Polymorphism

; \ COMP 524: Programming Language Concepts
l Bjorn B. Brandenburg

—

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Thursday, April 8, 2010

13: Polymorphism COMP 524: Programming Language Concepts

Static Type Checking & Redundancy

Assumptions so far.
= Each name is bound to exactly one entity (e.g., a subroutine).
= Static typing: every entity has a specific type.

Suppose we wanted to extract the first element of a 2-tuple.
= Easy in Prolog or Python.
» Dynamic type checking: no type violation at runtime.

=Hard to do in (basic) Haskell or Java (if it had tuples).
» What is the type of the first element?

» What is the type of the second element?
» What is the type of getFirst?

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

ldea: Type Variables

Problem with specific types.
= Unnecessarily constrained.
» E.g., tuple de-structuring does not depend on type, so why have
restrictions?

What if we could write it for “any” type?
= Analogy: arithmetic with numbers vs. arithmetic with variables.
= Raises level of abstraction.

» Often called generic programming.

getFirst :: (a, b) -> a
getFirst (X, y) = X

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

ldea: Type Variables

Problem with specific types.
= Unnecessarily constrained.
> I;.q., tuple de-structuring does not depend on type, so why have

Haskell: lower-case letters are type variables.
wh JetFirstis defined for all types a and b without

-) specific restrictions, i.e. any type.
- R C Vel O dADSIIc Q.
» Often called generic provytamming.
d ﬂ
getFirst ::|(a, b)|-> a

getFirst (X, Yy) = X

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Parametric Polymorphism

Parametrized subroutines.

= Defined in terms of one or more type parameters.

=“Subroutine recipe:” how to define a specific instance of the
family of subroutines given specific types.

Implementation.
= Compiler can generate type-specific versions.
» Or, if possible, code that works with any type (e.g., getFirst).

= Type checking becomes more complicated.
» In fact, with certain kinds of polymorphism, type system can
be come undecidable (for details see grad school).

Widespread in modern imperative languages.
= Often called generic programming.

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Type Classes

What is the type of multiplication?
=(Can take any two numbers.
» There are many number types: Int, Float, ...

=But not just any type.
»E.g., addition of tuples not (uniquely) defined.

Idea: type restrictions.
=Multiplication defined for all types such that the
type Is a number.

> it ()
(*) :: (Num a) => a -> a -> a

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Type Classes

Haskell: if a is a member of the type class Num...

=PbuUtl NOT just any type.
’E.g., addit.ion

...multiplication Is

Idea: type res rictions defined as function that
=Multiplication \efined f\r all ty maps 2 as to one a.

type Is a numller.

> t (*\d j\r\’j N
(*) :: RNum a)) :>l[a -> a -> a

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Polymorphic Types

Composite types with type variables.
= Some data structures are defined for any type.
»List, Tree, Map, Stack, etc.

»“a X of Y”, e.qg., “a List of Int”

= (Generic or parametrized types.
=Heavily used in collection libraries.

data Tree a = Nil
| Node { left :: Tree a
, value :: a
, right :: Tree a
h

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Polymorphic Types

Haskell: Tree type Is parametrized.

r‘a XY

= Generil\o
=Heavily 1S€C

data[Tree aj= N1l / -
‘ | Node {{left 1 Tree a
}\

Type parameter used for components.

A (A

. ' | ' |

value :: a
right :: Tree a

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Ad-Hoc Polymorphism / Overloading

What about multiplication in Java®?
=Defined for a few specific types.
=Uses same symbol ™.

Overloading.

=Same name is used for multiple bindings.

=Disambiguated based on types.

=Context-independent: only parameter types used
for disambiguation.

=Context-dependent: parameter types may be
ambiguous If return type is unambiguous.

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Ad-Hoc Polymorphism / Overloading

What about multiplication in Java®?
=Defined for a few specific types.
=Uses same symbol ™.

Haskell: ad-hoc polymorphism is not supported;
polymorphic code is required to use type classes.

for disambiguation.
=Context-dependent: parameter types may be
ambiguous If return type is unambiguous.

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Type Classes in Haskell

Definition of a type.

= A set of values.

=A set of operations that can be applied to values of
the types.

Definition of a type class.

=A set of types that for which a number of standard
operations is declared.
re.g., every Numeric type must support addition”

=Haskell’s way of controlling overloading.
» A function can only be overloaded if it is defined by
a type class.

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Type Classes in Haskell

Common Type Classes

Eg — values can be tested for equality (==, /=)

Ord — values are ordered (<, <=, >, >=, max, min)
Show — can be converted to string (show)

Read — can be parsed from a string (read)

Num — anumeric type (+, -, *, negate, abs, signum)
Integral — integers (mod, div)

Fractional — divisible numbers (/, recip)

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism

COMP 524: Programming Language Concepts

Defining a Type Class

-- Minimal complete definition: either '==' or '/=".

class Eq a where

(==), (/=) ' a -> a -> Bool

not (x == vy)
not (x /=vYy)

X /=Y
X ==Y

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEQ

Type Class Definition.
=Specifies a name.

=Required operations (+ types!)
=Default implementations.

UNC Chapel Hill

Brandenburg — Spring 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

13: Polymorphism COMP 524: Programming Language Concepts

Defining a Typ

Define name.

-- Minimal complete defi~-g : elther

(Elass Eq a wheréj
\ (==), (/=) ;i a ->a -> Bool

X /=Y
X ==Y

not (x == vy)
not (x /=vYy)

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEQ

Type Class Definition.
=Specifies a name.

=Required operations (+ types!)
=Default implementations.

UNC Chapel Hill Brandenburg — Spring 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

13: Polymorphism COMP 524: Programming Language Concepts

Defining a Type Class

-- Minimal complete definition: either '==' or '/=".
class Ea a where
C (=), (/7)) i a ->a -> Bool |
X /=Y not (X == vy)

X ==y not (x /=vy) ~

http://www.haskell.org/ghc/docs/latest/html/libraries/base-« 12.0.0/Prelude.html#t%3AEQ

Type Class Definition.
=Specifies a name. /
=Required operations (+ types
=Default implementations.

Required operations
and associated types.

UNC Chapel Hill Brandenburg — Spring 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

13: Polymorphism

COMP 524: Programming Language Concepts

-

class Eq a where

Default Implementations:
User can specify either function, the missing
one uses the default implementation. If user
provides both, then default is overruled.

~

A

(==), (/=) p 1 a -> a -> Bool
X /=Y = not (X == vy)
X ==Y = not (X /= Yy)

™)

.

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEQ

Type Class Definition.
=Specifies a name.

=Required operations (+ types!)
=Default implementations.

UNC Chapel Hill

Brandenburg — Spring 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

13: Polymorphism

COMP 524: Programming Language Concepts

Declaring a Type Class Instance
adding a type to a type class

data Reply =

repl_equal ::
repl_equal Yes Yes
repl_equal No No
repl_equal Maybe Maybe

repl_equal

instance Eg Reply where
(==) = repl_equal

Yes | No | Maybe

Reply -> Reply -> Bool
= True

True

True

False

Define functions + instance.

=Define appropriate functions like any other function.

=Add an instance declaration to overload type class
symbols.

UNC Chapel Hill

Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Declaring a Type Class Instance
adding a type to a type class

[data Reply = Yes | No | Maybe j

repl_equal :: Reply -> Reply - ool
repl_equal Yes Yes = True *
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eg Reply where
(==) = repl_equal

Simple Algebraic Type
(works for any type)

Define functions + instance.

=Define appropriate functions like any other function.

=Add an instance declaration to overload type class
symbols.

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

s

Simple Equality Function s Instance
can be arbitrarily complicated

class

data Repg\'= Yes | No | Maybe

\

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False |

instance Eg Reply where
(==) = repl_equal

Define functions + instance.

=Define appropriate functions like any other function.

=Add an instance declaration to overload type class
symbols.

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

-

Instance declaration
add equations to standard operations
missing symbols will use default impl.

e

data Reply = Yes | JNo | Maybe
repl_equal :: Rep -> Reply -> Bool
repl_equal Yes Y([E = True
repl_equal No No = True
repl_equal MaybrfMaybe = True
repl_equal _ _![= False
instance Eg Reply where \
(==) = repl_equal
|\

Define functions + instance.

=Define appropriate functions like any other function.

=Add an instance declaration to overload type class
symbols.

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Deriving Standard Classes
compiler-generated instances

Repetition.

=Some type class instances almost always look the same.
=E.g., Eq, Show, Read, ...

=Defining such instances over and over is tedious.

Derived instances.
=Built-in support for some special type classes.
= Tell compiler to generate appropriate code.

data Reply = Yes | No | Maybe
deriving (Eq)

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Type Class Hierarchy

Generalizations.
=Some type classes have a hierarchical relationship.
=E.g., an Integral type should also a Num type.

=This can be required in the type class definition.
» Enforced by compiler.

class (Eg a) => 0Ord a where

compare ;. a -> a -> 0Ordering
(<)I (<:)I (>)/ (>:) . a -> a -> Bool
max, min ' a ->a -> a

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Type Class Hierarchy

Hierarchy:
Generalizations. Every ordered type must also
=Some type classe{ have a concept of equality.
=E.g., an Integra Oe snould also a NUMtype.
=This can be requirecfin the type class definition.

» Enforced by comp fer.

!,
[class (Eg a) => 0Ord a whereJ
. compare a -> a -> 0Ordering
(<)I (<:)I (>)/ (>:) . a -> a -> Bool
max, min > a ->a -> a

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Polymorphic Instances
How to declare instances for polymorphic types?

data Tree a = Nil
| Node { val :: a, left :: Tree a, right :: Tree a}

Tree node equality.

=Nil equals nil.

=Node equals node if values are equal and subtrees
are equal.
»What if a is not actually in Eq?

instance (Egq a) => Eq (Tree a) where

Nil == N1l = True
Node vl 11 r1 == Node v2 12 r2 = vl == v2 && 11 == 12 && r1 == r?2
—= = False

UNC Chapel Hill Brandenburg — Spring 2010

13: Polymorphism COMP 524: Programming Language Concepts

Polymorphic Instances
How to declare instances for polymorphic types?

data Tree a = Nil _
| Node { val Polymorphic Instance:
| Instance only defined for types with
Tree node equality. equality; undefined otherwise.

=Nil equals nil.
=Node equals node if values dre equal and subtrees
are equal.
»What if a is not actuall#in Eq?

(instance (Eg a) => Eq (Tree afjwhere

NTT == NIl = True
Node vl 11 r1 == Node v2 12 r2 = vl == v2 && 11 == 12 && r1 == r?2
_ == _ = False

UNC Chapel Hill Brandenburg — Spring 2010

