
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Control Flow

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

2

Sequential Control Flow

Determines what is computed, and in which order.

Imperative PL: order mostly explicit.
Declarative PL: order mostly implicit

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

The Basis: Conditional Branching
Virtually all instructions sets support:
➡Unconditional branching to a fixed address.
‣e.g., jmp 0x123: “jump to address 0x123”

➡Unconditional branching to an address in a register, i.e,
to an address determined at runtime.
‣e.g, jmp (%eax): “jump to the address in the
accumulator register.”

➡Conditional branching to a fixed address.
‣e.g., jne 0x123: “jump to address 0x123 if last two
values that were compared were not equal”

3

This is sufficient to implement a
universal programming language!

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

The Basis: Conditional Branching
Virtually all instructions sets support:
➡Unconditional branching to a fixed address.
‣e.g., jmp 0x123: “jump to address 0x123”

➡Unconditional branching to an address in a register, i.e,
to an address determined at runtime.
‣e.g, jmp (%eax): “jump to the address in the
accumulator register.”

➡Conditional branching to a fixed address.
‣e.g., jne 0x123: “jump to address 0x123 if last two
values that were compared were not equal”

4

This is sufficient to implement a
universal programming language!

Any higher-level control flow
abstraction can be realized in

terms of these jumps.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Sequencing
Sequencing: explicit control flow.
➡ Abstractions that control the order of

execution.
➡ Crucial to imperative programming.

Levels of abstraction.
➡ Unstructured control flow
‣hardly any abstraction over jumps
‣hard to reason about

➡ Structured control flow
‣amendable to formal proofs
‣easier to understand
‣ jumps are implicit

5

unstructured:
e.g., goto, break, redo,

last, continue, continue,
and return if used to “skip”

over rest of subroutine

structured:
e.g. for, while, and if

sequential composition:
do this first ; then this

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Source: xkcd.com (go check it out!)

Goto Considered Harmful

6

Title of a famous critique of unstructured control flow by Dijkstra, 1968.

Thursday, April 15, 2010

http://xkcd.com
http://xkcd.com

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Goto Considered Harmful

7

Source: xkcd.com (go check it out!)

Title of a famous critique of unstructured control flow by Dijkstra, 1968.

Bohm & Jacopini, 1964
every use of goto can be

equivalently expressed with
structured control flow constructs

Thursday, April 15, 2010

http://xkcd.com
http://xkcd.com

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Source: xkcd.com (go check it out!)

Goto Considered Harmful

8

Title of a famous critique of unstructured control flow by Dijkstra, 1968.

 Bottom line: Donʼt ever use goto. Try hard to avoid
all other unstructured control flow constructs, too.

(Footnote: some very special settings can benefit from a goto,
e.g., some kernel routines. However, this does not apply to 99%

of all software, in particular business & web software.)

Bohm & Jacopini, 1964
every use of goto can be

equivalently expressed with
structured control flow constructs

Thursday, April 15, 2010

http://xkcd.com
http://xkcd.com

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Loops and Conditionals
Selection: execute one choice, but not the other(s).
➡ if-then-else
➡ if-then(-elsif)*-else
➡ switch, case statements
‣ Implementation driven: exists to facilitate generation of efficient
machine code.
‣ This reason is somewhat obsolete with improved compilers.

Iteration: do something a pre-determined number of times.
➡ for (enumeration controlled)
‣ from x to y; sometimes also from y downto x.

➡ for each (iterator)
‣ executing a loop body for each element of a “collection.”
‣ can be emulated with iterator pattern if not supported by language
‣ hasNext() and next()

Logically-controlled loops…

9
Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Logically-controlled Loops

10

do
{
...
}
while i==true;

for(;;){
...
if i==true break;
...
}

while (i==false)
{
...
}

MidtestPost-test Pre-test

repeat something while a condition is satisfied

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Subroutines

Control Flow Abstraction.
➡Separate “what it does” from “how itʼs done.”
‣API: subroutine as a service provider.

➡Reuse high-level code.
‣DRY: write it only once.
‣Maintenance: fix bugs only once.

➡Reuse machine code.
‣Usually, only one copy of a subroutine is
included in final program.

11

subprograms, functions, procedures, methods,…

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Subroutines

Control Flow Abstraction.
➡Separate “what it does” from “how itʼs done.”
‣API: subroutine as a service provider.

➡Reuse high-level code.
‣DRY: write it only once.
‣Maintenance: fix bugs only once.

➡Reuse machine code.
‣Usually, only one copy of a subroutine is
included in final program.

12

subprograms, functions, procedures, methods,…

Instead of writing a concrete
sequence of instructions, a
subroutine is parametrized
sequence of instructions.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

13

Execution Context
A subroutine is executed in the context of the

(virtual) machine state (global variables, device state, …).
A subroutine’s result may differ between calls with the same

arguments if the global context changed.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

14

Side Effect
A program fragment that alters the global context and thus

indirectly affects the outcome of otherwise unrelated
computations is said to have a side effect.

Execution Context
A subroutine is executed in the context of the

(virtual) machine state (global variables, device state, …).
A subroutine’s result may differ between calls with the same

arguments if the global context changed.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

15

Side Effect
A program fragment that alters the global context and thus

indirectly affects the outcome of otherwise unrelated
computations is said to have a side effect.

Execution Context
A subroutine is executed in the context of the

(virtual) machine state (global variables, device state, …).
A subroutine’s result may differ between calls with the same

arguments if the global context changed.
The “main effect” is the value that is

computed (i.e., the return value).

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Function vs. Procedure

Pure Function.
➡ A pure function has no side effects.
➡ A pure functionʼs result only depends on its arguments,

and not on any global state; not affected by side effects.
➡ “Always the same” and “leaves no trace.”

16

Pure Procedure.
➡ A pure procedure returns no value, and is only executed

for its side effects.
➡ Java: any method with return type void.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Subroutine Parameters

17

define my_subroutine(X, Y, Z) {
! …
! print X;
! …
}

define getval() {
! return 42;
}

…
my_var = 4;
my_subroutine(my_var, 3 + 4, getval());
…

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Subroutine Parameters

18

define my_subroutine(X, Y, Z) {
! …
! print X;
! …
}

define getval() {
! return 42;
}

…
my_var = 4;
my_subroutine(my_var, 3 + 4, getval());
…

4 7 42

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

4 7 42

Subroutine Parameters

19

define my_subroutine(X, Y, Z) {
! …
! print X;
! …
}

define getval() {
! return 42;
}

…
my_var = 4;
my_subroutine(my_var, 3 + 4, getval());
…

The names used in the
subroutine definition

are called the
formal parameters.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

define my_subroutine(X, Y, Z) {
! …
! print X;
! …
}

define getval() {
! return 42;
}

4 7 42

Subroutine Parameters

20

…
my_var = 4;
my_subroutine(my_var, 3 + 4, getval());
…

The program fragments used in the
subroutine call
are called the

actual parameters.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Subroutine Parameters

21

define my_subroutine(X, Y, Z) {
! …
! print X;
! …
}

define getval() {
! return 42;
}

…
my_var = 4;
my_subroutine(my_var, 3 + 4, getval());
…

4 7 42

The values resulting from the evaluation of the
actual parameters are called the arguments.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing

22

Actual Parameter Evaluation.
➡When? As soon as possible?
‣Evaluate actual parameters before call?
‣What if argument is not needed? On demand?

➡In what order?
‣Left to right?
‣Any order?
‣Does it matter?

➡Are updates by the callee to the formal
parameters “visible” to the caller?

The formal parameters have to be bound to the
arguments at some point during the subroutine call.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Information Flow

23

In Parameters
Information/data provided by the caller;

(possibly) consumed by the callee.
Actual parameter remains unchanged.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Information Flow

24

In Parameters
Information/data provided by the caller;

(possibly) consumed by the callee.
Actual parameter remains unchanged.

Out Parameters
Receiving variable provided by caller;

information stored by callee.
Callee does not use prior value

(if any) of receiving variable.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Information Flow

25

In Parameters
Information/data provided by the caller;

(possibly) consumed by the callee.
Actual parameter remains unchanged.

Out Parameters
Receiving variable provided by caller;

information stored by callee.
Callee does not use prior value

(if any) of receiving variable.

In-Out Parameters
Information/data provided by the caller;

(possibly) updated by the callee.
Any change by callee visible to caller.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Semantics

26

Pass-By-Value
Behaves as if arguments are copied

from the caller to the callee prior to the call.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Semantics

27

Pass-By-Value
Behaves as if arguments are copied

from the caller to the callee prior to the call.

Pass-By-Reference
Behaves as if formal parameter is bound to the argument.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Semantics

28

Pass-By-Value
Behaves as if arguments are copied

from the caller to the callee prior to the call.

Pass-By-Reference
Behaves as if formal parameter is bound to the argument.

Pass-By-Name
Behaves as if formal parameter is replaced by actual

parameter in subroutine body; evaluated whenever needed.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Semantics

29

Pass-By-Value
Behaves as if arguments are copied

from the caller to the callee prior to the call.

Pass-By-Reference
Behaves as if formal parameter is bound to the argument.

Pass-By-Name
Behaves as if formal parameter is replaced by actual

parameter in subroutine body; evaluated whenever needed.

Example: Java
Scalar types (int, double, etc.) are in
parameters and passed-by-value,

whereas objects are passed-by-reference.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Semantics

30

Pass-By-Value
Behaves as if arguments are copied

from the caller to the callee prior to the call.

Pass-By-Reference
Behaves as if formal parameter is bound to the argument.

Pass-By-Name
Behaves as if formal parameter is replaced by actual

parameter in subroutine body; evaluated whenever needed.

Example: C Preprocessor
Macro parameters are passed-by-name.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Semantics

31

Pass-By-Value
Behaves as if arguments are copied

from the caller to the callee prior to the call.

Pass-By-Reference
Behaves as if formal parameter is bound to the argument.

Pass-By-Name
Behaves as if formal parameter is replaced by actual

parameter in subroutine body; evaluated whenever needed.

Usually implemented with actual
copying, but details vary.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Semantics

32

Pass-By-Value
Behaves as if arguments are copied

from the caller to the callee prior to the call.

Pass-By-Reference
Behaves as if formal parameter is bound to the argument.

Pass-By-Name
Behaves as if formal parameter is replaced by actual

parameter in subroutine body; evaluated whenever needed.

Usually implemented by copying address, but
sometimes more complex (e.g., Java RMI).

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Evaluation Time

Eager Evaluation.
➡ Evaluate all arguments before call.
➡ Easy to implement.
➡ But can be problematic.
‣What if not needed?
‣What if error might occur?

Normal-order evaluation.
➡ Evaluate every time when argument needed.
➡ But only if needed.
➡ i.e., call-by-name.
➡ May be not very efficient; hard to implement.

Lazy evaluation.
➡ Actual parameter evaluated once when the argument is used.
➡ Result cached.

33

When to evaluate actual parameters to the obtain arguments.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Evaluation Time

Eager Evaluation.
➡ Evaluate all arguments before call.
➡ Easy to implement.
➡ But can be problematic.
‣What if not needed?
‣What if error might occur?

Normal-order evaluation.
➡ Evaluate every time when argument needed.
➡ But only if needed.
➡ i.e., call-by-name.
➡ May be not very efficient; hard to implement.

Lazy evaluation.
➡ Actual parameter evaluated once when the argument is used.
➡ Result cached.

34

When to evaluate actual parameters to the obtain arguments.

Mainly used in purely-functional languages:
requires that time of evaluation does not impact result.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Positional Parameters

Matched one-to-one, based on index.
➡ Order of formal parameters determines the order in which

actual parameters must occur.
➡ Simple to understand and implement.
➡ Sometimes too inflexible or inconvenient.
‣ Infrequently used options must always be specified.
‣Rigid order required; can be tedious for many parameters.

35

How are actual parameters and the resulting arguments matched to formal parameters?

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Positional Parameters

Matched one-to-one, based on index.
➡ Order of formal parameters determines the order in which

actual parameters must occur.
➡ Simple to understand and implement.
➡ Sometimes too inflexible or inconvenient.
‣ Infrequently used options must always be specified.
‣Rigid order required; can be tedious for many parameters.

36

How are actual parameters and the resulting arguments matched to formal parameters?

Python Function Definition Python Shell Output:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Positional Parameters

Matched one-to-one, based on index.
➡ Order of formal parameters determines the order in which

actual parameters must occur.
➡ Simple to understand and implement.
➡ Sometimes too inflexible or inconvenient.
‣ Infrequently used options must always be specified.
‣Rigid order required; can be tedious for many parameters.

37

How are actual parameters and the resulting arguments matched to formal parameters?

Specifying too few or too many actual
parameters results in error.

Python Function Definition Python Shell Output:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Variable Parameters

Matched many-to-one.
➡ Zero or more actual parameter correspond to one “iterable” (list-like) formal

parameter. (In Python, the formal parameter is a tuple. In Java, an array.)
➡ Two common uses:
‣Apply some operation to any number of objects (e.g., “delete all these files”).
‣Expect certain arguments based on “configuration argument” (e.g., printf).

38

How are actual parameters and the resulting arguments matched to formal parameters?

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Variable Parameters

Matched many-to-one.
➡ Zero or more actual parameter correspond to one “iterable” (list-like) formal

parameter. (In Python, the formal parameter is a tuple. In Java, an array.)
➡ Two common uses:
‣Apply some operation to any number of objects (e.g., “delete all these files”).
‣Expect certain arguments based on “configuration argument” (e.g., printf).

39

How are actual parameters and the resulting arguments matched to formal parameters?

Python Function Definition Python Shell Output:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Variable Parameters

Matched many-to-one.
➡ Zero or more actual parameter correspond to one “iterable” (list-like) formal

parameter. (In Python, the formal parameter is a tuple. In Java, an array.)
➡ Two common uses:
‣Apply some operation to any number of objects (e.g., “delete all these files”).
‣Expect certain arguments based on “configuration argument” (e.g., printf).

40

How are actual parameters and the resulting arguments matched to formal parameters?

Python Function Definition Python Shell Output:

In Python, all arguments
are available as a tuple.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Variable Parameters

Matched many-to-one.
➡ Zero or more actual parameter correspond to one “iterable” (list-like) formal

parameter. (In Python, the formal parameter is a tuple. In Java, an array.)
➡ Two common uses:
‣Apply some operation to any number of objects (e.g., “delete all these files”).
‣Expect certain arguments based on “configuration argument” (e.g., printf).

41

How are actual parameters and the resulting arguments matched to formal parameters?

Python Function Definition Python Shell Output:

The number of required
parameters not fixed.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Keyword Parameters

Matched one-to-one, either by position or keyword.
➡ Parameter can occur out of order.
➡ If default value is provided, then parameter can be omitted, too.
➡ Some languages (e.g., C++) allow only default values,

but not keyword parameters.
‣Result: can be omitted, but not provided out of order.

42

How are actual parameters and the resulting arguments matched to formal parameters?

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Keyword Parameters

Matched one-to-one, either by position or keyword.
➡ Parameter can occur out of order.
➡ If default value is provided, then parameter can be omitted, too.
➡ Some languages (e.g., C++) allow only default values,

but not keyword parameters.
‣Result: can be omitted, but not provided out of order.

43

How are actual parameters and the resulting arguments matched to formal parameters?

Python Function Definition Python Shell Output:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Keyword Parameters

Matched one-to-one, either by position or keyword.
➡ Parameter can occur out of order.
➡ If default value is provided, then parameter can be omitted, too.
➡ Some languages (e.g., C++) allow only default values,

but not keyword parameters.
‣Result: can be omitted, but not provided out of order.

44

How are actual parameters and the resulting arguments matched to formal parameters?

Python Function Definition Python Shell Output:

Parameters can be provided as needed; by naming
their keyword, they can occur in any order.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Keyword Parameters

Matched one-to-one, either by position or keyword.
➡ Parameter can occur out of order.
➡ If default value is provided, then parameter can be omitted, too.
➡ Some languages (e.g., C++) allow only default values,

but not keyword parameters.
‣Result: can be omitted, but not provided out of order.

45

How are actual parameters and the resulting arguments matched to formal parameters?

Python Function Definition Python Shell Output:

Function can still be called with positional parameters.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Efficiency
Compile-time.
➡Parameters with default values and keyword parameters do

not necessarily incur additional runtime overheads.
➡Can be automatically translated to regular positional

parameters.

Run-time.
➡Support for variable number of parameters (“varargs”)

requires construction of list-like structure and iteration.
➡However, the added flexibility is usually a good tradeoff.

46
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Parameter Passing: Efficiency
Compile-time.
➡Parameters with default values and keyword parameters do

not necessarily incur additional runtime overheads.
➡Can be automatically translated to regular positional

parameters.

Run-time.
➡Support for variable number of parameters (“varargs”)

requires construction of list-like structure and iteration.
➡However, the added flexibility is usually a good tradeoff.

47

Example: C
On x86, most positional parameters are passed

through registers (fast), but varargs must be
passed via the stack (slower).

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Recursion

A subroutine that calls itself.
➡ Either directly or indirectly.
➡ Requires runtime stack.

Repetition without loops.
➡ Natural fit for “divide-and-conquer”

algorithms.
‣E.g., Quicksort.

➡ From a math point of view:
‣ recursion is natural;
‣ loops can be difficult to reason about.

48

naive_fib(0, 0) :- !.
naive_fib(1, 1) :- !.
naive_fib(X, N) :-
 N_1 is N - 1,
 N_2 is N - 2,
 naive_fib(A, N_1),
 naive_fib(B, N_2),
 X is A + B.

Naive, recursive computation of
Fibonacci numbers in Prolog.

fib(n) =

0 if n = 0
1 if n = 1
fib(n− 1) + fib(n− 2) otherwise

Definition of the Fibonacci Sequence for n ≥ 0.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Recursion

A subroutine that calls itself.
➡ Either directly or indirectly.
➡ Requires runtime stack.

Repetition without loops.
➡ Natural fit for “divide-and-conquer”

algorithms.
‣E.g., Quicksort.

➡ From a math point of view:
‣ recursion is natural;
‣ loops can be difficult to reason about.

49

naive_fib(0, 0) :- !.
naive_fib(1, 1) :- !.
naive_fib(X, N) :-
 N_1 is N - 1,
 N_2 is N - 2,
 naive_fib(A, N_1),
 naive_fib(B, N_2),
 X is A + B.

Naive, recursive computation of
Fibonacci numbers in Prolog.

fib(n) =

0 if n = 0
1 if n = 1
fib(n− 1) + fib(n− 2) otherwise

Definition of the Fibonacci Sequence for n ≥ 0.
This causes exponential runtime complexity!

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Exponential Call Tree for naive_fib(X, 6)

50

naive_fib(0, 0) :- !.
naive_fib(1, 1) :- !.
naive_fib(X, N) :-
 N_1 is N - 1,
 N_2 is N - 2,
 naive_fib(A, N_1),
 naive_fib(B, N_2),
 X is A + B.

naive_fib
N=6

naive_fib
N=4

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=5

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=4

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

naive_fib
N=6

naive_fib
N=4

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=5

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=4

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

Exponential Call Tree for naive_fib(X, 6)

51

naive_fib(0, 0) :- !.
naive_fib(1, 1) :- !.
naive_fib(X, N) :-
 N_1 is N - 1,
 N_2 is N - 2,
 naive_fib(A, N_1),
 naive_fib(B, N_2),
 X is A + B.

Needlessly inefficient:
E.g., naive_fib for N=2 is

evaluated five times!

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

naive_fib
N=6

naive_fib
N=4

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=5

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=4

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

naive_fib
N=3

naive_fib
N=1

naive_fib
N=2

naive_fib
N=0

naive_fib
N=1

Exponential Call Tree for naive_fib(X, 6)

52

naive_fib(0, 0) :- !.
naive_fib(1, 1) :- !.
naive_fib(X, N) :-
 N_1 is N - 1,
 N_2 is N - 2,
 naive_fib(A, N_1),
 naive_fib(B, N_2),
 X is A + B.

Result X = 8
since the non-zero base-
case occurred 8 times.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Linear Recursion

53

% fib/2 --- compute the Nth Fibonacci
number.
% Two trivial cases first.
fib(0, 0) :- !.
fib(1, 1) :- !.
% Cases that actually require iteration.
fib(X, N) :-
 fib(0, 1, 2, N, X).

% fib/5 --- Fibonacci helper clause;
% does the actual iteration.
% Base case: have reached end of iteration.
fib(PrevPrev, Prev, Index, Stop, Res) :-
 Index = Stop, !,
 Res is PrevPrev + Prev.
% Recursive case: have not yet reached the
% desired index.
fib(PrevPrev, Prev, Index, Stop, Res) :-
 Index < Stop,
 Cur is PrevPrev + Prev,
 Next is Index + 1,
 fib(Prev, Cur, Next, Stop, Res).

fib/2 N=6

fib/5

PrevPrev=0 Prev=1 Index=2 N=6

fib/5

PrevPrev=1 Prev=1 Index=3 N=6

fib/5

PrevPrev=1 Prev=2 Index=4 N=6

fib/5

PrevPrev=2 Prev=3 Index=5 N=6

fib/5

PrevPrev=3 Prev=5 Index=6 N=6

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Linear Recursion

54

% fib/2 --- compute the Nth Fibonacci
number.
% Two trivial cases first.
fib(0, 0) :- !.
fib(1, 1) :- !.
% Cases that actually require iteration.
fib(X, N) :-
 fib(0, 1, 2, N, X).

% fib/5 --- Fibonacci helper clause;
% does the actual iteration.
% Base case: have reached end of iteration.
fib(PrevPrev, Prev, Index, Stop, Res) :-
 Index = Stop, !,
 Res is PrevPrev + Prev.
% Recursive case: have not yet reached the
% desired index.
fib(PrevPrev, Prev, Index, Stop, Res) :-
 Index < Stop,
 Cur is PrevPrev + Prev,
 Next is Index + 1,
 fib(Prev, Cur, Next, Stop, Res).

fib/2 N=6

fib/5

PrevPrev=0 Prev=1 Index=2 N=6

fib/5

PrevPrev=1 Prev=1 Index=3 N=6

fib/5

PrevPrev=1 Prev=2 Index=4 N=6

fib/5

PrevPrev=2 Prev=3 Index=5 N=6

fib/5

PrevPrev=3 Prev=5 Index=6 N=6

Auxiliary values are kept
for the iterations where

they are needed.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Linear Recursion

55

% fib/2 --- compute the Nth Fibonacci
number.
% Two trivial cases first.
fib(0, 0) :- !.
fib(1, 1) :- !.
% Cases that actually require iteration.
fib(X, N) :-
 fib(0, 1, 2, N, X).

% fib/5 --- Fibonacci helper clause;
% does the actual iteration.
% Base case: have reached end of iteration.
fib(PrevPrev, Prev, Index, Stop, Res) :-
 Index = Stop, !,
 Res is PrevPrev + Prev.
% Recursive case: have not yet reached the
% desired index.
fib(PrevPrev, Prev, Index, Stop, Res) :-
 Index < Stop,
 Cur is PrevPrev + Prev,
 Next is Index + 1,
 fib(Prev, Cur, Next, Stop, Res).

fib/2 N=6

fib/5

PrevPrev=0 Prev=1 Index=2 N=6

fib/5

PrevPrev=1 Prev=1 Index=3 N=6

fib/5

PrevPrev=1 Prev=2 Index=4 N=6

fib/5

PrevPrev=2 Prev=3 Index=5 N=6

fib/5

PrevPrev=3 Prev=5 Index=6 N=6

Iteration ends when desired index is reached.
At this point, computing the result is simple since

both previous Fibonacci numbers are known.
X = Res = 8

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Stack Overflow
Subroutine call requires stack space.
➡ Stack space is a limited resource.
➡ Problem: max recursion depth is

limited by stack space if
implemented naively.

➡ Suppose Subroutine D is recursive.

56

 Increasing Virtual Addresses

S
ub

ro
ut

in
e

B

S
ub

ro
ut

in
e

A

(p
ro

gr
am

 e
nt

ry
)

S
ub

ro
ut

in
e

C

S
ub

ro
ut

in
e

D

Stack growth

R
et

ur
n

A
dd

re
ss

A
rg

um
en

ts
 &

R

et
ur

n
Va

lu
e(

s)

M
is

c.

B
oo

kk
ee

pi
ng

Lo
ca

l V
ar

ia
bl

es

Te
m

ps
.

bottomtop of stack

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Stack Overflow
Subroutine call requires stack space.
➡ Stack space is a limited resource.
➡ Problem: max recursion depth is

limited by stack space if
implemented naively.

➡ Suppose Subroutine D is recursive.

57

 Increasing Virtual Addresses

S
ub

ro
ut

in
e

B

S
ub

ro
ut

in
e

A

(p
ro

gr
am

 e
nt

ry
)

S
ub

ro
ut

in
e

C

S
ub

ro
ut

in
e

D

R
et

ur
n

A
dd

re
ss

A
rg

um
en

ts
 &

R

et
ur

n
Va

lu
e(

s)

M
is

c.

B
oo

kk
ee

pi
ng

Lo
ca

l V
ar

ia
bl

es

Te
m

ps
.

bottomtop of stack

S
ub

ro
ut

in
e

D

S
ub

ro
ut

in
e

D

S
ub

ro
ut

in
e

D

S
ub

ro
ut

in
e

D

Stack growth

The recursion will run out
of space eventually.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Stack Overflow Example

58

24
Exception in thread "main"
java.lang.StackOverflowError
 at Factorial.factorial(Factorial.java:18)
 at Factorial.factorial(Factorial.java:18)
 at Factorial.factorial(Factorial.java:18)
 at Factorial.factorial(Factorial.java:18)
 (repeated several thousand times)

Output:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Stack Overflow Example

59

24
Exception in thread "main"
java.lang.StackOverflowError
 at Factorial.factorial(Factorial.java:18)
 at Factorial.factorial(Factorial.java:18)
 at Factorial.factorial(Factorial.java:18)
 at Factorial.factorial(Factorial.java:18)
 (repeated several thousand times)

Output:

So how can we implement arbitrary
loops with recursion if we have only

finite memory?

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

60

Stack frame = local execution context.
➡ If nothing remains to be executed, then stack frame

contents are no longer required.
➡Conceptually, instead of allocating a new stack frame,

the compiler simply generates a jump to the
beginning of the subroutines code.
‣A bit more complicated with indirect recursion…

➡Elegant recursion compiled to efficient loop.

Tail Recursion
If a recursive call is the last statement/expression

of a subroutine to be evaluated, then the
already-allocated stack frame of the caller is reused.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Tail Recursion Example

61

naive_fact(1, 0) :- !.
naive_fact(X, N) :-
 Prev is N - 1,
 naive_fact(Y, Prev),
 X is Y * N.

fact(X, N) :- fact(X, N, 1, 0).
fact(X, N, Accumulator, Index) :-
 Index = N, !,
 X = Accumulator.
fact(X, N, Accumulator, Index) :-
 Next is Index + 1,
 Fact is Accumulator * Next,
 fact(X, N, Fact, Next).

Prolog supports proper tail recursion.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Tail Recursion Example

62

naive_fact(1, 0) :- !.
naive_fact(X, N) :-
 Prev is N - 1,
 naive_fact(Y, Prev),
 X is Y * N.

fact(X, N) :- fact(X, N, 1, 0).
fact(X, N, Accumulator, Index) :-
 Index = N, !,
 X = Accumulator.
fact(X, N, Accumulator, Index) :-
 Next is Index + 1,
 Fact is Accumulator * Next,
 fact(X, N, Fact, Next).

Prolog supports proper tail recursion.

Output:
?- naive_fact(X, 1000).
ERROR: Out of local stack
?- fact(X, 1000).
X =
402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918
823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474
349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609
675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572
080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926
849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518
263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170
483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036
093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422
845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121
855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433
278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029
309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777
939410970027753472000
00.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Tail Recursion Example

63

naive_fact(1, 0) :- !.
naive_fact(X, N) :-
 Prev is N - 1,
 naive_fact(Y, Prev),
 X is Y * N.

fact(X, N) :- fact(X, N, 1, 0).
fact(X, N, Accumulator, Index) :-
 Index = N, !,
 X = Accumulator.
fact(X, N, Accumulator, Index) :-
 Next is Index + 1,
 Fact is Accumulator * Next,
 fact(X, N, Fact, Next).

Prolog supports proper tail recursion.

?- naive_fact(X, 1000).
ERROR: Out of local stack
?- fact(X, 1000).
X =
402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918
823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474
349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609
675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572
080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926
849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518
263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170
483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036
093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422
845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121
855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433
278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029
309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777
939410970027753472000
00.

Output:
Recursive sub-goal is

not last to be evaluated!

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Tail Recursion Example

64

naive_fact(1, 0) :- !.
naive_fact(X, N) :-
 Prev is N - 1,
 naive_fact(Y, Prev),
 X is Y * N.

fact(X, N) :- fact(X, N, 1, 0).
fact(X, N, Accumulator, Index) :-
 Index = N, !,
 X = Accumulator.
fact(X, N, Accumulator, Index) :-
 Next is Index + 1,
 Fact is Accumulator * Next,
 fact(X, N, Fact, Next).

Prolog supports proper tail recursion.

?- naive_fact(X, 1000).
ERROR: Out of local stack
?- fact(X, 1000).
X =
402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918
823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474
349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609
675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572
080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926
849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518
263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170
483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036
093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422
845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121
855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433
278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029
309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777
939410970027753472000
00.

Output:

Proper tail recursion: recursive
sub-goal occurs last.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Inline Expansion
Subroutine granularity.
➡Using many, very short subroutines is good

software engineering practice.
‣Easier to understand and debug.

➡However, subroutine calls incur overhead.

Inline subroutines.
➡Semantically, like a normal subroutine.
‣Type checking, etc.

➡However, instead of generating a call, compiler
“copy&pastes” subroutine code into caller.
‣Like macro expansion.
‣Increases code size, but call overhead is avoided.

65
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Inline Expansion Example

66

#include <stdio.h>

int normal_function(void)
{
 return 1;
}

inline int inline_function(void)
{
 return 2;
}

int main(int argc, char** argv)
{
 printf("result = %d\n",
 normal_function() + inline_function());
 return 0;
}

C99 Example.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Inline Expansion Example

67

#include <stdio.h>

int normal_function(void)
{
 return 1;
}

inline int inline_function(void)
{
 return 2;
}

int main(int argc, char** argv)
{
 printf("result = %d\n",
 normal_function() + inline_function());
 return 0;
}

C99 Example.

Inline keyword is a hint to
the compiler to include body
instead of generating a call.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Inline Expansion Example

68

Generated machine code.

080483a4 <normal_function>:
 80483a4: 55 push %ebp
 80483a5: 89 e5 mov %esp,%ebp
 80483a7: b8 01 00 00 00 mov $0x1,%eax
 80483ac: 5d pop %ebp
 80483ad: c3 ret

080483b8 <main>:
 80483b8: 55 push %ebp
 80483b9: 89 e5 mov %esp,%ebp
 80483bb: 83 e4 f0 and $0xfffffff0,%esp
 80483be: 83 ec 10 sub $0x10,%esp
 80483c1: e8 de ff ff ff call 80483a4 <normal_function>
 80483c6: 83 c0 02 add $0x2,%eax
 80483c9: 89 44 24 04 mov %eax,0x4(%esp)
 80483cd: c7 04 24 a0 84 04 08 movl $0x80484a0,(%esp)
 80483d4: e8 ff fe ff ff call 80482d8 <printf@plt>
 80483d9: b8 00 00 00 00 mov $0x0,%eax
 80483de: c9 leave
 80483df: c3 ret

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Inline Expansion Example

69

Generated machine code.

080483a4 <normal_function>:
 80483a4: 55 push %ebp
 80483a5: 89 e5 mov %esp,%ebp
 80483a7: b8 01 00 00 00 mov $0x1,%eax
 80483ac: 5d pop %ebp
 80483ad: c3 ret

080483b8 <main>:
 80483b8: 55 push %ebp
 80483b9: 89 e5 mov %esp,%ebp
 80483bb: 83 e4 f0 and $0xfffffff0,%esp
 80483be: 83 ec 10 sub $0x10,%esp
 80483c1: e8 de ff ff ff call 80483a4 <normal_function>
 80483c6: 83 c0 02 add $0x2,%eax
 80483c9: 89 44 24 04 mov %eax,0x4(%esp)
 80483cd: c7 04 24 a0 84 04 08 movl $0x80484a0,(%esp)
 80483d4: e8 ff fe ff ff call 80482d8 <printf@plt>
 80483d9: b8 00 00 00 00 mov $0x0,%eax
 80483de: c9 leave
 80483df: c3 ret

Call generated for
normal function.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Inline Expansion Example

70

Generated machine code.

080483a4 <normal_function>:
 80483a4: 55 push %ebp
 80483a5: 89 e5 mov %esp,%ebp
 80483a7: b8 01 00 00 00 mov $0x1,%eax
 80483ac: 5d pop %ebp
 80483ad: c3 ret

080483b8 <main>:
 80483b8: 55 push %ebp
 80483b9: 89 e5 mov %esp,%ebp
 80483bb: 83 e4 f0 and $0xfffffff0,%esp
 80483be: 83 ec 10 sub $0x10,%esp
 80483c1: e8 de ff ff ff call 80483a4 <normal_function>
 80483c6: 83 c0 02 add $0x2,%eax
 80483c9: 89 44 24 04 mov %eax,0x4(%esp)
 80483cd: c7 04 24 a0 84 04 08 movl $0x80484a0,(%esp)
 80483d4: e8 ff fe ff ff call 80482d8 <printf@plt>
 80483d9: b8 00 00 00 00 mov $0x0,%eax
 80483de: c9 leave
 80483df: c3 ret

The “return 2” was inlined; no
call to inline_function generated.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Exception Handling

With error or return codes.
➡ Commonly done in C.
➡ Tedious and error-prone.
‣Hard to read, complex control flow.
‣Easy to forget.

With (unstructured) jumps.
➡ Also error prone.

Exceptions: structured error handling.
➡ Checked exceptions: anticipated failures that can occur in correct program.
‣e.g., IOException: user could have specified incorrect file.

➡ Unchecked exceptions: errors that indicate programmer error or catastrophic
system failure.
‣e.g., IllegalArgumentException: misuse of API.
‣e.g., OutOfMemoryError: program canʼt do anything about it.

71

How to report errors?

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Exception Handling

With error or return codes.
➡ Commonly done in C.
➡ Tedious and error-prone.
‣Hard to read, complex control flow.
‣Easy to forget.

With (unstructured) jumps.
➡ Also error prone.

Exceptions: structured error handling.
➡ Checked exceptions: anticipated failures that can occur in correct program.
‣e.g., IOException: user could have specified incorrect file.

➡ Unchecked exceptions: errors that indicate programmer error or catastrophic
system failure.
‣e.g., IllegalArgumentException: misuse of API.
‣e.g., OutOfMemoryError: program canʼt do anything about it.

72

How to report errors?

In many languages (e.g., C++, Python,…),
all exceptions are unchecked.

(checked: compiler raises error if possible
exception is not handled or propagated)

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Expression Evaluation
Statement vs. Expression
➡Imperative languages often differentiate between

“statements” and “expressions”.
➡Functional languages usually focus on expressions.

Expressions
➡Can be evaluated to yield a value.
➡E.g., in Java, “1 + 2”, “Math.sqrt(2)”.

Statements
➡Give imperative languages sequential nature.
➡E.g., in Java, “if” is a statement; it cannot occur in

expressions.
73

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Expression Evaluation
Statement vs. Expression
➡Imperative languages often differentiate between

“statements” and “expressions”.
➡Functional languages usually focus on expressions.

Expressions
➡Can be evaluated to yield a value.
➡E.g., in Java, “1 + 2”, “Math.sqrt(2)”.

Statements
➡Give imperative languages sequential nature.
➡E.g., in Java, “if” is a statement; it cannot occur in

expressions.
74

Expressions usually consist of operators, operands (literals,
variables, and subexpressions), and subroutine calls.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Unary, Binary, and Ternary Operators

75

Unary: Operator has single operand.

Example: logical negation

Binary: Operator has two operands.

Examples: logical and, addition

Ternary: Operator has three operands.
Example: ?: (conditional expression) in C-like languages

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Prefix, Infix, and Postfix Operators

76

Prefix: Operator before Operand
Examples: ++, !

Infix: Operator between Operands
Examples: &&,||, +=, ==

Postfix: Operator after Operand
Examples: ++

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operators as Function Applications
Operators are not inherently special.
➡ An operator is a function/subroutine with human-friendly syntax.

77

<operand1> <op> <operand2>

is the same as
<op>(<operand1>, <operand2>)

Examples: 3 + 4 ⇔ +(3, 4)
3 + 4 ⇔ (+ 3 4)
x = 4 ⇔ (setq x 4)
x = 4 ⇔ (set! x 4)
3 + 4 ⇔ (+) 3 4

LISP

Scheme

Haskell
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operators as Function Applications
Operators are not inherently special.
➡ An operator is a function/subroutine with human-friendly syntax.

78

<operand1> <op> <operand2>

is the same as
<op>(<operand1>, <operand2>)

Examples: 3 + 4 ⇔ +(3, 4)
3 + 4 ⇔ (+ 3 4)
x = 4 ⇔ (setq x 4)
x = 4 ⇔ (set! x 4)
3 + 4 ⇔ (+) 3 4

LISP

Scheme

Haskell

This is a purely syntactic transformation
that can be done by the parser.

The semantic analysis, optimization, and code generation phases
only need to implement one concept: subroutine calls.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operators as Function Applications
Operators are not inherently special.
➡ An operator is a function/subroutine with human-friendly syntax.

79

Compilation of operators.
➡ Some operators correspond directly to machine instructions.
‣ e.g., integer addition
‣ These are called built-in or primitive functions.
➡ Which operations are primitive is entirely machine-dependent.
‣ e.g., some machines require software floating point emulation.
➡ Avoiding a subroutine call in the case of primitive functions is a compile-

time optimization similar to inlining.

<operand1> <op> <operand2>

is the same as
<op>(<operand1>, <operand2>)

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operators as Function Applications
Operators are not inherently special.
➡ An operator is a function/subroutine with human-friendly syntax.

80

Compilation of operators.
➡ Some operators correspond directly to machine instructions.
‣ e.g., integer addition
‣ These are called built-in or primitive functions.
➡ Which operations are primitive is entirely machine-dependent.
‣ e.g., some machines require software floating point emulation.
➡ Avoiding a subroutine call in the case of primitive functions is a compile-

time optimization similar to inlining.

<operand1> <op> <operand2>

is the same as
<op>(<operand1>, <operand2>)

However, classic imperative language design treats operators as a
concept that is different from a regular subroutine abstraction. This is
a serious design limitation.
‣e.g., in Pascal, C, and Java, operators are unrelated to functions/
procedures (even if they are implemented in software) and are
syntactically different.
‣e.g., in C++, the user can override select operators with custom
methods, but the user cannot define new operators.

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operator Precedence

81

<operand1> <op1> <operand2> <op2> <operand3>

Automatically transformed by
parser into subroutine calls…

Thursday, April 15, 2010

UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operator Precedence

82

Problem: how to match operators to operands?

<operand1> <op1> <operand2> <op2> <operand3>

<op1>(<operand1>, <op2>(<operand2>, <operand3>))

or

<op2>(<op1>(<operand1>, <operand2>), <operand3>))

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operator Precedence

83

<operand1> <op1> <operand2> <op2> <operand3>

Tie breaking rules.
➡ Each operator is assigned a numeric precedence value.
➡ Operators are evaluated in order of decreasing precedence.
‣Conceptually, implicit parentheses are inserted to
disambiguate expression.

➡ e.g., multiplication usually has higher precedence than addition.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operator Precedence

84

<operand1> <op1> <operand2> <op2> <operand3>

Tie breaking rules.
➡ Each operator is assigned a numeric precedence value.
➡ Operators are evaluated in order of decreasing precedence.
‣Conceptually, implicit parentheses are inserted to
disambiguate expression.

➡ e.g., multiplication usually has higher precedence than addition.

If <op1> has higher precedence than <op2>, then:

<op2>(<op1>(<operand1>, <operand2>), <operand3>))

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operator Associativity

Consistent placement of implicit parentheses.
➡ Either start on left or start on right right.
‣ Called left-associative and right-associative.

➡ Determines result if operator is not commutative.
‣ Note: addition/multiplication not necessarily commutative on a

computer due to overflow / underflow / loss of precision.

85

<operand1> <op1> <operand2> <op2> <operand3>

What if both operators have the same precedence?

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Operator Associativity

Consistent placement of implicit parentheses.
➡ Either start on left or start on right right.
‣ Called left-associative and right-associative.

➡ Determines result if operator is not commutative.
‣ Note: addition/multiplication not necessarily commutative on a

computer due to overflow / underflow / loss of precision.

86

<operand1> <op1> <operand2> <op2> <operand3>

What if both operators have the same precedence?

Java:
a = b = c; ⇔ a = (b = c);
a / b / c; ⇔ (a / b) / c;

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Short-Circuit Operators
Value of expressions does not always depend on all operands.
➡ Logical and: if first operand is false.
➡ Logical or: if first operand is true.
➡ Short-circuit: only evaluate second operand if result is required.
‣ i.e., use lazy evaluation!

Uses.
➡ This is an optimization: put the computationally cheap tests first.
➡ Short-circuit operators are often used to guard potentially

erroneous sub-expressions.

87

Java:
HashMap dict = null;
// ...
// possibly initialized by other code
if (dict != null && dict.contains("key"))
 // do something;

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Short-Circuit Operators
Value of expressions does not always depend on all operands.
➡ Logical and: if first operand is false.
➡ Logical or: if first operand is true.
➡ Short-circuit: only evaluate second operand if result is required.
‣ i.e., use lazy evaluation!

Uses.
➡ This is an optimization: put the computationally cheap tests first.
➡ Short-circuit operators are often used to guard potentially

erroneous sub-expressions.

88

Java:
HashMap dict = null;
// ...
// possibly initialized by other code
if (dict != null && dict.contains("key"))
 // do something;

Potential null dereference (dict) guarded by short-circuit operator:
equivalent to call-by-name invocation of subroutine named &&.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Nested Subroutines
Subroutines definitions within subroutines.
➡Subroutine definition creates a local, nested scope.
➡Orthogonality: it should be possible to define new, nested

subroutines in a subroutineʼs local scope.
➡Allows decomposing large subroutines into smaller parts

without “leaking” names into surrounding namespace.

History.
➡ Introduced in Algol 60; adopted by many modern languages

(e.g., Pascal, Python, Scheme, etc.).
➡ Ignored by C and most descendants.
‣In C, originally probably for ease of implementation.
‣However, gcc supports nested functions as an extension.
‣In Java, there isnʼt really a good reason not to include it…

89
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Nested Subroutines: Example

90

def long_running_operation(list_of_work_items):
 def progress(i):
 print "finished %d of %d" % (i, len(list_of_work_items))
 while not done:
 # ... complicated logic ...
 progress(current_index)
 # ... more complicated logic...

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Nested Subroutines: Example

91

def long_running_operation(list_of_work_items):
 def progress(i):
 print "finished %d of %d" % (i, len(list_of_work_items))
 while not done:
 # ... complicated logic ...
 progress(current_index)
 # ... more complicated logic...

Nested subroutine: remove UI clutter from main logic.
(especially useful if GUI code is involved)

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Nested Subroutines: Example

92

def long_running_operation(list_of_work_items):
 def progress(i):
 print "finished %d of %d" % (i, len(list_of_work_items))
 while not done:
 # ... complicated logic ...
 progress(current_index)
 # ... more complicated logic...

Nesting of scopes: bindings from enclosing scope(s) visible.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Higher-Order Functions
Subroutines as arguments and return values.
➡ A function (i.e., subroutine) that either accepts (a reference to)

another function as an argument or yields a subroutine as its
return value is called a higher-order function.

➡ This allows users to write very flexible functions.
➡ Caller can “customize” implemented algorithm.

93

def update_elements(update, array):
 for i in range(len(array)):
 array[i] = update(array[i])

def scale_by_ten(x):
 return x * 10

a = [1, 2, 3, 4, 5]

update_elements(scale_by_ten, a)

print a # prints [10, 20, 30, 40, 50]

Python:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Higher-Order Functions
Subroutines as arguments and return values.
➡ A function (i.e., subroutine) that either accepts (a reference to)

another function as an argument or yields a subroutine as its
return value is called a higher-order function.

➡ This allows users to write very flexible functions.
➡ Caller can “customize” implemented algorithm.

94

def update_elements(update, array):
 for i in range(len(array)):
 array[i] = update(array[i])

def scale_by_ten(x):
 return x * 10

a = [1, 2, 3, 4, 5]

update_elements(scale_by_ten, a)

print a # prints [10, 20, 30, 40, 50]

Python:

A higher-order function: caller
can customize the update that is

applied to each element.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Higher-Order Functions
Subroutines as arguments and return values.
➡ A function (i.e., subroutine) that either accepts (a reference to)

another function as an argument or yields a subroutine as its
return value is called a higher-order function.

➡ This allows users to write very flexible functions.
➡ Caller can “customize” implemented algorithm.

95

def update_elements(update, array):
 for i in range(len(array)):
 array[i] = update(array[i])

def scale_by_ten(x):
 return x * 10

a = [1, 2, 3, 4, 5]

update_elements(scale_by_ten, a)

print a # prints [10, 20, 30, 40, 50]

Python:
Separation of Concerns:

The loop “knows” nothing about scaling, and the
scaling operation “knows” nothing about arrays.

DRY: write the loop once and reuse it with
different update functions.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Higher-Order Functions: Subroutines as Arguments

96

Example: customized sort order.

def last_char(x):
 return x[-1]

strings = ["just", "some", "number", "of", "character", "sequences"]

print 'by length', sorted(strings, key=len)
print 'by last', sorted(strings, key=last_char)

Output:
by length ['of', 'just', 'some', 'number', 'character', 'sequences']
by last ['some', 'of', 'number', 'character', 'sequences', 'just']

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Higher-Order Functions: Subroutines as Arguments

97

Example: customized sort order.

def last_char(x):
 return x[-1]

strings = ["just", "some", "number", "of", "character", "sequences"]

print 'by length', sorted(strings, key=len)
print 'by last', sorted(strings, key=last_char)

Output:
by length ['of', 'just', 'some', 'number', 'character', 'sequences']
by last ['some', 'of', 'number', 'character', 'sequences', 'just']

Python:
Negative indices count from the end of
the list, thus, x[-1] is the last element.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Higher-Order Functions: Subroutines as Arguments

98

Example: customized sort order.

def last_char(x):
 return x[-1]

strings = ["just", "some", "number", "of", "character", "sequences"]

print 'by length', sorted(strings, key=len)
print 'by last', sorted(strings, key=last_char)

Output:
by length ['of', 'just', 'some', 'number', 'character', 'sequences']
by last ['some', 'of', 'number', 'character', 'sequences', 'just']

Algorithmic Customization:
Python allows items in a list be sorted
based upon an arbitrary key function.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Higher-Order Functions: Subroutines as Arguments

99

Example: customized sort order.

def last_char(x):
 return x[-1]

strings = ["just", "some", "number", "of", "character", "sequences"]

print 'by length', sorted(strings, key=len)
print 'by last', sorted(strings, key=last_char)

Output:
by length ['of', 'just', 'some', 'number', 'character', 'sequences']
by last ['some', 'of', 'number', 'character', 'sequences', 'just']

Java does not support higher-order functions:
The same effect is achieved by Collections.sort()

by accepting a reference to a Comparator instance.
(Which is significantly less elegant and natural.)

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Anonymous Functions

100

def last_char(x):
 return x[-1]

strings = ["just", "some", "number", "of", "character", "sequences"]

print 'by length', sorted(strings, key=len)
print 'by last', sorted(strings, key=last_char)

Output:
by length ['of', 'just', 'some', 'number', 'character', 'sequences']
by last ['some', 'of', 'number', 'character', 'sequences', 'just']

Definition of short “use once” functions.
➡ Defining a function and coming up with a good name for each

“customization” can be tedious.
➡ Thus, it may be convenient to use unnamed functions.
➡ I.e., instead of defining a function and then referring to it, anonymous

functions allow us to simply write a function literal.
➡ Due to their theoretical roots, these are often called lambda expressions.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Anonymous Functions

101

def last_char(x):
 return x[-1]

strings = ["just", "some", "number", "of", "character", "sequences"]

print 'by length', sorted(strings, key=len)
print 'by last', sorted(strings, key=last_char)

Output:
by length ['of', 'just', 'some', 'number', 'character', 'sequences']
by last ['some', 'of', 'number', 'character', 'sequences', 'just']

Definition of short “use once” functions.
➡ Defining a function and coming up with a good name for each

“customization” can be tedious.
➡ Thus, it may be convenient to use unnamed functions.
➡ I.e., instead of defining a function and then referring to it, anonymous

functions allow us to simply write a function literal.
➡ Due to their theoretical roots, these are often called lambda expressions.

Unnecessarily verbose: the definition
“boilerplate code” is much longer than the

actual logic, the function is only used once.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Anonymous Functions

102

strings = ["just", "some", "number", "of", "character", "sequences"]

print 'by length', sorted(strings, key=len)
print 'by last', sorted(strings, key=lambda x: x[-1])

Output:
by length ['of', 'just', 'some', 'number', 'character', 'sequences']
by last ['some', 'of', 'number', 'character', 'sequences', 'just']

Definition of short “use once” functions.
➡ Defining a function and coming up with a good name for each

“customization” can be tedious.
➡ Thus, it may be convenient to use unnamed functions.
➡ I.e., instead of defining a function and then referring to it, anonymous

functions allow us to simply write a function literal.
➡ Due to their theoretical roots, these are often called lambda expressions.

Better alternative: use an anonymous function
(indicated by lambda keyword) to achieve same effect.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closures

Free variables.
➡ In a subroutine F, a variable that is neither a formal parameter of F nor a local

variable is called a free variable.
➡ What happens if F is a nested subroutine and returned by the subroutine in

which it was defined?
‣ Or if it is otherwise passed to code that may call it after the subroutine call in

which was defined terminated.

103

Nested subroutines that “capture” their referencing environment.

int foo(int x)
{
 int y = 0;
 return x + y + z;
}

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closures

Free variables.
➡ In a subroutine F, a variable that is neither a formal parameter of F nor a local

variable is called a free variable.
➡ What happens if F is a nested subroutine and returned by the subroutine in

which it was defined?
‣ Or if it is otherwise passed to code that may call it after the subroutine call in

which was defined terminated.

104

Nested subroutines that “capture” their referencing environment.

int foo(int x)
{
 int y = 0;
 return x + y + z;
}

z is a free variable: neither local nor a parameter.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closures

Free variables.
➡ In a subroutine F, a variable that is neither a formal parameter of F nor a local

variable is called a free variable.
➡ What happens if F is a nested subroutine and returned by the subroutine in

which it was defined?
‣ Or if it is otherwise passed to code that may call it after the subroutine call in

which was defined terminated.

Closure.
➡ A subroutine that is “closed over” its free variables.
➡ Meaning: the free variables stay bound to whatever they became bound at

definition time (see lexical scoping) and remain valid.
➡ This requires all entities that are referenced by closures to be allocated on the

heap, since they may have to “outlive” the call in which the closure was created.
➡ Hence, closures are usually found in garbage-collected languages.
➡ Note: closures and anonymous functions are not the same concept!
‣ Closures do not have to be anonymous.
‣ Anonymous functions do not necessarily have free variables.

105

Nested subroutines that “capture” their referencing environment.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closure Example: A “Hidden” Stack

106

def make_stack():
 mystack = []

 def _push(x):
 mystack.append(x)

 def _pop():
 val = mystack[-1]
 del mystack[-1]
 return val

 return (_push, _pop)

(a, b) = make_stack()
(c, d) = make_stack()

a(1); a(2); a(3)
c(9); c(8); c(7)

print 'b:', b(), b(), b()
print 'd:', d(), d(), d()

Output:Python:

b: 3 2 1
d: 7 8 9

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closure Example: A “Hidden” Stack

107

def make_stack():
 mystack = []

 def _push(x):
 mystack.append(x)

 def _pop():
 val = mystack[-1]
 del mystack[-1]
 return val

 return (_push, _pop)

(a, b) = make_stack()
(c, d) = make_stack()

a(1); a(2); a(3)
c(9); c(8); c(7)

print 'b:', b(), b(), b()
print 'd:', d(), d(), d()

Output:Python:

b: 3 2 1
d: 7 8 9

Two nested subroutine definitions; the defined
subroutines are returned as the return value.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closure Example: A “Hidden” Stack

108

def make_stack():
 mystack = []

 def _push(x):
 mystack.append(x)

 def _pop():
 val = mystack[-1]
 del mystack[-1]
 return val

 return (_push, _pop)

(a, b) = make_stack()
(c, d) = make_stack()

a(1); a(2); a(3)
c(9); c(8); c(7)

print 'b:', b(), b(), b()
print 'd:', d(), d(), d()

Output:Python:

b: 3 2 1
d: 7 8 9

Functions a and b share a common stack;
functions c and d share a different stack!

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closure Example: A “Hidden” Stack

109

def make_stack():
 mystack = []

 def _push(x):
 mystack.append(x)

 def _pop():
 val = mystack[-1]
 del mystack[-1]
 return val

 return (_push, _pop)

(a, b) = make_stack()
(c, d) = make_stack()

a(1); a(2); a(3)
c(9); c(8); c(7)

print 'b:', b(), b(), b()
print 'd:', d(), d(), d()

Output:Python:

b: 3 2 1
d: 7 8 9

The name mystack is a free variable;
thus _push() and _pop() are closures.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closure Example: A “Hidden” Stack

110

def make_stack():
 mystack = []

 def _push(x):
 mystack.append(x)

 def _pop():
 val = mystack[-1]
 del mystack[-1]
 return val

 return (_push, _pop)

(a, b) = make_stack()
(c, d) = make_stack()

a(1); a(2); a(3)
c(9); c(8); c(7)

print 'b:', b(), b(), b()
print 'd:', d(), d(), d()

Output:Python:

b: 3 2 1
d: 7 8 9

Creates hidden state that is neither global
nor local nor class-based.

Can be used to implement object systems.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Closure Example: A “Hidden” Stack

111

def make_stack():
 mystack = []

 def _push(x):
 mystack.append(x)

 def _pop():
 val = mystack[-1]
 del mystack[-1]
 return val

 return (_push, _pop)

(a, b) = make_stack()
(c, d) = make_stack()

a(1); a(2); a(3)
c(9); c(8); c(7)

print 'b:', b(), b(), b()
print 'd:', d(), d(), d()

Output:Python:

b: 3 2 1
d: 7 8 9

Java does not support closures:
Again, it uses (inelegant) class-based

workarounds, known as “object-closures”.
This design choice is limiting. For example,
the Swing GUI API would be a lot easier to
use if Java had anonymous functions and
closures; the need for “Listener” interfaces

would be greatly reduced.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Partial Application

What happens if you supply “too few” actual parameters to a function?
➡ Normally, this is an error.
➡ Partial application allows the programmer to specialize functions by

“fixing” some of the parameters.
➡ This is similar to a closure in that some parameters become “hidden.”

112

Specializing functions.

from functools import partial

def scale_by(factor, x):
 return factor * x

scale_by_ten = partial(scale_by, 10)
scale_by_20 = partial(scale_by, 20)

print scale_by_ten(1), scale_by_20(1)
prints 10 20

Python:
plus :: Int -> Int -> Int
plus a b = a + b

main = do
 let f = plus 10
 print (f 20)
 -- prints 30

Haskell:

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Partial Application

What happens if you supply “too few” actual parameters to a function?
➡ Normally, this is an error.
➡ Partial application allows the programmer to specialize functions by

“fixing” some of the parameters.
➡ This is similar to a closure in that some parameters become “hidden.”

113

Specializing functions.

from functools import partial

def scale_by(factor, x):
 return factor * x

scale_by_ten = partial(scale_by, 10)
scale_by_20 = partial(scale_by, 20)

print scale_by_ten(1), scale_by_20(1)
prints 10 20

Python:
plus :: Int -> Int -> Int
plus a b = a + b

main = do
 let f = plus 10
 print (f 20)
 -- prints 30

Haskell:

scale_by requires to parameters…

…by partially applying one parameter, a
new function is created that only requires

a single parameter.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Partial Application

What happens if you supply “too few” actual parameters to a function?
➡ Normally, this is an error.
➡ Partial application allows the programmer to specialize functions by

“fixing” some of the parameters.
➡ This is similar to a closure in that some parameters become “hidden.”

114

Specializing functions.

from functools import partial

def scale_by(factor, x):
 return factor * x

scale_by_ten = partial(scale_by, 10)
scale_by_20 = partial(scale_by, 20)

print scale_by_ten(1), scale_by_20(1)
prints 10 20

Python:
plus :: Int -> Int -> Int
plus a b = a + b

main = do
 let f = plus 10
 print (f 20)
 -- prints 30

Haskell:

This allows the creation of specialized versions
without duplicating the implemented logic.

(DRY, good for maintenance)

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Partial Application

What happens if you supply “too few” actual parameters to a function?
➡ Normally, this is an error.
➡ Partial application allows the programmer to specialize functions by

“fixing” some of the parameters.
➡ This is similar to a closure in that some parameters become “hidden.”

115

Specializing functions.

from functools import partial

def scale_by(factor, x):
 return factor * x

scale_by_ten = partial(scale_by, 10)
scale_by_20 = partial(scale_by, 20)

print scale_by_ten(1), scale_by_20(1)
prints 10 20

Python:
plus :: Int -> Int -> Int
plus a b = a + b

main = do
 let f = plus 10
 print (f 20)
 -- prints 30

Haskell:

A function that maps two integers to an integer.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Partial Application

What happens if you supply “too few” actual parameters to a function?
➡ Normally, this is an error.
➡ Partial application allows the programmer to specialize functions by

“fixing” some of the parameters.
➡ This is similar to a closure in that some parameters become “hidden.”

116

Specializing functions.

from functools import partial

def scale_by(factor, x):
 return factor * x

scale_by_ten = partial(scale_by, 10)
scale_by_20 = partial(scale_by, 20)

print scale_by_ten(1), scale_by_20(1)
prints 10 20

Python:
plus :: Int -> Int -> Int
plus a b = a + b

main = do
 let f = plus 10
 print (f 20)
 -- prints 30

Haskell:
Given only one parameter, Haskell automatically creates a

function that maps one integer to an integer.

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Partial Application

What happens if you supply “too few” actual parameters to a function?
➡ Normally, this is an error.
➡ Partial application allows the programmer to specialize functions by

“fixing” some of the parameters.
➡ This is similar to a closure in that some parameters become “hidden.”

117

Specializing functions.

from functools import partial

def scale_by(factor, x):
 return factor * x

scale_by_ten = partial(scale_by, 10)
scale_by_20 = partial(scale_by, 20)

print scale_by_ten(1), scale_by_20(1)
prints 10 20

Python:
plus :: Int -> Int -> Int
plus a b = a + b

main = do
 let f = plus 10
 print (f 20)
 -- prints 30

Haskell:

In the context of mathematics and functional programming, partial application is
commonly called currying in honor of the logician Haskell Curry (1900–1982).

Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Continuations
Simplified: snapshot of execution state.
➡Stack + registers (incl. instruction pointer).
➡Execution can be resumed (continue) form snapshot at later

point in time.
➡Very powerful abstraction.
‣e.g., can be used to implement exception handling.

Adoption.
➡Not widespread.
➡Scheme is the most-prominent example.
‣Well worth studying over the summer…

➡Challenging to implement without extensive runtime system.

118
Thursday, April 15, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts09: Control Flow

Co-Routines
Concurrent execution of subroutines.
➡ Execution of several subroutines is interleaved.
➡ Not by OS (e.g., processes), but by compiler / runtime system.

Uses.
➡ Emulate concurrency on a uniprocessor.
‣Less overhead than actual multithreading.

➡ Process simulation (SIMULA 67).
➡ Discrete-event simulation.

Adoption.
➡ Not supported by most main-stream programming languages.
‣Can be emulated in C with libraries (and inline assembly code).

➡ Relevance likely reduced on multicore systems.

119
Thursday, April 15, 2010

