
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Binding and Storage

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

What’s the most striking difference?

2

x86 Assembly

Java Interface definition

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

What’s the most striking difference?

3

x86 Assembly

Java Interface definition

Names!
High-level languages have rich

facilities for naming “things.”

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Names
Required for abstraction.
➡Assembly only has values & addresses & registers.
‣Machine dependence!

➡Names enable abstraction.
‣Can refer to something without knowing the details
(e.g., exact address, exact memory layout).
‣Let the compiler worry about the details.

➡Can refer to things that do not yet exist!
‣E.g., during development, we can (and often do) write
code for (Java) interfaces that have not yet been
implemented.

4
Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Abstraction

5

Control Abstraction vs. Data Abstraction

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Abstraction

6

Control Abstraction vs. Data AbstractionControl Abstraction
Can hide arbitrary complex code behind a simple name.

For example, addition can be simple (int) or “difficult” (vector).

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Abstraction

7

Control Abstraction vs. Data Abstraction

Data Abstraction
Abstract Data Types (ADTs)

Reason about concepts
instead of impl. details.

Programmer doesnʼt know
memory layout, address,

whether other interfaces are
implemented, what invariants

need to be ensured, etc.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Binding vs. Abstraction.
➡ Introducing a name creates an abstraction.
➡Binding a name to an entity resolves an abstraction.

Binding time:
➡When is a name resolved?

8

Binding

Associating a name with some entity.
(or “object,” but not the Java notion of an object)

Tuesday, February 23, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Binding Time

9

Language Design Time

Language Impl. Time

Program Writing Time

Compile Time

Link Time

Load Time

Run Time

In
cr

ea
si

ng
 F

le
xi

bi
lit

y
Increasing Efficiency

Tuesday, February 23, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Binding Time

10

Language Design Time

Language Impl. Time

Program Writing Time

Compile Time

Link Time

Load Time

Run Time

In
cr

ea
si

ng
 F

le
xi

bi
lit

y
Increasing Efficiency

Keywords, e.g. “if”

Tool vendor chooses predefined
symbols and std. library impl.

Programmer chooses names,
data structures, and algorithms.

Compiler determines exact
memory layout, code order, etc.

Resolve names in static library,
e.g., “printf” in the C library.

OS loads dynamic libraries, e.g.,
Windows loads DLLs, Unix SOs.

Name resolved based on input.
E.g., plugins, interfaces.

Tuesday, February 23, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Binding Time

11

Language Design Time

Language Impl. Time

Program Writing Time

Compile Time

Link Time

Load Time

Run Time

In
cr

ea
si

ng
 F

le
xi

bi
lit

y
Increasing Efficiency

Keywords, e.g. “if”

Tool vendor chooses predefined
symbols and std. library impl.

Programmer chooses names,
data structures, and algorithms.

Compiler determines exact
memory layout, code order, etc.

Resolve names in static library,
e.g., “printf” in the C library.

OS loads dynamic libraries, e.g.,
Windows loads DLLs, Unix SOs.

Name resolved based on input.
E.g., plugins, interfaces.

if language is revised,
e.g., Java 1.1, 1.2, …, 1.6

if new tool version is released,
e.g., GCC 2.95 vs. GCC 4.0.

if source code is changed.

on every compile
(but hopefully doesnʼt).

every time the final program is
linked after a library update.

every time the app is launched.
(e.g., Windows compatibility mode, DLL

injection, debug libraries).

at any time during execution.

Binding may change…

Tuesday, February 23, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Binding Time

12

Language Design Time

Language Impl. Time

Program Writing Time

Compile Time

Link Time

Load Time

Run Time

In
cr

ea
si

ng
 F

le
xi

bi
lit

y
Increasing Efficiency

Called static or
early binding.

Called dynamic or
late binding.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetime vs. Binding Lifetime

Lifetime
➡ Entity: “alife” if memory is allocated (and initialized).
➡ Binding: “alife” if the name refers to some entity.

13

Entity A

Entity B

Name

time t1t0 t2 t3 t4 t5

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetime vs. Binding Lifetime

Lifetime
➡ Entity: “alife” if memory is allocated (and initialized).
➡ Binding: “alife” if the name refers to some entity.

14

Entity A

Entity B

Name

time t1t0 t2 t3 t4 t5

Name initially unbound: no binding exists.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetime vs. Binding Lifetime

Lifetime
➡ Entity: “alife” if memory is allocated (and initialized).
➡ Binding: “alife” if the name refers to some entity.

15

Entity A

Entity B

Name

time t1t0 t2 t3 t4 t5

B is allocated and bound to Name

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetime vs. Binding Lifetime

Lifetime
➡ Entity: “alife” if memory is allocated (and initialized).
➡ Binding: “alife” if the name refers to some entity.

16

Entity A

Entity B

Name

time t1t0 t2 t3 t4 t5

A is allocated and bound to Name.
B still exists!

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetime vs. Binding Lifetime

Lifetime
➡ Entity: “alife” if memory is allocated (and initialized).
➡ Binding: “alife” if the name refers to some entity.

17

Entity A

Entity B

Name

time t1t0 t2 t3 t4 t5

New binding: Name
refers to B again.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetime vs. Binding Lifetime

Lifetime
➡ Entity: “alife” if memory is allocated (and initialized).
➡ Binding: “alife” if the name refers to some entity.

18

Entity A

Entity B

Name

time t1t0 t2 t3 t4 t5

A continues to exist for
some time until it is

deallocated.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetime vs. Binding Lifetime

Lifetime
➡ Entity: “alife” if memory is allocated (and initialized).
➡ Binding: “alife” if the name refers to some entity.

19

Entity A

Entity B

Name

time t1t0 t2 t3 t4 t5

The binding from Name to B is
shadowed by a new binding to A.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Object Lifetimes
Defined by three principal storage allocation mechanisms:
➡Static objects, which have a fixed address and are not de-

allocated before program termination.
➡Stack objects, which are allocated and deallocated in a

Last-In First-Out (LIFO) order.
➡Heap objects, which are allocated and deallocated at

arbitrary times.

20

Code Static Runtime stack Heap

Simplified 32-bit Memory Model

0x0 Increasing Virtual Addresses 0xffffffff

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation
Some memory is required throughout program execution.
➡ Multi-byte constants.
‣ Strings (“hello world”).
‣ Lookup tables.

➡ Global variables.
➡ The program code.

Must be allocated before program execution starts.
➡ Requirements specified in program file.
➡ Allocated by OS as part of program loading.
➡ The size of static allocation is constant between runs.

21

Caution: this is not the same as Java’s static.

generated
by

compiler

initialized with
some value

Code Constants

initialized with
some value

Variables

not initialized

Variables

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation
Some memory is required throughout program execution.
➡ Multi-byte constants.
‣ Strings (“hello world”).
‣ Lookup tables.

➡ Global variables.
➡ The program code.

Must be allocated before program execution starts.
➡ Requirements specified in program file.
➡ Allocated by OS as part of program loading.
➡ The size of static allocation is constant between runs.

22

Caution: this is not the same as Java’s static.

generated
by

compiler

initialized with
some value

Code Constants

initialized with
some value

Variables

not initialized

Variables

Read-only data.
Attempt to update illegal
in many operating systems.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation
Some memory is required throughout program execution.
➡ Multi-byte constants.
‣ Strings (“hello world”).
‣ Lookup tables.

➡ Global variables.
➡ The program code.

Must be allocated before program execution starts.
➡ Requirements specified in program file.
➡ Allocated by OS as part of program loading.
➡ The size of static allocation is constant between runs.

23

Caution: this is not the same as Java’s static.

generated
by

compiler

initialized with
some value

Code Constants

initialized with
some value

Variables

not initialized

Variables

Global Initialized Variables.
E.g., int meaning = 42;

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation
Some memory is required throughout program execution.
➡ Multi-byte constants.
‣ Strings (“hello world”).
‣ Lookup tables.

➡ Global variables.
➡ The program code.

Must be allocated before program execution starts.
➡ Requirements specified in program file.
➡ Allocated by OS as part of program loading.
➡ The size of static allocation is constant between runs.

24

Caution: this is not the same as Java’s static.

generated
by

compiler

initialized with
some value

Code Constants

initialized with
some value

Variables

not initialized

Variables

Global Uninitialized Variables.
E.g., int last_error;

(For historic reasons called the .bss segment.)

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation
Some memory is required throughout program execution.
➡ Multi-byte constants.
‣ Strings (“hello world”).
‣ Lookup tables.

➡ Global variables.
➡ The program code.

Must be allocated before program execution starts.
➡ Requirements specified in program file.
➡ Allocated by OS as part of program loading.
➡ The size of static allocation is constant between runs.

25

Caution: this is not the same as Java’s static.

generated
by

compiler

initialized with
some value

Code Constants

initialized with
some value

Variables

not initialized

Variables

Compile-time constants.
Value must be known at compile time.

Elaboration-time constants.
Value computed at runtime; compiler

disallows subsequent updates.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Advantages & Disadvantages

26

Advantages.
➡ No allocation/deallocation

runtime overhead.
➡ Static addresses.
➡ Compiler can optimize

accesses.

Limitations.
➡ Allocation size fixed;

cannot depend on input.
➡ Wasteful; memory is

always allocated.
➡ Global variables are

error-prone.

Advice: avoid global variables.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Runtime Stack
Hardware-supported allocation area.
➡Essential for subprogram calls.
➡Grows top-down in many architectures.
➡Size limit: stack overflow if available space is exhausted.
➡Max. size of stack can be adjusted at runtime.
➡OS is often involved in stack management.

27

Code Static Runtime stack Heap

Simplified 32-bit Memory Model

0x0 Increasing Virtual Addresses 0xffffffff

growth

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Subroutines & Static Allocation

Calling a function/method/subroutine requires memory.
➡Arguments.
➡Local variables.
➡Return address

(where to continue execution after subroutine completes).
➡Some bookkeeping information.
‣E.g., to support exceptions and call stack traces.

28

Where should this memory be allocated?

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation of Subroutine Memory

29

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

Subroutine 1 Subroutine X

…

One approach: statically allocate memory for each subroutine.
(e.g. early versions of Fortran)

 Increasing Virtual Addresses

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation of Subroutine Memory

30

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

Subroutine 1 Subroutine X

…

One approach: statically allocate memory for each subroutine.
(e.g. early versions of Fortran)

 Increasing Virtual Addresses Problem: Waste
Most of the allocations will be

unused most of the time.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation of Subroutine Memory

31

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

Subroutine 1 Subroutine X

…

One approach: statically allocate memory for each subroutine.
(e.g. early versions of Fortran)

 Increasing Virtual Addresses Problem: Waste
Most of the allocations will be

unused most of the time.

Problem: No Recursion
Subroutines may not be called while

their memory is already in use.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Static Allocation of Subroutine Memory

32

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

R
eturn A

ddress

A
rgum

ents &

R
eturn Value(s)

M
isc.

B
ookkeeping

Local Variables

Tem
ps.

Subroutine 1 Subroutine X

…

One approach: statically allocate memory for each subroutine.
(e.g. early versions of Fortran)

 Increasing Virtual Addresses Problem: Waste
Most of the allocations will be

unused most of the time.

Problem: No Recursion
Subroutines may not be called while

their memory is already in use.

Limited recursion depth can be allowed by allocating memory for
multiple subroutine instances. But this increases waste…

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Runtime Stack
Idea: allocate memory for subroutines on demand.
➡ Reserve (large) area for subroutine calls. Allocate new frame for

each call. Deallocate on return.
➡ Subroutine calls must be fast: need efficient memory management.

Observation: last-in first-out allocation pattern.
➡ A routine returns only after all called subroutines have returned.
➡ Thus, allocations can be “piled” on top of each other.

33

Subroutine memory is allocated
on-demand from the runtime stack.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Stack Frames
On a subroutine call:
➡ New stack frame pushed onto stack.
➡ Stack frames differ in size

(depending on local variables).
➡ Recursion only limited by total size of stack.
➡ Reduced waste: unused subroutines only

consume memory for code, not variables.
➡ Stack frame popped from stack on return.

34

 Increasing Virtual Addresses

S
ub

ro
ut

in
e

B

S
ub

ro
ut

in
e

A

(p
ro

gr
am

 e
nt

ry
)

S
ub

ro
ut

in
e

C

S
ub

ro
ut

in
e

D

Stack growth

R
et

ur
n

A
dd

re
ss

A
rg

um
en

ts
 &

R

et
ur

n
Va

lu
e(

s)

M
is

c.

B
oo

kk
ee

pi
ng

Lo
ca

l V
ar

ia
bl

es

Te
m

ps
.

bottomtop of stack

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence
Compilers generate code to manage the runtime stack.
➡ Setup, before call to subroutine.
➡ Prologue, before subroutine body executes.
➡ Epilogue, after subroutine body completes (the return).
➡ Cleanup, right after subroutine call.

35
Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence

36

Compilers generate code to manage the runtime stack.
➡ Setup, before call to subroutine.
➡ Prologue, before subroutine body executes.
➡ Epilogue, after subroutine body completes (the return).
➡ Cleanup, right after subroutine call.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence Example

37

C program

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence Example

38

C program, x86-64 assembly

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence Example

39

C program, x86-64 assemblyCall of add() from main().

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence Example

40

C program, x86-64 assembly

Prologue
push stack & load arguments

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence Example

41

C program, x86-64 assembly

Prologue
push stack & load arguments

Epilogue
setup return value & restore stack

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence Example

42

C program, x86-64 assembly

Prologue
push stack & load arguments

Epilogue
setup return value & restore stack

Call Setup
prepare arguments

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Calling Sequence Example

43

C program, x86-64 assembly

Prologue
push stack & load arguments

Epilogue
setup return value & restore stack

Call Setup
prepare arguments

Cleanup
save return value

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Stack Trace

44

 Increasing Virtual Addresses

S
ho

w
.s

ho
w

N
FA

S
ho

w
.m

ai
n

N
FA

.<
in

it>

N
FA

.<
in

it>

Stack growth

bottomtop of stack

“Walking” the stack

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Advantages & Disadvantages

45

Advantages.
➡ Negligible (in most cases)

runtime overhead.
➡ Efficient use of space.
➡ Recursion possible.
➡ Offset of local variable

within frame usually
constant.

Limitations.
➡ Stack space is a limited

resource.
➡ Stack frame size fixed (in

many languages).
➡ Some offset computations

required at runtime.
➡ Object lifetime limited to

one subroutine invocation.

Advice: use stack allocation when possible.
(except for large buffers)

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

The Heap

Arbitrary object lifetimes.
➡Allocation and deallocation at any point in time.
➡Can persists after subroutine completion.
➡Very flexible; required for dynamic allocations.
➡Most expensive to manage.

46

(no relation to the data structure of the same name)

Code Static Runtime stack Heap

Simplified 32-bit Memory Model

0x0 Increasing Virtual Addresses 0xffffffff

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Memory Management
Allocation.
➡Often explicit.
‣C++: new

➡Compiler can generate
implicit calls to allocator.
‣E.g., Prolog.

47

Increasing Virtual Addresses

Deallocation.
➡Often explicit.
‣C++: delete
➡Sometimes done

automatically.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Memory Management
Allocation.
➡Often explicit.
‣C++: new

➡Compiler can generate
implicit calls to allocator.
‣E.g., Prolog.

48

Increasing Virtual Addresses

Deallocation.
➡Often explicit.
‣C++: delete
➡Sometimes done

automatically.

Allocated Free

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Memory Management
Allocation.
➡Often explicit.
‣C++: new

➡Compiler can generate
implicit calls to allocator.
‣E.g., Prolog.

49

Increasing Virtual Addresses

Deallocation.
➡Often explicit.
‣C++: delete
➡Sometimes done

automatically.

Allocated Free

Allocation Problem:
Given a size S, find a contiguous region of

unallocated memory of length at least S.

(and be very, very quick about it)

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Common Techniques
Allocator implementation.
➡Variable size.
‣Heuristics: First-fit, best-fit, last-fit, worst-fit.
‣List traversals, slow coalescing when deallocated.

➡Fixed-size blocks.
‣2n or Fibonacci sequence.
‣ “Buddy allocator,” “slab allocator”
‣Memory blocks are split until desired block size is reached.
‣Quick coalescing: on free block is merged with its “buddy.”

In practice.
➡Most modern OSs use fixed-size blocks.
➡Allocator performance crucial to many workloads.
➡Allocators for multicore systems are still being researched.

50
Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Internal Fragmentation
Negative impact of fixed-size blocks.
➡Block-size usually too large.
➡Some memory is wasted.

51

new

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Internal Fragmentation
Negative impact of fixed-size blocks.
➡Block-size usually too large.
➡Some memory is wasted.

52

Allocated…

…but partially unused.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

External Fragmentation
Non-contiguous free memory.
➡In total, there is sufficient available space…
➡…but there is none of the free blocks is large

enough by itself.

53

new

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

External Fragmentation
Non-contiguous free memory.
➡In total, there is sufficient available space…
➡…but there is none of the free blocks is large

enough by itself.

54

new

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

External Fragmentation
Non-contiguous free memory.
➡In total, there is sufficient available space…
➡…but there is none of the free blocks is large

enough by itself.

55

new

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

External Fragmentation
Non-contiguous free memory.
➡In total, there is sufficient available space…
➡…but there is none of the free blocks is large

enough by itself.

56

new

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Compacting the Heap

Merge free space.
➡Copy existing allocations & update all references.
➡Very difficult to implement…

57

new

new

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

“Dangling” References
Binding / object lifetime mismatch.
➡Binding exists longer than object.
➡Object de-allocated too early; access now illegal.
➡“Use-after-free bug”

(free is the C deallocation routine)
➡“Dangling” pointer or reference.

58

Object

Name

time t1t0 t2 t3

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

“Dangling” References
Binding / object lifetime mismatch.
➡Binding exists longer than object.
➡Object de-allocated too early; access now illegal.
➡“Use-after-free bug”

(free is the C deallocation routine)
➡“Dangling” pointer or reference.

59

Object

Name

time t1t0 t2 t3

Name bound, but object no longer exists.
Reference is “stale” and “dangles.”

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Memory “Leaks”
Omitted deallocation.
➡Objects that “live forever.”
➡Even if no longer required.
‣Possibly no longer referenced.

➡Waste memory; can bring system down.
➡A problem in virtually every non-trivial project.

60

Object

Name

time t1t0 t2

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Memory “Leaks”
Omitted deallocation.
➡Objects that “live forever.”
➡Even if no longer required.
‣Possibly no longer referenced.

➡Waste memory; can bring system down.
➡A problem in virtually every non-trivial project.

61

Object

Name

time t1t0 t2

Objects “forgotten” about, but “stick around”
and waste space until program termination.

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Garbage Collection
Manual deallocation is error-prone.
➡“Dangling references.”
➡“Use after free.”
➡Possibly unnecessarily conservative.
➡“Memory leaks.”

Garbage collection.
➡Automatically deallocates objects when it is

safe to do so.
➡Automated heap management; programmer can

focus on solving real problem.
➡We will focus on garbage collection techniques

later in the semester.
62

Tuesday, February 23, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts07: Binding & Storage

Summary & Advise

63

Static Allocation

Not dynamically sizable; lifetime spans virtually
whole program execution; use only sparingly.

Stack Allocation

Lifetime restricted to subroutine invocation;
allocation and deallocation is cheap;

use whenever possible.

Heap Allocation

Arbitrary lifetimes;
use garbage collection whenever possible;

use for large buffers and long-living objects.

Tuesday, February 23, 2010

