Data Types

(with examples in Haskell)

COMP 524: Programming Language Concepts
Bjorn B. Brandenburg

The University of North Carolina at Chapel Hill

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Data Types

Hardware-level: only little (if any) data abstraction.
= Computers operate on fixed-width words (strings of bits).
» 8 bits (micro controllers), 16 bit, 32 bits (x86), 64 bits (x86-64, 1a64,
POWER, SPARC V9).

= Often include ability to address smaller (but not larger) words
» Intel x86 chips can also address bytes (8 bits) and half-words (16 bits)

= Number, letter, address: all just a sequence of bits.

Pragmatic view.
= Data types define how to interpret bit strings of various lengths.
= Allow compiler / runtime system to detect misuse (type checking).

Semantical view (greatly simplified; this is an advanced topic in itself).
= A data type is a set of possible values (the domain).
= Together with a number of pre-defined operations.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Kinds of Data Types

Constructive View

Primitive types.
= A primitive value is atomic; the type is “structureless.”
= Built into the language.
= Special status in the language.
» e.g., literals, special syntax, special operators

= Often correspond to elementary processor capabilities.
» E.g., integers, floating point values.

Composite Types.

= Types constructed from simpler types.
= Can be defined by users.

= Basis for abstract data types.

Recursive Types.
= Composite types that are (partially) defined in terms of themselves.
= Lists, Trees, etc.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types

logic — numbers — letters

Boolean.

= Explicit type in most languages.

= |n C, booleans are just integers with a convention.
» Zero: False; any other value: True.

= True&False: literals or pre-defined constant symbol.

In Haskell.
= Type: Bool.

= \Values: True and False.
= Functions: not, && (logical and), | | (logical or), ...

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types
logic — numbers — letters

Integers.
= Every language has them, but designs differ greatly.
= Size (in bits) and max/min value.

» signed vs. unsigned.

= Use native word size or standardized word size?
» Java: standardized, portable, possibly inefficient.
» C: native, portability errors easy to make, efficient.

In Haskell.
= Type: Int.
» Signed, based on native words, fast, size impl.-dependent.

= [ype: Integer.
» Signed, unlimited size (no overflow!), slower.
» Sometimes known as BigNums in other languages.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types

logic — numbers — letters

-

Intege¢

= Eve Ada Range Types:

= Siz¢ (Pascal also has range types.)
> Sig

-Use type Month 1s range 1..12;
»Ja] type Day 1s range 1..31;
*Cl type Year is range 1. 1@0@0

= Type: Int.
» Signed, based on native words, fast, size impl.-dependent.

= [ype: Integer.
» Signed, unlimited size (no overflow!), slower.
» Sometimes known as BigNums in other languages.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types
logic — numbers — letters

Enumeration Types.
= (small) set of related symbolic constants.
= Compiled to ordinary integer constants.
» But much better in terms of readability readabillity.

= Can be emulated with regular constants (e.g., classic Java)
» But compiler can check for invalid assignments if explicitly declared
as an enumeration.

= enum in C, C++.

In Haskell.
= |[ntegral part of the language.
= Example: data LetterGrade = A | B | C | D | F.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types

logic — numbers — letters

Floating point.

= |EEE 754 defines several standard floating point formats.

= Tradeoff between size, precision, and range.

= Subject to rounding.

= Not all computers support hardware floating point
arithmetic.

In Haskell.
= Type: Float.

» Signed, single-precision machine-dependent floating point.

= Type: Double.
» Double-precision, double the size.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types
logic — numbers — letters

Representing money.

= Uncontrolled rounding is catastrophic error in the financial
industry (small errors add up quickly).

= Fixed-point arithmetic.

= Binary-coded decimal (BCD).
» Hardware support in some machines.

= New 128 bit IEE754 floating point formats with exponent 10
instead of 2.
» Allows decimal fractions to be stored without rounding.

In Haskell.

= Not in the language standard.

= But you can build your own types (next lecture).
= Also, can do rounding-free rational arithmetic...

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types
logic — numbers — letters

Rational numbers.
= Store fractions as numerator / denominator pairs.
= Primitive type in some languages (e.g., Scheme).

In Haskell.
= Not primitive.
= Type: (Integral a) => Rational a.
» Type class that can be instantiated for either Int (native
words) or Integer (no overflow).

= With a Rational Integer, you never (!) have to worry

about lack of precision or over/underflow.
= (We’'ll discuss type classes soon...)

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Primitive Types

logic — numbers — letters

Characters.

= Every language has them, but some only implicitly.

= |n legacy C, a character is just an 8-bit integer.
» Only 256 letters can be represented (ASCII + formatting).
» Chinese alone has over 40000 characters...

= To be relevant, modern languages must support Unicode.
» Full Unicode codepoint support requires 32bit characters.
» Java (16bit char type) was designed for Unicode, but the
Unicode standard was revised and extended...
» Modern C and C++ support wide characters.

In Haskell.
= Type: Char
» Unicode characters.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Digression: Phaistos Disk

Nobody knows what it means, but it’s in Unicode.

http://unicode.org/charts/PDF/U101D0.pdf

UNC Chapel Hill Brandenburg — Spring 2010

Source: Wikimedia Commons, subject to the GFDL

http://unicode.org/charts/PDF/U101D0.pdf
http://unicode.org/charts/PDF/U101D0.pdf

10: Data Types COMP 524: Programming Language Concepts

o

|

L

Q)

®

£

L

O

2

E

101D 101E 101F The characters in this block can be used to represent the signs :;:n

found on the undeciphered Phaistos Disc. 5

Signs E

101D0 & PHAISTOS DISC SIGN PEDESTRIAN 3

101D1 & PHAISTOS DISC SIGN PLUMED HEAD ©

101D2 & PHAISTOS DISC SIGN TATTOOED HEAD 5

101D3 ¥ PHAISTOS DISC SIGN CAPTIVE E

101D4 § PHAISTOS DISC SIGN CHILD =

101D5 8 PHAISTOS DISC SIGN WOMAN g

101D6 & PHAISTOS DISC SIGN HELMET g

101D7 & PHAISTOS DISC SIGN GAUNTLET o

101D8 £, PHAISTOS DISC SIGN TIARA 2
101D9 Y PHAISTOS DISC SIGN ARROW

101DA § PHAISTOS DISC SIGN BOW

101DB & PHAISTOS DISC SIGN SHIELD

Nobody knows what it means, but it’'s in Unicode.

http://unicode.org/charts/PDF/U101D0.pdf

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

http://unicode.org/charts/PDF/U101D0.pdf
http://unicode.org/charts/PDF/U101D0.pdf

10: Data Types COMP 524: Programming Language Concepts

Mapping Types

An relation between two sets.

m: [—V

Mathematical function.
= Maps values from a domain to values in a codomain.

In programming languages.

= Array. maps a set of integer indices to values.
» In practice, integer indices must be consecutive (and often start at 0).
» This enables efficient implementations using offsets.

= Associative Array: maps “arbitrary” indices to values.
» Called dictionary in some scripting languages.
» Usually based on hashing + arrays.

= Subroutines / functions: implement arbitrary mappings.
» Each function signature defines a type.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Functions in Haskell

m: [—V

square :: Integer -> Integer
sgquare X = X * X

Named mappings.
= Type declaration (optional).
=Defined by equation.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Functions in Haskell

m: [—V

(square :: Integer -> Integer)
square X = X * X

Named mappings.
= Type declaration (optior al).
=Defined by equation.

Type declaration: type of a symbol defined with :: “keyword.”
Example: a mapping from Integers to Integers.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Functions in Haskell

m: [—V

square :: Integer -> Integer
(square x = x * x‘)

Named mappings.
= Type declaration (optio jal).
=Defined by equation.

-~

Definition: simple equation defines the mapping.
“The square of x Is given by x * x.

J)

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types

types consisting of multiple components

Mathematical foundation.

= Recall that each type is a set of values.

= composite: “one value of each component type”
= Cartesian product:

SXT=A(x,y) |lzre SANyeT}

The set of all tuples in which the first element is in S and the second element is in T.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types

types consisting of multiple components

Mathematical foundation.

= Recall that each type is a set of values.

= composite: “one value of each component type”
= Cartesian product:

SXT=A(x,y) |lzre SANyeT}

The set of all tuples in which the first element is in S and the second element is in T.

[

Example:
Given a 1024x768 pixel display,
each coordinate of the form (x, y) is element of the set:

(1,...,1024} x {1,...,768)

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Programming Languages

History.
= Cobol was the first language to formally use records.
» Adopted and generalized by Algol.

= Fortran and LISP historically do not use record definitions.
» Classic LISP structures everything using cons cells (linked lists).

= Virtually all modern languages have some means to express
structured data.
» Basis for abstract data types (ADTs)!

Composite types go by many names.

= C/C++: struct

= Pascal/Ada: record

= Prolog: structures (= named tuples)

= Python: tuples

= Object-orientation: from a data point of view, classes also define
composite types.
» We'll look at OO in depth later.

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (1)

Explicit type declaration.

= Named type.

= Named tuple.

= Components optionally named.

-- Implicit fields: only types are given, nho explicit names
-- These can be accessed using pattern matching

-- (de-structuring bind).

data Coordinate = Coord2D Int Int

-- Explicit field names.

data Color = RGB { red . Int
, green :: Int
, blue :: Int
}

-- Composite type of composite types.
-- Again, 1implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (1)

data declaration: introduces a type name.

DIMpPoriel o]0 V adllfied.

-- Implicit fiel
-- These can b/ @ccessed using pattern matching
- - {de-structu!i%g bind).

|data Coordinate F Coord2D Int Int

-- Explicit field names.

' only types are given, no explicit names

)

data Color = RGB { red . Int
, green :: Int
, blue :: Int
}

-- Composite type of composite types.
-- Again, 1implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (1)
EX

": named tuple: introduces a constructor name.
)
- v d Q.4 \J AJ _J) \ o \A =

-- Implicit fields: only Wpes are given, no explicit names
-- These can be accessed /ing pattern matching
-- (de-structuring._bind). ®

data Coordinate =|Coord2D Int Int'

-- Explicit field names.

data Color = RGB { red . Int
, green :: Int
, blue :: Int
}

-- Composite type of composite types.
-- Again, 1implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (1)

T 1 .

component names: give each field a meaningful name.

-- Implicit fields: onlg types are given, no explicit names
-- These can be access(fl using pattern matching

-- (de-structuring binj).

data Coordinate = Coor fi2D Int Int

-- Explicit field namgg.

data Color = RGB {[red |:: Int
.l green |:: Int
., blue |:: Int
}\

-- Composite type of composite types.
-- Again, 1implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (1)

T R .

Digression: this would be a good use
case for a proper sub-range type.

-- Implicit\fields: only t¥pes are given, no explicit names
-- These can\be accessed \/ﬂng pattern matching
-- (de-structying_bind).

data Coordinat. =|Coord2D Int Int]

-- Explicit fie,’\{rames.

data Color = RGB red :: Int
, lgreen :: Int
,\blue ;1 Int
}

-- Composite type of composite types.
-- Again, 1implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (2)

Tuples.

= Not explicitly introduced as a type declaration.
= Can be used directly as a type.

= Can be named using type synonyms.

stats :: [Double] -> (Double, Double, Double)
stats 1lst = (maximum lst, average 1st, minimum 1lst)
where

average 1lst = sum 1lst / fromIntegral (length 1st)
type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types

COMP 524: Programming Language Concepts

Composite Types in Haskell (2)

Tuples.
= Not explicitly introduced as a type declaration.
= Can be used directly as a type.

= Can be named using type synonyms.

—

[stats : - [Double] -> (Double, Double, Double) j'
STAars IST = (maxImurm IST, average 1IST, mInl lst)
where

UNC Chapel Hill
Thursday, March 25, 2010

average 1lst

v CH+aAat+actraonrnce =— [D 1A~ N1 A DNarilkh1 AN

um 1lst / fromIntegral (length 1lst)

Type of function:

stats maps lists of doubles to 3-tuples of doubles.

stats : ListsOfDoubles — Double x Double x Double

Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (2)

Tuples used directly without declaration.
Pragmatic view: multiple return values.

stats :: [Double] T;;(f(Double, Double, Double)j
stats 1st = (maximum ISt, average Ist, minimum 1st)
where
average 1lst = sum 1lst / fromIntegral (length 1st)

type Statistics = (Double, Double, Double)

stats?2 :: [Double] -> Statistics
stats2 = stats

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (2)

Tuples.
_ = Nnt eynlicitlv intradiiced ac a tune declaratinn

Type synonym: optionally named.

siats :: [Double] -> (Double, Double, Double)
st \ts 1st = (maximum lst, average 1st, minimum 1lst)
where

average 1lst = sum 1lst / fromIntegral (length 1st)

&ypé_Statistics = (Double, Double, Doublei)

—

stats2 :: [Double] -> Statistics
stats2 = stats

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Composite Types in Haskell (2)

Tuples.

= Not explicitly introduced as a type declaration.
= Can be used directly as a type.

= Can be named using type synonyms.

stats :: [Double] -> (Double, Double, Double)
stats 1lst = (maximum lst, average 1st, minimum 1lst)
where

average 1lst = sum 1lst / fromIntegral (length 1st)

type Statistics = (Double, Double, Double)

™)

-
stats?2 :: [Double] -> Statistics a

xStatSZ = stats 7 \

-

Type synonym: equivalent, but nicer to read.

UNC Chapel Hill Brandenburg — Spring ZU 1V

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Disjoint Union
One value, chosen from multiple (disjoint domains).

Mathematical view.

= Simply a union of all possible types (= sets of values).

= Each value is tagged to tell to which domain it belongs.
» Tag can be used for checks at runtime.

{1} x SHYUu ({2} xT)={(t,x)| (t=1ANxeS)V(t=2NyeT)}

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Disjoint Union
One value, chosen from multiple (disjoint domains).

Mathematical view.

= Simply a union of all possible types (= sets of values).

= Each value is tagged to tell to which domain it belongs.
» Tag can be used for checks at runtime.

{1} x SHYUu ({2} xT)={(t,x)| (t=1ANxeS)V(t=2NyeT)}

Example:
A pixel color can be defined using RGB (red, green, blue color channels) or
HSB (hue, saturation, brightness). Both are simply three-tuples, but values
must be distinguished at runtime in order to be rendered correctly.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Disjoint Union in Haskell
enumeration of named tuples

Algebraic data type.
=(Generalizes enumeration types and composite types.

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int
| Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.

data Color = RGB { red :: Int, green :: Int, blue :: Int}
| Named ColorName
| HSB { hue :: Double, sat :: Double, bright :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Disjoint Union in Haskell
enumeration of named tuples

Al Disjoint Union: enumeration of constructors.

- [v [/ \J v AJ L/

-- Implicit fields: only types are given, no Plicit names
-- These can be accessed using pattern mat - 4#Ng
-- (de-structurina hind).

[data Coordinate = Coord2D Int Int]

| Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.

data Color = RGB { red :: Int, green :: Int, blue :: Int}
| Named ColorName
| HSB { hue :: Double, sat :: Double, bright :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Disjoint Union in Haskell
enumeration of named tuples

Algebraic data type.

Data types of sub-domains can be heterogenous.

data Coordinate = Coord2D Int Int
| Coord3D Int Int Int

-- Enume Sation type.
data Cola\lrme = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicil-.field namas

data Colorl= RGB { red :: Int, green :: Int, blue :: Int} :
| Named ColorName
| HSB { hue :: Double, sat :: Double, bright :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Recursive Types

types defined in terms of themselves

Classic example: List.
= defined as a head (some value) and a tail (which is a list).
= Semantical view: infinite set of values.
» Rigorous treatment of the semantics of recursive types is non-trivial.

Implementation.

= Requires pointers (abstraction of addresses) or references (abstraction
of object location).
» Pointer arithmetic: calculate new addresses based on new ones.
» No arithmetic on references.

= References not necessarily exposed in programming language.
»e.d., Haskell does not have a reference type!

= However, references must be exposed to construct cyclical data
structures.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25, 2010

10: Data Types COMP 524: Programming Language Concepts

Recursive Types in Haskell

data IntList = EndOfL1ist
| Link { elem :: Int, tail :: IntList }

Algebraic type with self-reference.
=(Can use name of type in definition of type.
=However, no explicit references.

»No doubly-linked lists!

=Haskell has generic built-in lists...

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

Recursive Types in Haskell

|
(data IntList)= EndOfL1ist .
{ | Link { elem :: Int,(tail - IntList)}

Type that is being defined is used in definition. I

UNC Chapel Hill Brandenburg — Spring 2010

10: Data Types COMP 524: Programming Language Concepts

What are Strings?

Character sequences.
= |s it a primitive type?
» Most languages support string literals.

= |s it a composite type?
» Array of characters (e.g., C).
» Object type?

= |s it a recursive type?
» sequence = list (e.g., Prolog).

In Haskell.
= type String = [Char]
= Strings are simply lists of characters.
» A type synonym, both ways of referring to the type can be
used interchangeably.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, March 25,

10: Data Types

COMP 524: Programming Language Concepts

What are Strings?

Character sequences.
= |s it a primitive type?
» Most languages support string literals.

= |s it a composite type?
» Array of characters (e.g., C).

» Object type?

= |s |t a recursive

» sequence = list

In Haskaell.
- type String

= Strings are simpl

» A type synonyi

used interchanc

UNC Chapel Hill
Thursday, March 25, 2010

-

Bottom line: No Consensus

No approach to treating strings has
been universally accepted; each
approach has certain advantages.

Brandenburg — Spring 2010

