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Data Types
Hardware-level: only little (if any) data abstraction.
➡ Computers operate on fixed-width words (strings of bits).
‣8 bits (micro controllers), 16 bit, 32 bits (x86), 64 bits (x86-64, ia64, 
POWER, SPARC V9).

➡ Often include ability to address smaller (but not larger) words
‣ Intel x86 chips can also address bytes (8 bits) and half-words (16 bits)

➡ Number, letter, address: all just a sequence of bits.

Pragmatic view.
➡ Data types define how to interpret bit strings of various lengths.
➡ Allow compiler / runtime system to detect misuse (type checking).

Semantical view (greatly simplified; this is an advanced topic in itself).
➡ A data type is a set of possible values (the domain).
➡ Together with a number of pre-defined operations.
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Kinds of Data Types

Primitive types.
➡ A primitive value is atomic; the type is “structureless.”
➡ Built into the language.
➡ Special status in the language.
‣ e.g., literals, special syntax, special operators

➡ Often correspond to elementary processor capabilities.
‣ E.g., integers, floating point values.

Composite Types.
➡ Types constructed from simpler types.
➡ Can be defined by users.
➡ Basis for abstract data types.

Recursive Types.
➡ Composite types that are (partially) defined in terms of themselves.
➡ Lists, Trees, etc.
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Constructive View
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Primitive Types

Boolean.
➡ Explicit type in most languages.
➡ In C, booleans are just integers with a convention.
‣Zero: False; any other value: True.

➡ True&False: literals or pre-defined constant symbol.

In Haskell.
➡ Type: Bool.
➡ Values: True and False.
➡ Functions: not, && (logical and), || (logical or), …
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logic — numbers — letters
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Primitive Types

Integers.
➡ Every language has them, but designs differ greatly.
➡ Size (in bits) and max/min value.
‣signed vs. unsigned.

➡ Use native word size or standardized word size?
‣Java: standardized, portable, possibly inefficient.
‣C: native, portability errors easy to make, efficient.

In Haskell.
➡ Type: Int. 
‣Signed, based on native words, fast, size impl.-dependent.

➡ Type: Integer.
‣Signed, unlimited size (no overflow!), slower.
‣Sometimes known as BigNums in other languages.
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Primitive Types
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logic — numbers — letters

Ada Range Types:
(Pascal also has range types.)

type Month is range 1..12;
type Day is range 1..31;
type Year is range 1..10000;
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Primitive Types

Enumeration Types.
➡ (small) set of related symbolic constants.
➡ Compiled to ordinary integer constants.
‣But much better in terms of readability readability.

➡ Can be emulated with regular constants (e.g., classic Java)
‣But compiler can check for invalid assignments if explicitly declared 
as an enumeration.

➡enum in C, C++. 

In Haskell.
➡ Integral part of the language.
➡ Example: data LetterGrade = A | B | C | D | F.
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Primitive Types

Floating point.
➡ IEEE 754 defines several standard floating point formats.
➡ Tradeoff between size, precision, and range.
➡ Subject to rounding.
➡ Not all computers support hardware floating point 

arithmetic. 

In Haskell.
➡ Type: Float. 
‣Signed, single-precision machine-dependent floating point.

➡ Type: Double.
‣  Double-precision, double the size.
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logic — numbers — letters
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Primitive Types

Representing money.
➡ Uncontrolled rounding is catastrophic error in the financial 

industry (small errors add up quickly).
➡ Fixed-point arithmetic.
➡ Binary-coded decimal (BCD).
‣Hardware support in some machines.

➡ New 128 bit IEE754 floating point formats with exponent 10 
instead of 2.
‣Allows decimal fractions to be stored without rounding.

In Haskell.
➡ Not in the language standard.
➡ But you can build your own types (next lecture).
➡ Also, can do rounding-free rational arithmetic…
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logic — numbers — letters
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Primitive Types

Rational numbers.
➡ Store fractions as numerator / denominator pairs.
➡ Primitive type in some languages (e.g., Scheme).

In Haskell.
➡ Not primitive.
➡ Type:  (Integral a) => Rational a. 
‣Type class that can be instantiated for either Int (native 
words) or Integer (no overflow).

➡ With a Rational Integer, you never (!) have to worry 
about lack of precision or over/underflow.

➡ (Weʼll discuss type classes soon…)

10

logic — numbers — letters
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Primitive Types

Characters.
➡ Every language has them, but some only implicitly.
➡ In legacy C, a character is just an 8-bit integer.
‣Only 256 letters can be represented (ASCII + formatting).
‣Chinese alone has over 40000 characters…

➡ To be relevant, modern languages must support Unicode.
‣Full Unicode codepoint support requires 32bit characters.
‣Java (16bit char type) was designed for Unicode, but the 
Unicode standard was revised and extended…
‣Modern C and C++ support wide characters.

In Haskell.
➡ Type:  Char 
‣Unicode characters.

11
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Digression: Phaistos Disk
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http://unicode.org/charts/PDF/U101D0.pdf
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Digression: Phaistos Disk
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Mapping Types

Mathematical function.
➡ Maps values from a domain to values in a codomain.

In programming languages.
➡ Array: maps a set of integer indices to values.
‣ In practice, integer indices must be consecutive (and often start at 0).
‣This enables efficient implementations using offsets.

➡ Associative Array: maps “arbitrary” indices to values.
‣Called dictionary in some scripting languages.
‣Usually based on hashing + arrays.

➡ Subroutines / functions: implement arbitrary mappings.
‣Each function signature defines a type.
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An relation between two sets.

m : I �→ V
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Functions in Haskell

Named mappings.
➡Type declaration (optional).
➡Defined by equation.

15

square :: Integer -> Integer
square x = x * x

m : I �→ V
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Functions in Haskell

Named mappings.
➡Type declaration (optional).
➡Defined by equation.

16

square :: Integer -> Integer
square x = x * x

Type declaration: type of a symbol defined with :: “keyword.”
Example: a mapping from Integers to Integers.

m : I �→ V
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Functions in Haskell

Named mappings.
➡Type declaration (optional).
➡Defined by equation.
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square :: Integer -> Integer
square x = x * x

Definition: simple equation defines the mapping.
“The square of x is given by x * x.”

m : I �→ V
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Composite Types

Mathematical foundation.
➡ Recall that each type is a set of values.
➡ composite: “one value of each component type”
➡ Cartesian product:

18

types consisting of multiple components

S × T = {(x, y) | x ∈ S ∧ y ∈ T}
The set of all tuples in which the first element is in S and the second element is in T.
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Example:
Given a 1024x768 pixel display,

each coordinate of the form (x, y) is element of the set: 

Composite Types

Mathematical foundation.
➡ Recall that each type is a set of values.
➡ composite: “one value of each component type”
➡ Cartesian product:
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types consisting of multiple components

S × T = {(x, y) | x ∈ S ∧ y ∈ T}
The set of all tuples in which the first element is in S and the second element is in T.

{1, . . . , 1024}× {1, . . . , 768}
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Composite Types in Programming Languages

History.
➡ Cobol was the first language to formally use records.
‣Adopted and generalized by Algol.

➡ Fortran and LISP historically do not use record definitions.
‣Classic LISP structures everything using cons cells (linked lists).

➡ Virtually all modern languages have some means to express 
structured data.
‣Basis for abstract data types (ADTs)!

Composite types go by many names.
➡ C/C++: struct
➡ Pascal/Ada: record
➡ Prolog: structures (= named tuples)
➡ Python: tuples
➡ Object-orientation: from a data point of view, classes also define 

composite types.
‣Weʼll look at OO in depth later.
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Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

21

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red   :: Int
                 , green :: Int
                 , blue  :: Int
                 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color
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Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.
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-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red   :: Int
                 , green :: Int
                 , blue  :: Int
                 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

data declaration: introduces a type name.
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Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.
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-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red   :: Int
                 , green :: Int
                 , blue  :: Int
                 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

named tuple: introduces a constructor name.
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Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

24

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red   :: Int
                 , green :: Int
                 , blue  :: Int
                 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

component names: give each field a meaningful name.
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Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

25

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red   :: Int
                 , green :: Int
                 , blue  :: Int
                 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Digression: this would be a good use 
case for a proper sub-range type.
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Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

26

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
    where
      average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats
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Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

27

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
    where
      average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Type of function:
stats maps lists of doubles to 3-tuples of doubles.

stats : ListsOfDoubles �→ Double×Double×Double
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Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

28

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
    where
      average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Tuples used directly without declaration.
Pragmatic view: multiple return values.
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Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.
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stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
    where
      average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Type synonym: optionally named.
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Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

30

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
    where
      average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Type synonym: equivalent, but nicer to read.
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Disjoint Union

Mathematical view.
➡ Simply a union of all possible types (= sets of values).
➡ Each value is tagged to tell to which domain it belongs.
‣Tag can be used for checks at runtime.

31

One value, chosen from multiple (disjoint domains).

({1}× S) ∪ ({2}× T ) = {(t, x)| (t = 1 ∧ x ∈ S) ∨ (t = 2 ∧ y ∈ T )}
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Disjoint Union

Mathematical view.
➡ Simply a union of all possible types (= sets of values).
➡ Each value is tagged to tell to which domain it belongs.
‣Tag can be used for checks at runtime.

32

One value, chosen from multiple (disjoint domains).

({1}× S) ∪ ({2}× T ) = {(t, x)| (t = 1 ∧ x ∈ S) ∨ (t = 2 ∧ y ∈ T )}

Example:
A pixel color can be defined using RGB (red, green, blue color channels) or 
HSB (hue, saturation, brightness). Both are simply three-tuples, but values 

must be distinguished at runtime in order to be rendered correctly.
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Disjoint Union in Haskell

Algebraic data type.
➡Generalizes enumeration types and composite types.

33

enumeration of named tuples

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int
                | Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.
data Color = RGB  { red :: Int, green :: Int, blue  :: Int}
           | Named ColorName
           | HSB  { hue :: Double, sat :: Double, bright  :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color
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Disjoint Union in Haskell

Algebraic data type.
➡Generalizes enumeration types and composite types.

34

enumeration of named tuples

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int
                | Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.
data Color = RGB  { red :: Int, green :: Int, blue  :: Int}
           | Named ColorName
           | HSB  { hue :: Double, sat :: Double, bright  :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Disjoint Union: enumeration of constructors.
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Disjoint Union in Haskell

Algebraic data type.
➡Generalizes enumeration types and composite types.

35

enumeration of named tuples

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int
                | Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.
data Color = RGB  { red :: Int, green :: Int, blue  :: Int}
           | Named ColorName
           | HSB  { hue :: Double, sat :: Double, bright  :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Data types of sub-domains can be heterogenous.
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Recursive Types

Classic example: List.
➡defined as a head (some value) and a tail (which is a list).
➡Semantical view: infinite set of values.
‣Rigorous treatment of the semantics of recursive types is non-trivial.

Implementation.
➡Requires pointers (abstraction of addresses) or references (abstraction 

of object location).
‣Pointer arithmetic: calculate new addresses based on new ones.
‣No arithmetic on references.

➡References not necessarily exposed in programming language.
‣e.g., Haskell does not have a reference type!

➡However, references must be exposed to construct cyclical data 
structures.

36

types defined in terms of themselves
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Recursive Types in Haskell

Algebraic type with self-reference.
➡Can use name of type in definition of type.
➡However, no explicit references.
‣No doubly-linked lists!

➡Haskell has generic built-in lists…

37

data IntList = EndOfList
             | Link { elem :: Int, tail :: IntList }
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Recursive Types in Haskell

Algebraic type with self-reference.
➡Can use name of type in definition of type.
➡However, no explicit references.
‣No doubly-linked lists!

➡Haskell has generic built-in lists…

38

data IntList = EndOfList
             | Link { elem :: Int, tail :: IntList }

Type that is being defined is used in definition.
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What are Strings?
Character sequences.
➡ Is it a primitive type?
‣Most languages support string literals.

➡ Is it a composite type?
‣Array of characters (e.g., C).
‣Object type?

➡ Is it a recursive type?
‣ sequence = list (e.g., Prolog).

In Haskell.
➡ type  String  =  [Char]
➡ Strings are simply lists of characters.
‣A type synonym, both ways of referring to the type can be 
used interchangeably.

39
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What are Strings?
Character sequences.
➡ Is it a primitive type?
‣Most languages support string literals.

➡ Is it a composite type?
‣Array of characters (e.g., C).
‣Object type?

➡ Is it a recursive type?
‣ sequence = list (e.g., Prolog).

In Haskell.
➡ type  String  =  [Char]
➡ Strings are simply lists of characters.
‣A type synonym, both ways of referring to the type can be 
used interchangeably.
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Bottom line: No Consensus

No approach to treating strings has 
been universally accepted; each 

approach has certain advantages.
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