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Purpose

Types provide implicit context
➡Compilers can infer information, so programmers 

write less code.
➡e.g., The expression a + b in Java may be adding two 

integer, two floats or two strings depending on 
context.

Types define a set of semantically valid operations
➡Language system can detect semantic mistakes
➡e.g., Pythonʼs list type supports append() and pop(), 

but complex numbers do not
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Type Systems

A type system consists of:
1. A mechanism to define types and associate 

them with language constructs.
2. A set of rules for “type equivalence,” “type 

compatibility,” and “type inference.”
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Type Systems: Type Checking

Enforcement of type system rules.
➡ Type Checking is the process of ensuring that a 

program obeys the languageʼs type 
compatibility rules.

Several approaches to type checking.
➡ Strongly typed: ADA, Java, Haskell, Python, …
➡ Weakly typed: C, C++, …
➡ Statically typed: Haskell, Miranda, …
➡ Dynamically typed: Python, Ruby, …
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Strong vs. Weak Typing
Strongly typed languages always detect type errors:
➡All expressions and objects must have a type
➡All operations must be applied to operands of 

appropriate types.
➡High assurance: any type error will be reported.

Weakly typed languages may “misinterpret” bits.
➡“anything can go”
➡Operations are carried out, possibly with unintended 

consequences.
➡Example: adding two references might result in the 

sum of the objectʼs addresses (which is nonsensical).
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Strong typing is essential for secure 
execution of untrusted code!

Otherwise, system could be tricked 
into accessing protected memory, etc.

Examples: Java applets, Javascript.
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Static vs. Dynamic Type Checking

Static Type Checking.
➡All checks performed at compile time.
➡Each variable/expression has a fixed type.

Dynamic Type Checking.
➡Only values have fixed type.
➡Expressions may yield values of different types.
➡All checks done necessarily at runtime.
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This terminology is not absolute: most 
statically, strongly typed languages have a 

(small) dynamic component.

Example: disjoint union types in strongly 
typed languages require tag checks at runtime.
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Type Checking 
Type Equivalence
➡When are the types of two values are the same?

Type Compatibility:
➡Can a value of A be used when type B is expected?

Type Inference:
➡What is the type of expressions if no explicit type 

information is provided?
➡If type information is provided by the programmer, 

does it match the actual expressionʼs type?

9
Tuesday, March 30, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts11: Type Systems & Type Checking

Type Equivalence

When are two types semantically the same?
➡For example, when combining results from 

separate compilation.
➡Two general ideas: 
‣structural equivalence
‣name equivalence

➡In practice, many variants exist.

10
Tuesday, March 30, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts11: Type Systems & Type Checking

Structural Equivalence

‣Two types are structurally equivalent if they have 
equivalent components.
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typedef struct{int a,b;} foo1;

typedef struct {
int a,b;
} foo2;

Equivalent!
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Structural Equivalence

‣Two types are structurally equivalent if they have 
equivalent components.

12

typedef struct{int a,b;} foo1;

typedef struct{
int b;
int a;
} foo2;

Equivalent? Yes, in most languages.
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Structural Equivalence

13

typedef struct{
char *name;
char *addre;
int age;
} student;

Equivalent...

typedef struct{
char *name;
char *addre;
int age;
} school;

... but probably not intentional. 
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Name Equivalence 

‣Name equivalence assumes that two definitions 
with different names are not the same.
‣Programmer probably had a good reason to pick 
different names…
‣Solves the “student-school” problem.
‣Standard in most modern languages.
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Type Aliases / Type Synonyms

‣Under name equivalence, it may be convenient to 
introduce alternative names.
‣E.g., for improved readability.

‣Such a construction is called an alias. 
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type ItemCount = Integer
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Name Equivalence: Aliases 

‣Two ways to interpret an alias:
‣Strict name equivalence
‣ItemCount is different from Integer.
‣This is called a derived type.

‣ Loose name equivalence 
‣ItemCount is equivalent to Integer.

16

type ItemCount = Integer
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‣ Loose name equivalence 
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type ItemCount = Integer

Haskell: uses loose name equivalence by default.

Strict name equivalence is available with the 
newtype keyword:

newtype ItemCount = Integer
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Problem with Loose Equivalence
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TYPE celsius_temp = REAL;
     farhen_temp = REAL;
VAR  c: celsius_temp;
     f: farhen_temp;
...
f:=c;(* probably should be an error*)
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Type Conversion
Type mismatch.
➡Intention: to use a value of one type in a context 

where another type is expected.
‣E.g., add integer to floating point

➡Requires type conversion or type cast.

Bit representation.
➡Different types may have different representations.
➡Converting type cast: underlying bits are changed
➡Non-converting type cast: bits remain unchanged.
‣But are interpreted differently.
‣Useful for systems programming.

19
Tuesday, March 30, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts11: Type Systems & Type Checking

Type Coercion: Implicit Casts

When does casting occur?
➡Type coercion: compiler has rules to 

automatically cast values in certain situations.
➡E.g., integer-to-float promotion.
➡Some languages allow coercion for user-defined 

types (e.g., C++).

Two-edged features.
➡Makes code performing arithmetic more natural.
➡Can hide type errors!

20

float x = 3;
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➡E.g., integer-to-float promotion.
➡Some languages allow coercion for user-defined 

types (e.g., C++).

Two-edged features.
➡Makes code performing arithmetic more natural.
➡Can hide type errors!
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float x = 3;

Haskell: no type coercion.

Any type conversion must be explicit.
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