
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Data Types
(with examples in Haskell)

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Data Types
Hardware-level: only little (if any) data abstraction.
➡ Computers operate on fixed-width words (strings of bits).
‣8 bits (micro controllers), 16 bit, 32 bits (x86), 64 bits (x86-64, ia64,
POWER, SPARC V9).

➡ Often include ability to address smaller (but not larger) words
‣ Intel x86 chips can also address bytes (8 bits) and half-words (16 bits)

➡ Number, letter, address: all just a sequence of bits.

Pragmatic view.
➡ Data types define how to interpret bit strings of various lengths.
➡ Allow compiler / runtime system to detect misuse (type checking).

Semantical view (greatly simplified; this is an advanced topic in itself).
➡ A data type is a set of possible values (the domain).
➡ Together with a number of pre-defined operations.

2
Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Kinds of Data Types

Primitive types.
➡ A primitive value is atomic; the type is “structureless.”
➡ Built into the language.
➡ Special status in the language.
‣ e.g., literals, special syntax, special operators

➡ Often correspond to elementary processor capabilities.
‣ E.g., integers, floating point values.

Composite Types.
➡ Types constructed from simpler types.
➡ Can be defined by users.
➡ Basis for abstract data types.

Recursive Types.
➡ Composite types that are (partially) defined in terms of themselves.
➡ Lists, Trees, etc.

3

Constructive View

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Boolean.
➡ Explicit type in most languages.
➡ In C, booleans are just integers with a convention.
‣Zero: False; any other value: True.

➡ True&False: literals or pre-defined constant symbol.

In Haskell.
➡ Type: Bool.
➡ Values: True and False.
➡ Functions: not, && (logical and), || (logical or), …

4

logic — numbers — letters

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Integers.
➡ Every language has them, but designs differ greatly.
➡ Size (in bits) and max/min value.
‣signed vs. unsigned.

➡ Use native word size or standardized word size?
‣Java: standardized, portable, possibly inefficient.
‣C: native, portability errors easy to make, efficient.

In Haskell.
➡ Type: Int.
‣Signed, based on native words, fast, size impl.-dependent.

➡ Type: Integer.
‣Signed, unlimited size (no overflow!), slower.
‣Sometimes known as BigNums in other languages.

5

logic — numbers — letters

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Integers.
➡ Every language has them, but designs differ greatly.
➡ Size (in bits) and max/min value.
‣signed vs. unsigned.

➡ Use native word size or standardized word size?
‣Java: standardized, portable, possibly inefficient.
‣C: native, portability errors easy to make, efficient.

In Haskell.
➡ Type: Int.
‣Signed, based on native words, fast, size impl.-dependent.

➡ Type: Integer.
‣Signed, unlimited size (no overflow!), slower.
‣Sometimes known as BigNums in other languages.

6

logic — numbers — letters

Ada Range Types:
(Pascal also has range types.)

type Month is range 1..12;
type Day is range 1..31;
type Year is range 1..10000;

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Enumeration Types.
➡ (small) set of related symbolic constants.
➡ Compiled to ordinary integer constants.
‣But much better in terms of readability readability.

➡ Can be emulated with regular constants (e.g., classic Java)
‣But compiler can check for invalid assignments if explicitly declared
as an enumeration.

➡enum in C, C++.

In Haskell.
➡ Integral part of the language.
➡ Example: data LetterGrade = A | B | C | D | F.

7

logic — numbers — letters

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Floating point.
➡ IEEE 754 defines several standard floating point formats.
➡ Tradeoff between size, precision, and range.
➡ Subject to rounding.
➡ Not all computers support hardware floating point

arithmetic.

In Haskell.
➡ Type: Float.
‣Signed, single-precision machine-dependent floating point.

➡ Type: Double.
‣ Double-precision, double the size.

8

logic — numbers — letters

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Representing money.
➡ Uncontrolled rounding is catastrophic error in the financial

industry (small errors add up quickly).
➡ Fixed-point arithmetic.
➡ Binary-coded decimal (BCD).
‣Hardware support in some machines.

➡ New 128 bit IEE754 floating point formats with exponent 10
instead of 2.
‣Allows decimal fractions to be stored without rounding.

In Haskell.
➡ Not in the language standard.
➡ But you can build your own types (next lecture).
➡ Also, can do rounding-free rational arithmetic…

9

logic — numbers — letters

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Rational numbers.
➡ Store fractions as numerator / denominator pairs.
➡ Primitive type in some languages (e.g., Scheme).

In Haskell.
➡ Not primitive.
➡ Type: (Integral a) => Rational a.
‣Type class that can be instantiated for either Int (native
words) or Integer (no overflow).

➡ With a Rational Integer, you never (!) have to worry
about lack of precision or over/underflow.

➡ (Weʼll discuss type classes soon…)

10

logic — numbers — letters

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Primitive Types

Characters.
➡ Every language has them, but some only implicitly.
➡ In legacy C, a character is just an 8-bit integer.
‣Only 256 letters can be represented (ASCII + formatting).
‣Chinese alone has over 40000 characters…

➡ To be relevant, modern languages must support Unicode.
‣Full Unicode codepoint support requires 32bit characters.
‣Java (16bit char type) was designed for Unicode, but the
Unicode standard was revised and extended…
‣Modern C and C++ support wide characters.

In Haskell.
➡ Type: Char
‣Unicode characters.

11

logic — numbers — letters

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Digression: Phaistos Disk

12

http://unicode.org/charts/PDF/U101D0.pdf

Nobody knows what it means, but itʼs in Unicode.

So
ur

ce
: W

ik
im

ed
ia

 C
om

m
on

s,
 s

ub
je

ct
 to

 th
e

G
FD

L

Thursday, March 25, 2010

http://unicode.org/charts/PDF/U101D0.pdf
http://unicode.org/charts/PDF/U101D0.pdf

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Digression: Phaistos Disk

13

http://unicode.org/charts/PDF/U101D0.pdf

Nobody knows what it means, but itʼs in Unicode.

So
ur

ce
: W

ik
im

ed
ia

 C
om

m
on

s,
 s

ub
je

ct
 to

 th
e

G
FD

L

Thursday, March 25, 2010

http://unicode.org/charts/PDF/U101D0.pdf
http://unicode.org/charts/PDF/U101D0.pdf

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Mapping Types

Mathematical function.
➡ Maps values from a domain to values in a codomain.

In programming languages.
➡ Array: maps a set of integer indices to values.
‣ In practice, integer indices must be consecutive (and often start at 0).
‣This enables efficient implementations using offsets.

➡ Associative Array: maps “arbitrary” indices to values.
‣Called dictionary in some scripting languages.
‣Usually based on hashing + arrays.

➡ Subroutines / functions: implement arbitrary mappings.
‣Each function signature defines a type.

14

An relation between two sets.

m : I �→ V

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Functions in Haskell

Named mappings.
➡Type declaration (optional).
➡Defined by equation.

15

square :: Integer -> Integer
square x = x * x

m : I �→ V

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Functions in Haskell

Named mappings.
➡Type declaration (optional).
➡Defined by equation.

16

square :: Integer -> Integer
square x = x * x

Type declaration: type of a symbol defined with :: “keyword.”
Example: a mapping from Integers to Integers.

m : I �→ V

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Functions in Haskell

Named mappings.
➡Type declaration (optional).
➡Defined by equation.

17

square :: Integer -> Integer
square x = x * x

Definition: simple equation defines the mapping.
“The square of x is given by x * x.”

m : I �→ V

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types

Mathematical foundation.
➡ Recall that each type is a set of values.
➡ composite: “one value of each component type”
➡ Cartesian product:

18

types consisting of multiple components

S × T = {(x, y) | x ∈ S ∧ y ∈ T}
The set of all tuples in which the first element is in S and the second element is in T.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Example:
Given a 1024x768 pixel display,

each coordinate of the form (x, y) is element of the set:

Composite Types

Mathematical foundation.
➡ Recall that each type is a set of values.
➡ composite: “one value of each component type”
➡ Cartesian product:

19

types consisting of multiple components

S × T = {(x, y) | x ∈ S ∧ y ∈ T}
The set of all tuples in which the first element is in S and the second element is in T.

{1, . . . , 1024}× {1, . . . , 768}

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Programming Languages

History.
➡ Cobol was the first language to formally use records.
‣Adopted and generalized by Algol.

➡ Fortran and LISP historically do not use record definitions.
‣Classic LISP structures everything using cons cells (linked lists).

➡ Virtually all modern languages have some means to express
structured data.
‣Basis for abstract data types (ADTs)!

Composite types go by many names.
➡ C/C++: struct
➡ Pascal/Ada: record
➡ Prolog: structures (= named tuples)
➡ Python: tuples
➡ Object-orientation: from a data point of view, classes also define

composite types.
‣Weʼll look at OO in depth later.

20
Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

21

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red :: Int
 , green :: Int
 , blue :: Int
 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

22

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red :: Int
 , green :: Int
 , blue :: Int
 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

data declaration: introduces a type name.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

23

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red :: Int
 , green :: Int
 , blue :: Int
 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

named tuple: introduces a constructor name.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

24

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red :: Int
 , green :: Int
 , blue :: Int
 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

component names: give each field a meaningful name.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (1)
Explicit type declaration.
➡Named type.
➡Named tuple.
➡Components optionally named.

25

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int

-- Explicit field names.
data Color = RGB { red :: Int
 , green :: Int
 , blue :: Int
 }

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Digression: this would be a good use
case for a proper sub-range type.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

26

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
 where
 average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

27

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
 where
 average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Type of function:
stats maps lists of doubles to 3-tuples of doubles.

stats : ListsOfDoubles �→ Double×Double×Double

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

28

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
 where
 average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Tuples used directly without declaration.
Pragmatic view: multiple return values.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

29

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
 where
 average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Type synonym: optionally named.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Composite Types in Haskell (2)
Tuples.
➡Not explicitly introduced as a type declaration.
➡Can be used directly as a type.
➡Can be named using type synonyms.

30

stats :: [Double] -> (Double, Double, Double)
stats lst = (maximum lst, average lst, minimum lst)
 where
 average lst = sum lst / fromIntegral (length lst)

type Statistics = (Double, Double, Double)

stats2 :: [Double] -> Statistics
stats2 = stats

Type synonym: equivalent, but nicer to read.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Disjoint Union

Mathematical view.
➡ Simply a union of all possible types (= sets of values).
➡ Each value is tagged to tell to which domain it belongs.
‣Tag can be used for checks at runtime.

31

One value, chosen from multiple (disjoint domains).

({1}× S) ∪ ({2}× T) = {(t, x)| (t = 1 ∧ x ∈ S) ∨ (t = 2 ∧ y ∈ T)}

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Disjoint Union

Mathematical view.
➡ Simply a union of all possible types (= sets of values).
➡ Each value is tagged to tell to which domain it belongs.
‣Tag can be used for checks at runtime.

32

One value, chosen from multiple (disjoint domains).

({1}× S) ∪ ({2}× T) = {(t, x)| (t = 1 ∧ x ∈ S) ∨ (t = 2 ∧ y ∈ T)}

Example:
A pixel color can be defined using RGB (red, green, blue color channels) or
HSB (hue, saturation, brightness). Both are simply three-tuples, but values

must be distinguished at runtime in order to be rendered correctly.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Disjoint Union in Haskell

Algebraic data type.
➡Generalizes enumeration types and composite types.

33

enumeration of named tuples

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int
 | Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.
data Color = RGB { red :: Int, green :: Int, blue :: Int}
 | Named ColorName
 | HSB { hue :: Double, sat :: Double, bright :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Disjoint Union in Haskell

Algebraic data type.
➡Generalizes enumeration types and composite types.

34

enumeration of named tuples

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int
 | Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.
data Color = RGB { red :: Int, green :: Int, blue :: Int}
 | Named ColorName
 | HSB { hue :: Double, sat :: Double, bright :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Disjoint Union: enumeration of constructors.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Disjoint Union in Haskell

Algebraic data type.
➡Generalizes enumeration types and composite types.

35

enumeration of named tuples

-- Implicit fields: only types are given, no explicit names
-- These can be accessed using pattern matching
-- (de-structuring bind).
data Coordinate = Coord2D Int Int
 | Coord3D Int Int Int

-- Enumeration type.
data ColorName = White | Black | Green | Red | Blue | CarolinaBlue

-- Explicit field names.
data Color = RGB { red :: Int, green :: Int, blue :: Int}
 | Named ColorName
 | HSB { hue :: Double, sat :: Double, bright :: Double}

-- Composite type of composite types.
-- Again, implicit fields.
data Pixel = Pixel Coordinate Color

Data types of sub-domains can be heterogenous.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Recursive Types

Classic example: List.
➡defined as a head (some value) and a tail (which is a list).
➡Semantical view: infinite set of values.
‣Rigorous treatment of the semantics of recursive types is non-trivial.

Implementation.
➡Requires pointers (abstraction of addresses) or references (abstraction

of object location).
‣Pointer arithmetic: calculate new addresses based on new ones.
‣No arithmetic on references.

➡References not necessarily exposed in programming language.
‣e.g., Haskell does not have a reference type!

➡However, references must be exposed to construct cyclical data
structures.

36

types defined in terms of themselves

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Recursive Types in Haskell

Algebraic type with self-reference.
➡Can use name of type in definition of type.
➡However, no explicit references.
‣No doubly-linked lists!

➡Haskell has generic built-in lists…

37

data IntList = EndOfList
 | Link { elem :: Int, tail :: IntList }

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

Recursive Types in Haskell

Algebraic type with self-reference.
➡Can use name of type in definition of type.
➡However, no explicit references.
‣No doubly-linked lists!

➡Haskell has generic built-in lists…

38

data IntList = EndOfList
 | Link { elem :: Int, tail :: IntList }

Type that is being defined is used in definition.

Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

What are Strings?
Character sequences.
➡ Is it a primitive type?
‣Most languages support string literals.

➡ Is it a composite type?
‣Array of characters (e.g., C).
‣Object type?

➡ Is it a recursive type?
‣ sequence = list (e.g., Prolog).

In Haskell.
➡ type String = [Char]
➡ Strings are simply lists of characters.
‣A type synonym, both ways of referring to the type can be
used interchangeably.

39
Thursday, March 25, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts10: Data Types

What are Strings?
Character sequences.
➡ Is it a primitive type?
‣Most languages support string literals.

➡ Is it a composite type?
‣Array of characters (e.g., C).
‣Object type?

➡ Is it a recursive type?
‣ sequence = list (e.g., Prolog).

In Haskell.
➡ type String = [Char]
➡ Strings are simply lists of characters.
‣A type synonym, both ways of referring to the type can be
used interchangeably.

40

Bottom line: No Consensus

No approach to treating strings has
been universally accepted; each

approach has certain advantages.

Thursday, March 25, 2010

