Binding and Storage

=

g

COMP 524: Programming Language Concepts
Bjorn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Tuesday, February 23, 2010

07: Binding & Storage

T

¥ this to visualize arbitrary finite automata.
* /

public interface Automaton {
s

" Something that can be i1terated to visit all states.
=

public Iterable<State> getStates();

IET

* the start state (which must be, by definition, unique)
- 7

public State getStartState();

IEs

* Something that can be iterated to visit all final states.
S

public Iterable<State> getFinalStates();

ITT.
" Return the regular expression that i1s equivalent to this
" automaton.

* 7

public String getRegex();

Java Interface definition

* A simple interface to describe finite automata. {@link GraphvizFormatter}

uses

COMP 524: Programming Language Concepts

What's the most striking difference?

/UsSr/bin/java:

(__TEXT
000 1c/4
00001c/6
VORV1c/8
00001c/b
QOO 1c/e
00001ci1
000V 1c84
000Q1c87
00001c8b
0000 1c8e
0000191
00001c93
0O 1c9/7
00001c99
00001 c9cC
00 1c9%e
00 1cad
0000 1ca4
00001ca9
0V 1cac
00001cbl
00001ch?2
00001cbh3
Q0001cb5
00001cbb
Q0001cb/

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

y ——

text) section
pushl
mov L
andl
subl
mov L
mov L
leal
mov L
addl
shll
addl
mov L
mov L
addl
testl
jhe
mov L
calll
mov |
calll
hlt
pushl
mov L
pushl
pushl
pushl

$0X00

%esp,%ebp
$0X 10 ,%esp
$0x10,%esp
Ox04(%ebp) ,%ebx
%ebx, (%esp)
Ox08(%ebp) ,%ecx
%ecx,0x04(%esp)
$0x01,%ebx
$0x02 ,%ebx
%ecx,%ebx
%ebx,0x08(%esp)
(%ebx) ,%eax
$0x04 , %ebx
Beax,seax
OX00001c97
%ebx,0x0c(%esp)
Ox00001cb?2
seax, (kesp)
OX00002a42

%ebp
%esp,%ebp
dedl
%esl
%ebx

x86 Assembly

07: Binding & Storage

COMP 524: Programming Language Concepts

What's the most striking difference?

/UsSr/bin/java:

(__TEXT
Q0001c/4
QPOQ1c/6
QP0Q1c/8
Q0R01c/b
QO0Q1c/e
Q0001c81
Q000 1c84
Q0001 c87
Q0001c8b
QP01 c8e
QO001c91
Q0001c93
QOOQ1c9/
QO®1c99
QOOO1cI9cC
Q0001 c9e
Q000 1cad
Q000 1cad
QP001ca9
QP001ca

Q00Q 1

T
* A simple interface to describe finite automata. {@link GraphvizFormatter} uses
¥ this to visualize arbitrary finite automata.
* /
public interface Automaton {
/o
" Something that can be i1terated to visit all states.
* /
public Iterable<State> getStates();
/¥
" the start ¢ e (which must be, by definition, unique)
y
public State getStart® O;
S
* Something ti can be i1terated to visit all final states.
ny
public Iterable<Statex> FinalStates();
/S
* Return the r lar expression that i1s equivalent to this
» automaton.
y
public String getRegex(]
/

Names!

facilities for naming “things.”

UNC Chapel Hill

Tuesday, February 23, 2010

High-level languages have rich

11cbh?2
Lcbh3
Lcb5
lcbo6
Lcbhb?

Brandenburg — Spring 2010

y ——

text) section

pushl
movl
andl
subl
mov L
mov L
leal
mov L
addl
shll
addl
mov L
mov L
addl
testl
jhe
mo

mov |
calll
hlt
pushl
mov L
pushl
pushl
pushl

$0x00

%esp,%ebp
$0X 10 ,%esp
$0x10,%esp
Ox04(%ebp) ,%ebx
%ebx, (%esp)
Ox08(%ebp) ,%ecx
%ecx,0x04(%esp)
$0x01,%ebx
$0x02 ,%ebx
%ecx,%ebx
%ebx,0x08(%esp)
(%ebx) ,%eax
$0x04 , %ebx
Beax,seax
OX00001c97
%ebx,0x0c(%esp)
Ox00001cb?2
Beax, (besp)
OX00002a42

%ebp
%esp,%ebp
dedl
%esl
%ebx

x86 Assembly

07: Binding & Storage COMP 524: Programming Language Concepts

Names

Required for abstraction.
= Assembly only has values & addresses & registers.
» Machine dependence!

= Names enable abstraction.
»Can refer to something without knowing the details
(e.g., exact address, exact memory layout).
» et the compiler worry about the details.

=(Can refer to things that do not yet exist!
»E.g., during development, we can (and often do) write
code for (Java) interfaces that have not yet been
Implemented.

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Abstraction

Control Abstraction vs. Data Abstraction

S ¥x

* A simple interface to describe finite automata. {@link GraphvizFormatter} uses
* this to visualize arbitrary finite automata.

*/
public interface Automaton {
/**
¥ @return Something that can be i1terated to visit all states.
*/

public Iterable<State> getStates();

/**
¥ @return the start state (which must be, by definition, unique)
"y

public State getStartState();

/**
¥ @return Something that can be iterated to visit all final states.
*/

public lterable<State> getFinalStates();

/*t
¥ @return Return the regular expression that i1s equivalent to this
* automaton.
*/

public String getRegex();

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Abstraction

Control Abstraction

Can hide arbitrary complex code behind a simple name.
For example, addition can be simple (int) or “difficult” (vector).

S %

* @return Something that can be iterat %/
*/
public Iterable<State>(§etStates(){)

S

* eturn the start state (which qu=’
*/

public State getStartState() \)

, by defini} , unique)

/**

¥ @return Something that can be 1iterated sit all final states.

*/ T ——
public Iterable<State>(§etFinalStates();)

/**
% eturn Return the regular expression that is equivalent to this
- automaton.
*/

public String @etRegex();}

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Abstraction

Control Abstraction vs. Data Abstraction

JEL I

* A sumple interface to describe finite automata. {@link GraphvizFormatter} uses
/

¥ this to visualize arbitrary finite automata
*/
public interface Automaton {

/:* Something that can be iterated Data AbStraCtion

*/

publid¢ Iterable«<Statex getStat.es(); AbStl’aCt Data TypeS (ADTS)
/**
: ereturn the start . ST Reason about concepts

public State getStartState();

~r— instead of impl. details.

* Something that co ¢be - y
v m,/“' Programmer doesn’t know
public| Iterable<State> getFi States();

memory layout, address,

/!&!&
: e e e whether other interfaces are
*/

publicString getRegex(); Implemented, what invariants
need to be ensured, etc.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Binding

Associating a name with some entity.
(or “object,” but not the Java notion of an object)

Binding vs. Abstraction.
= |[ntroducing a name creates an abstraction.
= Binding a hame to an entity resolves an abstraction.

Binding time:
= \When Is a name resolved?

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

UNC Chapel Hill

Tuesday, February 23, 2010

07: Binding & Storage

Increasing Flexibility

COMP 524: Programming Language Concepts

Binding Time

Language Design Time l
Program Writing Time l
l Load Time l

Brandenburg — Spring 2010

Aoual101)}3 buisea.ou

COMP 524: Programming Language Concepts

07: Binding & Storage

Binding Time

.
: Language Design Time l
.
e Impl.Time
(
Program Writing Time
(i i o| io l
.
Link Time
(
: Load Time l
Name resolved based on input. [
E.g., plugins, interfaces.
e

Keywords, e.g. “if”

3
Tool vendor chooses predefined

symbols and std. library impl.

).
Programmer chooses nhames,

data structures, and algorithms.

/

Compiler determines exact
memory layout, code order, etc.

s

Resolve names in static library,
e.g., “printf’ in the C library.

.
OS loads dynamic libraries, e.g.,

Windows loads DLLs, Unix SOs.

Aoual101)}3 buisea.ou

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage

COMP 524: Programming Language Concepts

Keywords, e.g. “if’

3
Tool vendor chooses predefined

symbols and std. library impl.

).
Programmer chooses nhames,

data structures, and algorithms.

).
Compiler determines exact

memory layout, code order, etc.

).
Resolve names in static library,

e.g., “printf” in the C library.

.
OS loads dynamic libraries, e.g.,

Windows loads DLLs, Unix SOs.

Name resolved based on input.
E.g., plugins, interfaces.

S
UNC Chapel Hill

Tuesday, February 23, 2010

Blnd|ng Time Binding may change...

(Y . . .
. : . If language is revised,
« Language Design Time NI eg.Javalli12,.., 16
),
[- Impl. Ti \. If new tool version is released,
w e.g., GCL 2.95vs. GCC 4.0
).
(h

If source code is changed.

Program Writing Time

on every compile
(but hopefully doesn’t).

[!

‘ Link Time ; r—

(1 ! every time the app is launched.

Load Time (e.g., Windows compatibility mode, DLL
< 5 injection, debug libraries).
).
! i

Brandenburg — Spring 2010

every time the final program is
linked after a library update.

07: Binding & Storage

Called static or
early binding.

Increasing Flexibil

UNC Chapel Hill
Tuesday, February 23, 2010

COMP 524: Programming Language Concepts
° d ° °
Binding Time

Language Design Time l
l We Imﬁl.Time l
Program Writing Time l
| Link Time l

Load Time

OudI121})3 buisealou

f

Called dynamic or
late binding.

Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Object Litetime vs. Binding Lifetime

————F - - - -1

L iy
. Iy
_ Name |

Name

time Io l4 Io I3 [4 I5

Lifetime
= Entity: “alife” if memory is allocated (and initialized).
= Binding: “alife” if the name refers to some entity.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Object Litetime vs. Binding Lifetime

————F - - - -1

| Name '[>

time Io l4 Io I3 [4 I5

Lifetime
= Entity: “alife” if memory is allocated (and initialized).
= Binding: “alife” if the name refers to some entity.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Object Litetime vs. Binding Lifetime

————F - - - -1

L iy
E ey J ¢~ M S —
_ Name |

= Is allocated and boundto a1 ¢

Name

time Io l4 Io I3 [4 I5

Lifetime
= Entity: “alife” if memory is allocated (and initialized).
= Binding: “alife” if the name refers to some entity.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

-

A is allocated and bound to amic. k. . .
O B still exists! Ing Llfehme

-
e

‘ Name ')

time Io t Io I3 [4 I5

Lifetime
= Entity: “alife” if memory is allocated (and initialized).
= Binding: “alife” if the name refers to some entity.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Object Litetime vs. Binding Lifetime

i+ - = |

——iF--- - F H———

New binding: ' ~ic
refers to 3 again.

| Name '

time Io l4 Io I3 [4 I5

Lifetime
= Entity: “alife” if memory is allocated (and initialized).
= Binding: “alife” if the name refers to some entity.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Object Litetime vs. Binding Lifetime

——————j - - - -

7
e e
_ Name |

A continues to exist for
some time until it 1s
deallocated.

Name

time Io l4 Io I3 [4 I5

Lifetime
= Entity: “alife” if memory is allocated (and initialized).
= Binding: “alife” if the name refers to some entity.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Object Litetime vs. Binding Lifetime

The binding from Va7 to B is
shadowed by a new binding to A.

| Name '

time Io l4 Io I3 [4 I5

Lifetime
= Entity: “alife” if memory is allocated (and initialized).
= Binding: “alife” if the name refers to some entity.

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Obiject Lifetimes

Defined by three principal storage allocation mechanisms:

= Static objects, which have a fixed address and are not de-
allocated before program termination.

= Stack objects, which are allocated and deallocated in a
Last-In First-Out (LIFO) order.

= 2 objects, which are allocated and deallocated at
arbitrary times.

Simplified 32-bit Memory Model

Ox0 Increasing Virtual Addresses Oxfrtffftf

UNC Chapel Hill Brandenburg — Spring 2010 20

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation

Some memory is required throughout program execution.
= Multi-byte constants.
» Strings (“hello world”). g
» Lookup tables.

Caution: this is not the same as Java’'s static.

= (Global variables.
= The program code.

Must be allocated before program execution starts.

= Requirements specified in program file.

= Allocated by OS as part of program loading.

= The size of static allocation is constant between runs.

nitialized with
some value

INnitialized
me value

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation

Some memory is required throughout program execution.

- Mul:(,iﬂmma_mnslanjs
» St

Read-only data.
» Lo . .
Attempt to update illegal is not the same as Java’s static.
- (Tar']‘; in many operating systems.

Must be allocated bdifore program execution starts.

= Requirements spec fied in program file.

= Allocated by OS a<\part of program loading.

= The size of static a I)cation iIs constant between runs.

Initialized with lalized with
some value me value

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation

Some memory is required throughout program execution.
= Multi-byte constants.

» Strings (“hello world”). g

» Lookup tables.

Glob Ip iabl Cauti ©
= Global variables. e ne :
= The program code. \— (élgbail;:It;:ehzsgn\gan—abéllgs:.

Must be allocated before program ex

= Requirements specified in program file.

= Allocated by OS as part of program loading.
= The size of static allocation is constant betv’2en runs

don runs
Code | Constants

rated

alized with
me value

Initialized with
some value

piler

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation

Some memory is required throughout program execution.
= Multi-byte constants.
» Strings (“hello wor
» Lookup tables.

Global Uninitialized Variables. \tic.
E.g.,, int last error;

(For historic reasons called the .bss segment.)

= (Global variables.
= The program code

Must be allocated b«
= Requirements specmeaTTprogre .

= Allocated by OS as part of program Ioadmg

= The size of static allocation Is constant between runs.

lalized with
me value

Initialized with
some value

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation

Some memory is required throughout program execution.

= Multi-hvte canstants
Compile-time constants.
Value must be known at compile timg.

IS IS Not the same as Java’'s static.

Elaboration-time constants.

Must be allocated before pi'ogram exect Value computed at runtime; compiler
= Requirements specified in pfogram file. disallows subsequent updates.
= Allocated by OS as part of ptogram lo
= The size of static allocation s constant between runs.

Initialized with
some value

lalized with

Ot Initialized
ome value

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Advantages & Disadvantages

Advantages. Limitations.
= No allocation/deallocation = Allocation size fixed;
runtime overhead. cannot depend on input.
= Static addresses. = Wasteful; memory is
= Compiler can optimize always allocated.
acCcesses. = (Global variables are
error-prone.

Advice: avoid global variables.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Runtime Stack

Hardware-supported allocation area.

= Essential for subprogram calls.

= Grows top-down in many architectures.

= Size limit: stack overflow if available space is exhausted.
= Max. size of stack can be adjusted at runtime.

= OS is often involved in stack management.

Simplified 32-bit Memory Model

Ox0 Increasing Virtual Addresses Ox et

UNC Chapel Hill Brandenburg — Spring 2010 27

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Subroutines & Static Allocation

Calling a function/method/subroutine requires memory.
= Arguments.
= Local variables.
= Return address

(Where to continue execution after subroutine completes).
= Some bookkeeping information.

» E.g., to support exceptions and call stack traces.

Where should this memory be allocated?

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation of Subroutine Memory

Subroutine 1 Subroutine X

(S)anpen uiniey
0 SJUBWINDIY
(S)anjen uJiniey
0 SJUBWINDIY

Increasing Virtual Addresses

One approach: statically allocate memory for each subroutine.
(e.g. early versions of Fortran)

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation of Subroutine Memory

> D >
— = S
c Q@ — ©
S S S 3
< 3 < 3
9_33 Q_Dg
5 @ 5 ¢
@ = @ =

Subroutine 1 Subroutine X

Problem: Waste

Most of the allocations will be
unused most of the time.

One approach: statically allocate memory for each subroutine.
(e.g. early versions of Fortran)

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation of Subroutine Memory

2 1

= =
c Q@ — ©
B o=
- 3 - 3
5 3 5 3
% ;o
w ¥ w X

Subroutine 1 Subroutine X

Problem: No Recursion

Subroutines may not be called while
their memory is already in use.

Problem: Waste

Most of the allocations will be
unused most of the time.

One approach: statically allocate memory for each subroutine.
(e.g. early versions of Fortran)

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Static Allocation of Subroutine Memory

2 1

= =
c Q@ — ©
B o=
- 3 - 3
5 3 5 3
% ;o
w ¥ w X

Subroutine 1 Subroutine X

Problem: No Recursion

Subroutines may not be called while
their memory is already in use.

F [] X L | N | | N | X r [] |

Limited recursion depth can be allowed by allocating memory for
multiple subroutine instances. But this increases waste...

Problem: Waste

Most of the allocations will be
unused most of the time.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Runtime Stack

Idea: allocate memory for subroutines on demand.

= Reserve (large) area for subroutine calls. Allocate new frame for
each call. Deallocate on return.

= Subroutine calls must be fast: need efficient memory management.

Observation: last-in first-out allocation pattern.
= A routine returns only after all called subroutines have returned.
= Thus, allocations can be “piled” on top of each other.

Subroutine memory is allocated
on-demand from the runtime stack.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Stack Frames

On a subroutine call: j

= New stack frame pushed onto stack. o3 =

- Stack frames differ in size | =8
(depending on local variables). ks GEJ i

= Recursion only limited by total size of stack. = = -

- Reduced waste: unused subroutines only <o
consume memory for code, not variables.

=~ Stack frame popped from stack on return. ", o

4

*

L 4

top of stack bottom

Stack growth

Subroutine A

Increasing Virtual Addresses

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Calling Sequence

Compilers generate code to manage the runtime stack.
= Setup, before call to subroutine.

= Prologue, before subroutine body executes.

= Epilogue, after subroutine body completes (the return).
= Cleanup, right after subroutine call.

private void checkForKleeneClosure(NFA fa) throws IOException {
1f (readNextChar() == "*') {
// 1ndeed, 1t's a closure.
fa.createKleeneClosure();
} else
unreadLastChar();

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Calling Sequence

Compilers generate code to manage the runtime stack.
= Setup, before call to subroutine.

Prologue, before subroutine body executes.

= Epilogue, after subroutine body completes (the return).
= Cleanup, right after subroutine call.

private void checkForKleeneClosure(NFA fa) throws IOException {
1f (readNextChar() == "*') {

// 1ndeed, 1t's a closure.

fa.createKleeneClosure();
} else

unreadLastChar();

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage

Calling Sequence Example

int add(int a, 1nt b)

LAC
C =4a + b;
return c,;

int main(int argc, char** argv)

{

int sum = add(10, 20);
printf("sum = %d\n", sum);
return 0;

C program

COMP 524: Programming Language Concepts

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage

UNC Chapel Hill

Tuesday, February 23, 2010

COMP 524: Programming Language Concepts

Brandenburg — Spring 2010

4 9000000100000 3 ret

. _add:
Callmg Sequence Excu‘np‘ .I.e---‘*beoeeoo100®oeeae pushq %rbp
JPPTL L 0000000100000eal movq %rsp,%rbp
int add(int_gneeint*b) 0000000100000ea4 movl %edi,@xec(%rbp)
F “‘--““ 0000000100000ea? mov1l %esi,0xe8(%rbp)
oo 0000000100000eaa movl @xe8(%rbp),%eax
1nt C; 0000000100000ead addl @xec(%rbp),%eax
C =4a + b; 0000000100000eb? movl %eax,dxftc(k%rbp)
return c: 0000000100000eb3 movl Oxfc(%rbp),%eax
SOO0OEaa) 0000000100000ebb leave
} "l-llllll-lllullllnllllu;..'.." 0000000100000eb7 ret
_main:
L eanen®"""[0000000100000eb8 pushq S%rbp
: : : W 0000000100000eb9 movq %rsp,%rbp
int main(1 nt arg Cons€tTAP** argv) | | gooo000100000cbc subq $0x20,%rsp
{ JEPPTTLL aunt 0000000100000ec® movl %edi,@xec(%rbp)
L _ 0000000100000ec3 movq %rsi,@xed(%rbp)
int sum = add(10, 20); 0000000100000ec? movl $0x00000014 ,%esi
printf("sum = %d\n", sum); 0000000100000ecc movl $0x0000000a,%edi
_ 0000000100000edl callg ©x00000ead
A return 0; 0000000100000ed6 movl %eax,@xfc(%rbp)
} Yea, - 0000000100000ed9 movl Oxfc(%rbp),%esi
“taa,, 0000000100000ee3 movl $0x00000000 ,%eax
Yoay, .. 0000000100000eed callg ©0x00000efa
_ 59 0000000100000ced movl $0Ox00000000 , %eax
C program, x86-64 assemp l-‘./ .. |0000000100000ef2 leave
...

38

07: Binding & Storage

Calling Sequence Example

[int add(int a, int b)J

K

{

LAt
C =4a + b;
return cC;

int main(int aric, char** argv)

/

int sum =(add(10, 20){)
printf("sum = %a\n, sum);
return 0;

Call of add () from main ().

COMP 524: Programming Language Concepts

_add:
l@@@@@@@l@@@@@ea@

pushg %rbp

eda movq %rsp,%rbp
0000000100000ead’ movl %edi ,0xec(%rbp)
0000000100000ea’ movl %esi,0xe8(%rbp)
0000000100000eaa mov L Oxe8(%rbp) ,%eax
0000000100000ead addl Oxec(%rbp) ,%eax
0000000100000eb0 mov L %eax ,0xfc(%rbp)
0000000100000eb3 mov L Oxfc(%rbp),%eax
0000000100000ebb
0000000100000eb?
_main:
0000000 100000eb8 pushg %rbp
0000000100000eb9 movq %rsp,%rbp
0000000100000ebc subg $0x20,%rsp
0000000100000ecd mov L %ed1 ,0xec(%rbp)
0000000100000ec3 movq %rsi,0xed(%rbp)
0000000100000ec? l:ovl $0x00000014 , %es1i
0000000100000ecc ovl SAxANNANAAa , %edi
0000000100000ed1 l callg g:gggggiggz)
0000000100000ed6 —movr . bp)
0000000100000ed9 movl Oxfc(%rbp),%es1
00000V 10000Vedc leag 0x00000041(%rip) ,%rdi
0000000100000ee3 movl $0x00000000 , %eax
0000000100000ee8 callg 0Ox00000efa
00000V 100000eed mov L $0x00000000 , %eax
00000V 100000ef?2 leave
00000V 100000ef3 ret

UNC Chapel Hill

Tuesday, February 23, 2010

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

Prologue
push stack & load arguments

o@@@@@@l@@@@@ea@ %rbp
0000000100000eal movq %rsp,%rbp

1t add('i_nt a, 1Nt b) 0000000100000eca4 movl %ed1l ,0xec(%rbp)
{ P000000100000ea’ %es1,0xe8(%rbp)
_ 1000000 10000YYeaa mov axed(rop),neax
1nt C; 0000000100000ead addl @xec(%rbp),%eax
C =Qa + b; 0000000100000ebd mov 1 %eax ,0xfc(%rbp)
. V000000 100000eb3 movl Oxfc(%rbp),%eax
return c; 0000000100000eb6 leave
¥ 0000000100000eb? ret
_main:
2000000100000eb8 %rbp
. . : 0000000100000eb9 %rsp,%rbp
XK XK
int main(int argc, char argv) 2000000100000ebc $0x20, %rsp
{ 2000000100000 O %edi ,0xec(%rbp)
. 2000000100000ec3 %rsi,0xe0 % b
int sum = add(10, 20);: DT el lbed
printf("sum = %d\n", sum); 0000000100000ecc movl $0x0®0@0@0a %ed1
_ 0000000100000edl callq 0x00000ead
return 0; 0000000100000ed6 movl %eax,@xfc(%rbp)
1 0000000100000ed9 movl Oxfc(%rbp),%esi
0000000100000edc leag 0x00000041(%rip) ,%rdi

0000000100000ee3 movl $0x00000000 , %eax

0000000100000eel8 callg 0Ox00000efa
roaram. x86-64 mpb/ 0000000100000eed movl $0x00000000 , %eax

C program, 86-64 assemb y 0000000100000ef2 leave

0000000100000ef3 ret

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

Prologue
push stack & load arguments

int add(int a, int b)
{

LRAE €

€ = @+ ib;

return c,;
¥

1nt main(int argc, char** argv)

{
1nt sum = add(l@ 20);
printf("sum = %d\n", sum);
return 0,

¥

C proaram. x86-64 assemblyv

COMP 524: Programming Language Concepts

oOO@@@@lOO@@@eaO
0000000100000eal movg
0000000100000ea4 movl
0000000100000ea’ mov L
JVVIVYY100Yvveaa mov)X e
0000000100000ead addl
000000@1@0000eb0 mov L

%rbp
%rsp,%rbp

%edi ,0xec(%rbp)
%es1,0xe8(%rbp)

orop) , neax
Oxec(%rbp) ,%eax
%eax 0xfc(%rbp)

0000000100000ebb6
0000000100000eb7

Epilogue

Tuesday, February 23, 2010

setup return value & restore stack

_main:

)000000100000eb8 pushg
)000000100000eb9 movq
1000000100000ebc subg

%rsp,%rbp
$0x20,%rsp

%edl ,0xec(%rbp)
%r51 Oxe0(%rbp)

0000000100000ecd movl
0000000100000ec3 movq

0000000100000ecc mov L
0000000100000ed1 callg
0000000100000edob mov L
0000000100000ed9 movl
00000010000 0VedcC leag
0000000100000ee3 mov L

$0x0000®000 %ed1
0x00000ea?

%eax ,0xfc(%rbp)
Oxfc(%rbp),%es1
0x00000041(%rip) ,%rdi
$0x00000000 , %eax

0000000100000ee8 callg ©@x00000efa
0000000100000eed mov 1 $0x00000000 , %eax
0000000100000ef 2 leave

0000000100000ef 3 ret

Spring 2010

Prologue
push stack & load arguments

int add(int a, int b)
{
LRAE €
€ = a4
return c,
Call Setup

prepare arguments

1nt main(int argc, char** argv)

{
int sum = add(10, 20);
printf("sum = %d\n", sum);
return 0;

Iy

C proaram. x86-64 assemblyv

oOO@@@Ol@OO@@eaO %rbp
0000000100000eal movq %rsp,%rbp
0000000100000ea4 mov L %ed1l ,0xec(%rbp)
0000000100000ea’ movl %es1,0xe8(%rbp)
1000001000V Yeaa mov Ixed8(brop) ,neax
0000000100000ead addl Oxec(%rbp) ,%eax
0000000100000ebd mov L %eax Qxfc(%rbp)

COMP 524: Programming Language Concepts

0000000100000ebb6

0000000100000eb7

NVVVVYY

2000000

Epilogue
setup return value & restore stack

Tuesday, February 23, 2010

Spring 2010

0000000100000eb8
0000000100000eb9
0000000100000ebc
0000000100000ecd
20000¢

0000000100000ec’
000000010000 ecC

0000000100000ed1
000000010@000ed6

0000000100000edc
0000000100000ee3
Jvees
0000000100000eed
0000000100000ef 2
0000000100000ef 3

%rbp
%rsp,%rbp

subg $0x20,%rsp

mov L %ed1 ,Oxec(%rbp)

MOVC Ixe D (hroo

mov L Ox®000®®14 %es1i

pushg
movq

mov L $0x0000000a , %edi
callg ©0x00000ead
mov L %eax Oxfc(%rbp)

0x@0000®41(%r1p) %rdi
$0x00000000 , %eax
Ix00000efa

$0x00000000 , %eax

leag
mov L
ca
mov L
leave
ret

Prologue
push stack & load arguments

int add(int a, 1nt b)
{
LRAE €
€ = @+ 0
return c,
Call Setup

prepare arguments

1nt main(int argc, char** argv)
{
int sum = add(10, 20);
printf("sum = %d\n", sum);
return 0;
13
Cleanup

save return value

Epilogue
setup return value & restore stack

Tuesday, February 23, 2010

COMP 524: Programming Language Concepts

60000@01@0®0®ea® %rbp

0000000100000eal movq %rsp,%rbp
0000000100000ea4 mov L %edi ,0xec(%rbp)
0000000100000ea’ movl %es1,0xe8(%rbp)

)00VYVYV10V0vvYYeaa mov axed(rop),neax
0000000100000ead addl Oxec(Prbp),%eax
0000000100000eb? mov 1 %eax 0xfc(%rbp)

0000000100000ebb6

0000000100000eb7

_main:

)000000100000ebd pushg %rbp
000000100000eb9 movqg %rsp,%rbp
2000000100000ebc subg $0x20,%rsp

mov L %ed1 ,Oxec(%rbp)
MOoVv(Q Ixel(Hhrop
mov L Ox00000014 %es1i
mov L $0x®0®00®00 %edi

0000000100000ecd

NVVVVYY

20000¢
2000000 100000ec’
o@@@@@@l@@@@@ecc

mov |

0x®0000®41(%r1p) %rdi
$0x00000000 , %eax
Ix00000efa

$0x00000000 , %eax

0000000100000edc
0000000100000ee3
JVVYYVVY100YYYYeel
0000000100000eed
0000000100000ef 2
0000000100000ef 3

leag
mov L
ca
mov L
leave
ret

Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Stack Trace

Exception 1n thread "main" NotYetImplementedException:
at NFA.<ini1t>(NFA. java:?25)

at NFA.<ini1t>(NFA. java:16)

at Show.showNFA(Show. java:68)

at Show.main(Show. java:?23)

“Walking” the stack

top of stack bottom

Stack growth

Increasing Virtual Addresses

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Advantages & Disadvantages

Advantages. Limitations.

= Negligible (in most cases) = Stack space is a limited
runtime overhead. resource.

= Efficient use of space. = Stack frame size fixed (in

= Recursion possible. many languages).

= Offset of local variable = Some offset computations
within frame usually required at runtime.
constant. = Object lifetime limited to

one subroutine invocation.

Aadvice: use stack allocation when possible.
(except for large buffers)

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

The Heap

(no relation to the data structure of the same name)

Arbitrary object lifetimes.

= Allocation and deallocation at any point in time.
= (Can persists after subroutine completion.

= \ery flexible; required for dynamic allocations.
= Most expensive to manage.

Simplified 32-bit Memory Model

Ox0 Increasing Virtual Addresses Ox et

UNC Chapel Hill Brandenburg — Spring 2010 46

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Memory Management

Allocation. Deallocation.

= Often explicit. = Often explicit.
» C++: new »C++: delete

= Compiler can generate = Sometimes done
implicit calls to allocator. automatically.
»E.qg., Prolog.

Increasing Virtual Addresses

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Memory Management

Allocation. Deallocation.

= Often explicit. = Often explicit.
» C++: new »C++: delete

= Compiler can generate = Sometimes done
implicit calls to allocator. automatically.
»E.qg., Prolog.

IR T I P N
Increa' J ‘ irtual A,dses l N k

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Memory Management

Allocation. Deallocation.

= Often explicit. = Often explicit.
» C++: new »C++: delete

= Compiler can generate = Sometimes done
implicit calls to allocator. automatically.
»E.qg., Prolog

Allocation Problem:
Given a size S, find a contiguous region of
unallocated memory of length at least S.

(and be very, very quick about it)

I T A N
Increa' f ‘ irtual A,dses l N k

Brandenburg — Spring 2010

UNC Chapel Hill

Tuesday, February 23, 2

07: Binding & Storage COMP 524: Programming Language Concepts

Common Techniques

Allocator implementation.
= Variable size.
» Heuristics: First-fit, best-fit, last-fit, worst-fit.
» List traversals, slow coalescing when deallocated.
= Fixed-size blocks.
» 2" or Fibonacci sequence.
»“Buddy allocator,” “slab allocator”
» Memory blocks are split until desired block size is reached.
» Quick coalescing: on free block is merged with its “buddy.”

In practice.

= Most modern OSs use fixed-size blocks.

= Allocator performance crucial to many workloads.

= Allocators for multicore systems are still being researched.

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Internal Fragmentation

Negative impact of fixed-size blocks.
= Block-size usually too large.
=Some memory is wasted. new

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Internal Fragmentation

Negative impact of fixed-size blocks.
= Block-size usually too large.
= Some memory is wasted.

Allocated...

[[]
O\

...but partially unused. l

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

07: Binding & Storage COMP 524: Programming Language Concepts

External Fragmentation

Non-contiguous free memory.

=|n total, there is sufficient available space...

= _..but there is none of the free blocks is large
enough by itself.

NEW

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23 , 201

07: Binding & Storage COMP 524: Programming Language Concepts

External Fragmentation

Non-contiguous free memory.

=|n total, there is sufficient available space...

= _..but there is none of the free blocks is large
enough by itself.

NEW

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23 , 201

07: Binding & Storage COMP 524: Programming Language Concepts

External Fragmentation

Non-contiguous free memory.

=|n total, there is sufficient available space...

= _..but there is none of the free blocks is large
enough by itself.

NEW

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23 , 201

07: Binding & Storage COMP 524: Programming Language Concepts

External Fragmentation

Non-contiguous free memory.

=|n total, there is sufficient available space...

= _..but there is none of the free blocks is large
enough by itself.

NEw

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23 , 201

07: Binding & Storage COMP 524: Programming Language Concepts

Compacting the Heap

Merge free space.
=Copy existing allocations & update all references.
=\ery difficult to implement...

NeEw

—

Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

“Dangling” References

Binding / object lifetime mismatch.
=Binding exists longer than object.
=(Qbject de-allocated too early; access now illegal.
=“Use-after-free bug”
(free Is the C deallocation routine)
=“Dangling” pointer or reference.

‘ Obl'ect ' P
‘ Name '

time fo t41 [o I3

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

“Dangling” References

Binding / object lifetime mismatch.

S RinA: :
-Blndlng exists Ion{ ~ame bound, but object no longer exists.
Object de-allocatea Reference is “stale” and “dangles.”

=“Use-after-free bug”
(free Is the C deallocation routine)
=“Dangling” pointer or reference.

‘ Obiect ' — [B
‘ Name ' (- -

time fo t41 [o I3

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Memory “Leaks”

Omitted deallocation.

=(bjects that “live forever.”

=Even if no longer required.
»Possibly no longer referenced.

=\WVaste memory; can bring system down.
=A problem In virtually every non-trivial project.

o F_—_
M ———
——

‘ Name '

time fo t1 [o

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Memory “Leaks”

Omitted deal’
-Objects that Objects “forgotten” about, but “stick around”

i and waste space until program termination.
=Even if no | P Prog

»Possibly no longer reterencer

=\Vaste memory; can bring sgstem down.
=A problem In virtually ever/non-trivial project.

—
S |
I |
S —
| e
‘ Name ' RERE |
: — >
time to 1 [o

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Garbage Collection

Manual deallocation is error-prone.
=“Dangling references.”

=“Use after free.”

=Possibly unnecessarily conservative.
=*Memory leaks.”

Garbage collection.

= Automatically deallocates objects when it is
safe to do so.

=Automated heap management; programmer can
focus on solving real problem.

=\We will focus on garbage collection techniques
later In the semester.

UNC Chapel Hill Brandenburg — Spring 2010

07: Binding & Storage COMP 524: Programming Language Concepts

Summary & Advise

Static Allocation

Not dynamically sizable; lifetime spans virtually
whole program execution; use only sparingly.

Stack Allocation

ifetime restricted to subroutine invocation:;
allocation and deallocation is cheap;
use whenever possible.

Heap Allocation

Arbitrary lifetimes;
use garbage collection whenever possible;
use for large buffers and long-living objects.

UNC Chapel Hill Brandenburg — Spring 2010

Tuesday, February 23, 2010

