ denotes “derived from”

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

Program
slope * x + intercept

24

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

Program
slope * x + intercept

25

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + idProgram
slope * x + intercept

26

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

Program
slope * x + intercept

27

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

Program
slope * x + intercept

28

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

Program
slope * x + intercept

29

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

slope * x + intercept

Program
slope * x + intercept

30

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Substitute values of identifier tokens.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Derivation

expr ⇒ expr op expr

⇒ expr op id

⇒ expr + id

⇒ expr op expr + id

⇒ expr op id + id

⇒ expr * id + id

⇒ id * id + id

slope * x + intercept

Program
slope * x + intercept

31

Arithmetic grammar:
expr
 →
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

This is a right-most derivation.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree
A parse tree is a hierarchical representation of the
derivation that does not show the derivation order.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

32
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree
A parse tree is a hierarchical representation of the
derivation that does not show the derivation order.

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

33

Properties
➡ Each interior node is a non-terminal

symbol.
➡ Its children are the right-hand side of

the production that it was replaced with.
➡ Leaf nodes are terminal symbols

(tokens).
➡ Many-to-one: many derivations can

yield identical parse trees.
➡ The parse tree defines the structure

of the program.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree

expr

expr op expr

expr op expr

id (slope) * id (x)

+ id (intercept)

This parse tree represents the formula
slope * x + intercept.

34
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree

35

Letʼs do a left-most derivation of
slope * x + intercept.

Arithmetic grammar:
expr
→
id | number | ‘-’ expr | ‘(‘ expr ‘)’ | expr op expr
op

 →
‘+’ | ‘-’ | ‘*’ | ‘/’

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

36

Letʼs do a left-most derivation of
slope * x + intercept.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree (Ambiguous)

‣This grammar, is ambiguous and can construct
the following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

This parse tree represents the formula slope * (x + intercept),
which is not equal to slope * x + intercept.

37
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree (Ambiguous)

‣This grammar, is ambiguous and can construct
the following parse tree.

expr

expr op expr

expr op exprid (slope) *

id (x) + id (intercept)

This parse tree represents the formula slope * (x + intercept),
which is not equal to slope * x + intercept.

38

Ambiguity
➡ The parse tree defines the structure

of the program.
➡ A program should have only one valid

interpretation!
➡ Two solutions:

➡ Make grammar unambiguous,
i.e., ensure that all derivations yield
identical parse trees.

➡ Provide disambiguating rules.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Disambiguating the Grammar
‣The problem with our original grammar is that it does not fully
express the grammatical structure (i.e., associativity and
precedence).
‣To create an unambiguous grammar, we need to fully specify the
grammar and differentiate between terms and factors.

39
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Disambiguating the Grammar
‣The problem with our original grammar is that it does not fully
express the grammatical structure (i.e., associativity and
precedence).
‣To create an unambiguous grammar, we need to fully specify the
grammar and differentiate between terms and factors.

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /

40
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Disambiguating the Grammar
‣The problem with our original grammar is that it does not fully
express the grammatical structure (i.e., associativity and
precedence).
‣To create an unambiguous grammar, we need to fully specify the
grammar and differentiate between terms and factors.

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /

41

This gives precedence to multiply.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Parse Tree

expr

expr add_op term

+

number (3)

* number(5)

term

factor

term

number (4)

factor

mul_op factor

3+4*5

42
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Example Parse Tree

expr

expr add_op term

+

number (3)

* number(5)

term

factor

term

number (4)

factor

mul_op factor

3+4*5

43

Multiplication precedes addition.

Wednesday, April 14, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Another Example

44

expr → term | expr add_op term

term → factor | term mult_op factor

factor → id | number | - factor | (expr)

add_op → + | -

mult_op → * | /

Lets try deriving “3*4+5*6+7”.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Parse Tree
expr

+

7

term

term

6

add_op

factor

3*4+5*6+7

expr

termadd_opexpr

+ term mul_op factor

*

5

factor

4

term mul_op factor

*

3

factor

45
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

46

Parser
The purpose of the parser is to

construct the parse tree
that

corresponds to the input token stream.

(If such a tree exists, i.e., for correct input.)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

47

Parser
The purpose of the parser is to

construct the parse tree
that

corresponds to the input token stream.

(If such a tree exists, i.e., for correct input.)

This is a non-trivial problem:
for example, consider “3*4” and “3+4”.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

48
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

How can a computer derive these trees
by examining one token at a time?

49
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

50

In order to derive these trees, the first character that
we need to examine is the math operator in the middle.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

expr

+

4

termadd_op

factor

3+4

term

3

factor

expr

expr

* 4

mul_op factor

3*4

term

3

factor

term

51

Writing ad-hoc parsers is difficult,
tedious, and error-prone.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Complexity of Parsing

Arbitrary CFGs can be parsed in O(n3) time.
➡n is length of the program (in tokens).
➡Earleyʼs algorithm.
➡Cocke-Younger-Kasami (CYK) algorithm.
➡This is too inefficient for most purposes.

Efficient parsing is possible.
➡There are (restricted) types of grammars that

can be parsed in linear time, i.e., O(n).
➡Two important classes:
‣LL: “Left-to-right, Left-most derivation”
‣LR: “Left-to-right, Right-most derivation”

➡These are sufficient to express most
programming languages.

52
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Complexity of Parsing

Arbitrary CFGs can be parsed in O(n3) time.
➡n is length of the program (in tokens).
➡Earleyʼs algorithm.
➡Cocke-Younger-Kasami (CYK) algorithm.
➡This is too inefficient for most purposes.

Efficient parsing is possible.
➡There are (restricted) types of grammars that

can be parsed in linear time, i.e., O(n).
➡Two important classes:
‣LL: “Left-to-right, Left-most derivation”
‣LR: “Left-to-right, Right-most derivation”

➡These are sufficient to express most
programming languages.

53

The class of all grammars for which a left-most
derivation always yields a parse tree.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Complexity of Parsing

Arbitrary CFGs can be parsed in O(n3) time.
➡n is length of the program (in tokens).
➡Earleyʼs algorithm.
➡Cocke-Younger-Kasami (CYK) algorithm.
➡This is too inefficient for most purposes.

Efficient parsing is possible.
➡There are (restricted) types of grammars that

can be parsed in linear time, i.e., O(n).
➡Two important classes:
‣LL: “Left-to-right, Left-most derivation”
‣LR: “Left-to-right, Right-most derivation”

➡These are sufficient to express most
programming languages.

54

The class of all grammars for which a right-most
derivation always yields a parse tree.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL-Parsers vs. LR-Parsers

55

LL-Parsers
➡ Find left-most derivation.
➡ Create parse-tree in top-down

order, beginning at the root.
➡ Can be either constructed

manually or automatically
generated with tools.

➡ Easy to understand.
➡ LL grammars sometimes appear

“unnatural.”
➡ Also called predictive parsers.

LR-Parsers
➡ Find right-most derivation.
➡ Create parse-tree in bottom-up

order, beginning at leaves.
➡ Are usually generated by tools.
➡ Operating is less intuitive.
➡ LR grammars are often “natural.”
➡ Also called shift-reduce parsers.
➡ Strictly more expressive: every LL

grammar is also an LR grammar,
but the converse is not true.

Both are used in practice.
We focus on LL.

Wednesday, April 14, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL vs. LR Example

56

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A simple grammar for a list of identifiers.

A, B, C;

Input

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL Example

57

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

current token

the
(as of yet empty)

parse tree

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL Example

58

id_list

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Step 1
Begin with root (start symbol).

current token

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

A , B , C ;

LL Example

59

id (A) id_list_tail

id_list

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

current token

Step 2
Apply id_list production. This

matches the first identifier to the
expected id token.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL Example

60

id (A) id_list_tail

id_list

, id (B) id_list_tail

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

current token

A , B , C ;

Step 3
Apply a production for id_list_tail.

There are two to choose from.
Predict that the first one applies.
This matches two more tokens.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL Example

61

id (A) id_list_tail

id_list

, id (B) id_list_tail

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

, id (C) id_list_tail

current token

A , B , C ;

Step 4
Substitute the id_list_tail, predicting the first

production again. This matches a comma and C.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL Example

62

id (A) id_list_tail

id_list

, id (B) id_list_tail

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

, id (C) id_list_tail

;

current token

A , B , C ;

Step 5
Substitute the final id_list_tail. This

time predict the other
production, which matches the ʻ;ʼ.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL Parse Tree

63

id (A) id_list_tail

id_list

, id (B) id_list_tail

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

, id (C) id_list_tail

;

A , B , C ;

Top-Down Construction

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL Parse Tree

64

id (A) id_list_tail

id_list

, id (B) id_list_tail

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

, id (C) id_list_tail

;

A , B , C ;

Notice that the input tokens are placed in
the tree from the left to right.

Top-Down Construction

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LR Example

65

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

forest (a stack)
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LR Example

66

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Forest = set of (partial) trees.

forest (a stack)
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LR Example

67

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Step 1
Shift encountered token into forest.

current token

forest (a stack)

id (A)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LR Example

68

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Step 2
Determine that no right-hand

side of any production
matches the top of the forest.

Shift next token into forest.

current token

forest (a stack)

id (A) ,

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

current token

LR Example

69

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Steps 3-6
No right hand side

matches top of forest.
Repeatedly shift next

token into forest.

forest (a stack)

id (A) , id (B) , id (C) ;

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

current token

LR Example

70

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Step 7
Detect that last production matches

the top of the forest.
Reduce top token to partial tree.

forest (a stack)

id (A) , id (B) , id (C)

;

id_list_tail

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

current token

LR Example

71

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Step 8
Detect that second production
matches. Reduce top of forest.

forest (a stack)

id (A) , id (B)

, id (C) ;

id_list_tail

id_list_tail

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

current token

LR Example

72

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

Step 9
Detect that second production
matches. Reduce top of forest.

forest (a stack)

id (A)

id (B)

, id (C) ;

id_list_tail

id_list_tail

,

id_list_tail

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

current token

LR Example

73

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

forest (a stack)

id (B)

, id (C) ;

id_list_tail

id_list_tail

,

id_list_tail

Step 10
Detect that first production

matches. Reduce top of forest.

id (A)

id_list

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LR Parse Tree

74

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

A , B , C ;

id (B)

, id (C) ;

id_list_tail

id_list_tail

,

id_list_tailid (A)

id_list
Bottom-Up Construction

The problem with this grammar is that it can require
an arbitrarily large number of terminals to be

shifted before reduction takes place.
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

An Equivalent Grammar

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

This grammar limits the number of
“suspended” non-terminals.

75

better suited to LR parsing

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

An Equivalent Grammar

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

76

better suited to LR parsing

However, this creates a problem for the LL parser.
When the parser discovers an “id” it cannot predict the

number of id_list_prefix productions that it needs to match.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Two Approaches to LL Parser Construction

Recursive Descent.
➡A mutually recursive set of subroutines.
➡One subroutine per non-terminal.
➡Case statements based on current token to predict subsequent

productions.

Table-Driven.
➡Not recursive; instead has an explicit stack of expected symbols.
➡A loop that processes the top of the stack.
➡Terminal symbols on stack are simply matched.
➡Non-terminal symbols are replaced with productions.
➡Choice of production is driven by table.

77
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example

Identifier List Grammar.
➡Recall our LL-compatible original version.

78

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

Recursive Descent Approach.
➡We need one subroutine for each non-terminal.
➡Each subroutine adds tokens into the growing parse tree

and/or calls further subroutines to resolve non-terminals.

“recursive descent”
=

“climb from root to leaves, calling a subroutine for every level”

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example

Identifier List Grammar.
➡Recall our LL-compatible original version.

79

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

Recursive Descent Approach.
➡We need one subroutine for each non-terminal.
➡Each subroutine adds tokens into the growing parse tree

and/or calls further subroutines to resolve non-terminals.

Possibly itself.
Recursive descent: either directly or indirectly.

“recursive descent”
=

“climb from root to leaves, calling a subroutine for every level”

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example
Helper routine “match”.
➡ Used to consume expected terminals/

tokens.
➡ Given an expected token type (e.g., id, ʻ;ʼ,

or ʻ,ʼ), checks if next token is of correct type.
➡ Raises error otherwise.

80

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

subroutine match(expected_type):
token = get_next_token()
if (token.type == expected_type):

make token a child of left-most non-terminal in tree
else:

throw ParseException(“expected “ + expected_type)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example
Helper routine “match”.
➡ Used to consume expected terminals/

tokens.
➡ Given an expected token type (e.g., id, ʻ;ʼ,

or ʻ,ʼ), checks if next token is of correct type.
➡ Raises error otherwise.

81

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

subroutine match(expected_type):
token = get_next_token()
if (token.type == expected_type):

make token a child of left-most non-terminal in tree
else:

throw ParseException(“expected “ + expected_type)

Example of a match failure:

Eclipse: class token expected, but got id

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example
Parsing id_list.
➡Trivial, there is only one production.
➡Simply match an id, and then delegate

parsing of the tail to the subroutine for
id_list_tail.

82

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

subroutine parse_id_list():
match(ID_TOKEN)
parse_id_list_tail()

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example
Parsing id_list.
➡Trivial, there is only one production.
➡Simply match an id, and then delegate

parsing of the tail to the subroutine for
id_list_tail.

83

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

subroutine parse_id_list():
match(ID_TOKEN)
parse_id_list_tail()

This delegation is the “descent”
part in recursive descent parsing.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example
Parsing id_list_tail.
➡There are two productions to choose

from.
➡This require predicting which one is

the correct one.
➡This requires looking ahead and

examining the next token (without
consuming it).

84

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

subroutine parse_id_list_tail():
type = peek_at_next_token_type()
case type of

COMMA_TOKEN:
match(COMMA_TOKEN); match(ID_TOKEN); parse_id_list_tail()

SEMICOLON_TOKEN:
match(SEMICOLON_TOKEN);

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example
Parsing id_list_tail.
➡There are two productions to choose

from.
➡This require predicting which one is

the correct one.
➡This requires looking ahead and

examining the next token (without
consuming it).

85

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

subroutine parse_id_list_tail():
type = peek_at_next_token_type()
case type of

COMMA_TOKEN:
match(COMMA_TOKEN); match(ID_TOKEN); parse_id_list_tail()

SEMICOLON_TOKEN:
match(SEMICOLON_TOKEN);

This delegation is the “recursive”
part in recursive descent parsing.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Recursive Descent Example
Parsing id_list_tail.
➡There are two productions to choose

from.
➡This require predicting which one is

the correct one.
➡This requires looking ahead and

examining the next token (without
consuming it).

86

id_list → id id_list_tail

id_list_tail→,id id_list_tail

id_list_tail → ;

subroutine parse_id_list_tail():
type = peek_at_next_token_type()
case type of

COMMA_TOKEN:
match(COMMA_TOKEN); match(ID_TOKEN); parse_id_list_tail()

SEMICOLON_TOKEN:
match(SEMICOLON_TOKEN);

We need one token “lookahead.”

Parsers that require k tokens lookahead
are called LL(k) (or LR(k)) parsers.

Thus, this is a LL(1) parser.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL(k) Parsers
Recall our non-LL compatible grammar.
➡Better for LR-parsing, but problematic for predictive parsing.

87

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

Cannot be parsed by LL(1) parser.
➡Cannot predict which id_list_production to choose if next token

is of type id.
➡However, a LL(2) parser can parse this grammar. Just look at

the second token ahead and disambiguate based on ʻ,ʼ vs. ʻ;ʼ.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

LL(k) Parsers
Recall our non-LL compatible grammar.
➡Better for LR-parsing, but problematic for predictive parsing.

88

id_list → id_list_prefix ;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

Cannot be parsed by LL(1) parser.
➡Cannot predict which id_list_production to choose if next token

is of type id.
➡However, a LL(2) parser can parse this grammar. Just look at

the second token ahead and disambiguate based on ʻ,ʼ vs. ʻ;ʼ.

Bottom-line:

can enlarge class of supported grammars by
using k > 1 lookahead, but at the expense of

reduced performance / backtracking.

Most production LL parsers use k = 1.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Predict Sets

89

subroutine parse_id_list_tail():
type = peek_at_next_token_type()
case type of

COMMA_TOKEN:
match(COMMA_TOKEN); match(ID_TOKEN); parse_id_list_tail()

SEMICOLON_TOKEN:
match(SEMICOLON_TOKEN);

The question is how do we label the case statements in
general, i.e., for arbitrary LL grammars?

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

First, Follow, and Predict

FIRST(A):
➡The terminals that can be the first token of a valid derivation

starting with symbol A.
➡Trivially, for each terminal T, FIRST(T) = {T}.

FOLLOW(A):
➡The terminals that can follow the symbol A in any valid

derivation. (A is usually a non-terminal.)

PREDICT(A → α):
➡The terminals that can be the first tokens as a result of the

production A → α. (α is a string of symbols)
➡The terminals in this set form the label in the case statements

to predict A → α.
90

sets of terminal symbols

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

First, Follow, and Predict

FIRST(A):
➡The terminals (including ε) that can be the first token of a valid

derivation starting with symbol A.
➡Trivially, for each terminal T, FIRST(T) = {T}.

FOLLOW(A):
➡The terminals that can follow the symbol A in any valid

derivation.

PREDICT(A → α):
➡The terminals that can be the first tokens as a result of the

production A → α. (α is a string of symbols)
➡The terminals in this set form the label in the case statements

to predict A → α.
91

sets of terminal symbols

Note: For a non-terminal A, the set FIRST(A) is the union of
the predict sets of all productions with A as the head:

if there exist three productions A → α, A → β, and A → λ, then
FIRST(A) =

PREDICT(A → α) ∪ PREDICT(A → β) ∪ PREDICT(A → λ)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

PREDICT(A → α)

92

If α is ε, i.e., if A is derived to “nothing”:

PREDICT(A → ε) = FOLLOW(A)

Otherwise, if α is a string of symbols that starts with X:

PREDICT(A → X…) = FIRST(X)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Inductive Definition of FIRST(A)

93

FIRST(X) ⊆ FIRST(A)

FIRST(A) = {A}

If A is a terminal symbol, then:

If A is a non-terminal symbol and there exists a
production A → X…, then

(X can be terminal or non-terminal)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Inductive Definition of FIRST(A)

94

FIRST(X) ⊆ FIRST(A)

FIRST(A) = {A}

If A is a terminal symbol, then:

If A is a non-terminal symbol and there exists a
production A → X…, then

(X can be terminal or non-terminal)

Notation: X is the first symbol of the production body.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Inductive Definition of FOLLOW(A)

95

FIRST(X) ⊆ FOLLOW(A)

If the substring AX exists anywhere in the grammar, then

If there exists a production X → …A, then

FOLLOW(X) ⊆ FOLLOW(A)

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Inductive Definition of FOLLOW(A)

96

FIRST(X) ⊆ FOLLOW(A)

If the substring AX exists anywhere in the grammar, then

If there exists a production X → …A, then

FOLLOW(X) ⊆ FOLLOW(A)

Notation: A is the last symbol of the production body.

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Computing First, Follow, and Predict

Inductive Definition.
➡FIRST, FOLLOW, and PREDICT are defined in terms of each other.
➡Exception: FIRST for terminals.
➡This the base case for the induction.

Iterative Computation.
➡Start with FIRST for terminals and set all other sets to be empty.
➡Repeatedly apply all definitions (i.e., include known subsets).
➡Terminate when sets do not change anymore.

97
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Predict Set Example

98

id_list → id_list_prefix;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

[1]

[2]

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Predict Set Example

99

id_list → id_list_prefix;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

Base case: FIRST(id) = {id}

Induction for [2]: FIRST(id) ⊂ FIRST(id_list_prefix) = {id}

[1]

[2]

Induction for [1]: FIRST(id_list_prefix) ⊂ FIRST(id_list_prefix)

Predict sets for (2) and (1) are identical: not LL(1)!
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Left Recursion
Leftmost symbol is a recursive non-terminal symbol.
➡This causes a grammar not to be LL(1).
➡Recursive descent would enter infinite recursion.
➡It is desirable for LR grammars.

id_list → id_list_prefix;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

100
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Left Recursion
Leftmost symbol is a recursive non-terminal symbol.
➡This causes a grammar not to be LL(1).
➡Recursive descent would enter infinite recursion.
➡It is desirable for LR grammars.

id_list → id_list_prefix;

id_list_prefix → id_list_prefix, id

id_list_prefix → id

101

“To parse an id_list_prefix, call the
parser for id_list_prefix, which calls the

parser for id_list_prefix, which…”

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Left-Factoring
Introducing “tail” symbols to avoid left recursion.
➡Split a recursive production in an unambiguous prefix

and an optional tail.

102

expr → term | expr add_op term

expr → term expr_tail

expr_tail → ε

expr_tail → add_op expr

is equivalent to

prefix

tail

tail

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Another Predict Set Example

103

cond → if expr then statement

cond → if expr then statement else statement

[1]

[2]

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Another Predict Set Example

104

cond → if expr then statement

cond → if expr then statement else statement

PREDICT([1]) = {if} PREDICT([2]) = {if}

[1]

[2]

If the next token is an if, which production is the right one?

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Common Prefix Problem
Non-disjoint predict sets.
➡ In order to predict which production will be applied, all

predict sets for a given non-terminal need to be disjoint!

105

If there exist two productions A → α, A → β
such that there exists a terminal x for which
x ∈ PREDICT(A → α) ∩ PREDICT(A → β),

then an LL(1) parser cannot properly predict which
production must be chosen.

Can also be addressed with left-factoring…

Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Dangling else

Even if left recursion and common prefixes have
been removed, a language may not be LL(1).
➡In many languages an else statement in if-then-else

statements is optional.
➡Ambiguous grammar: which if to match else to?

if AAA then
if BBB then
CCC

else
DDD

106
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Dangling else

‣Can be handled with a tricky LR grammar.
‣There exists no LL(1) parser that can parse such statements.
‣Even though a proper LR(1) parser can handle this, it may not
handle it in a method the programmer desires.
‣Good language design avoids such constructs.

if AAA then
if BBB then
CCC

else
DDD

107
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Dangling else

‣To write this code correctly (based on indention)
“begin” and “end” statements must be added.
‣This is LL compatible.

if AAA then
if BBB then
CCC

else
DDD

if AAA then
 begin

if BBB then
CCC

 end
else
DDD

108
Wednesday, April 14, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts05: Syntax Analysis

Dangling else

109

cond → if expr then block_statement

cond → if expr then block_statement else block_statement

block_statement → begin statement* end

A grammar that avoids the “dangling else” problem.

statement → … | cond | …

Wednesday, April 14, 2010

