Polymorphism
Static Type Checking & Redundancy

Assumptions so far.
- Each name is bound to exactly one entity (e.g., a subroutine).
- **Static** typing: every entity has a *specific* type.

Suppose we wanted to extract the first element of a 2-tuple.
- Easy in Prolog or Python.
 - **Dynamic** type checking: no type violation at runtime.
- Hard to do in (basic) Haskell or Java (if it had tuples).
 - What is the *type* of the **first** element?
 - What is the *type* of the **second** element?
 - What is the *type* of **getFirst**?
Idea: Type Variables

Problem with specific types.

→ Unnecessarily constrained.
 ‣ E.g., tuple de-structuring does not depend on type, so why have restrictions?

What if we could write it for “any” type?

→ Analogy: arithmetic with numbers vs. arithmetic with variables.
→ Raises level of abstraction.
 ‣ Often called generic programming.

\[
\text{getFirst} :: (a, b) \rightarrow a
\]
\[
\text{getFirst} (x, y) = x
\]
Idea: Type Variables

Problem with specific types.
- **Unnecessarily** constrained.
 - E.g., tuple de-structuring does not depend on type, so why have restrictions?

Haskell: lower-case letters are type variables.
getFirst is defined for all types a and b without specific restrictions, i.e. *any* type.

getFirst :: (a, b) -> a
getFirst (x, y) = x
13: Polymorphism

Parametric Polymorphism

Parametrized subroutines.
- Defined in terms of one or more type parameters.
- “Subroutine recipe:” how to define a specific instance of the family of subroutines given specific types.

Implementation.
- Compiler can generate type-specific versions.
 ‣ Or, if possible, code that works with any type (e.g., getFirst).
- Type checking becomes more complicated.
 ‣ In fact, with certain kinds of polymorphism, type system can be come undecidable (for details see grad school).

Widespread in modern imperative languages.
- Often called generic programming.
Type Classes

What is the type of multiplication?

- Can take any two numbers.
 - There are many number types: Int, Float, ...
- But not just any type.
 - E.g., addition of tuples not (uniquely) defined.

Idea: type restrictions.
- Multiplication defined for all types such that the type is a number.

> :t (*)
(*): (Num a) -> a -> a -> a
Type Classes

Haskell: if \(a \) is a member of the type class `Num`...

- But not just any type.
 - E.g., addition of tuples is not uniquely defined.

Idea: type restrictions

- Multiplication defined for all types such that the type is a number.

\[\text{Haskell: if } a \text{ is a member of the type class } \text{Num} \ldots \]

\[> : t \ (\ast) \]

\[
(\ast) :: (\text{Num } a) \Rightarrow a \to a \to a
\]
Polymorphic Types

Composite types with type variables.

- Some data structures are defined for any type.
 - List, Tree, Map, Stack, etc.
 - “a X of Y”, e.g., “a List of Int”

- Generic or parametrized types.
- Heavily used in collection libraries.

```haskell
data Tree a = Nil
             | Node { left :: Tree a
                     , value :: a
                     , right :: Tree a
                    }
```

Thursday, April 8, 2010
Polymorphic Types

Haskell: Tree type is parametrized.

```
data Tree a = Nil
  | Node { left :: Tree a , value :: a , right :: Tree a }
```

Type parameter used for components.
Ad-Hoc Polymorphism / Overloading

What about multiplication in Java?

- Defined for a few specific types.
- Uses same symbol ‘*’.

Overloading.

- Same name is used for multiple bindings.
- Disambiguated based on types.
- **Context-independent**: only parameter types used for disambiguation.
- **Context-dependent**: parameter types may be ambiguous if return type is unambiguous.
Ad-Hoc Polymorphism / Overloading

What about multiplication in Java?
- Defined for a **few specific types**.
- Uses same symbol ‘*’.

Haskell: ad-hoc polymorphism is not supported; polymorphic code is required to use type classes.

Context-dependent: parameter types may be ambiguous if return type is unambiguous.
Type Classes in Haskell

Definition of a type.

- A set of values.
- A set of operations that can be applied to values of the types.

Definition of a type class.

- A set of types that for which a number of standard operations is declared.
 - e.g., “every Numeric type must support addition”
- Haskell’s way of controlling overloading.
 - A function can only be overloaded if it is defined by a type class.
Type Classes in Haskell

Common Type Classes

- **Eq** — values can be tested for equality (==, /=)
- **Ord** — values are ordered (<, <=, >, >=, max, min)
- **Show** — can be converted to string (show)
- **Read** — can be parsed from a string (read)
- **Num** — a numeric type (+, -, *, negate, abs, signum)
- **Integral** — integers (mod, div)
- **Fractional** — divisible numbers (/, recip)

These are type classes in Haskell.
Defining a Type Class

```
-- Minimal complete definition: either '==' or '/='.  
class Eq a where
  (==), (/=) :: a -> a -> Bool

  x /= y = not (x == y)
  x == y = not (x /= y)
```

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.

- Specifies a **name**.
- **Required operations** (+ types!)
- **Default implementations**.
Define a Type Class

```haskell
-- Minimal complete definition: either '==' or '/='. --

class Eq a where
  (==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)
```

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.

- Specifies a **name**.
- **Required operations** (+ types!)
- **Default implementations**.
Defining a Type Class

```haskell
-- Minimal complete definition: either '==' or '/='. --
class Eq a where
    (==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)
```

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.

- Specifies a **name**.
- **Required operations** (+ types)
- **Default implementations**.

Required operations and associated types.
Default Implementations:
User can specify either function, the missing one uses the default implementation. If user provides both, then default is overruled.

class Eq a where
 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)
 x == y = not (x /= y)

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.
► Specifies a name.
► Required operations (+ types!)
► Default implementations.
Declaring a Type Class Instance

adding a type to a type class

```haskell
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
  (==) = repl_equal
```

Define functions + instance.
- Define appropriate functions like any other function.
- Add an instance declaration to overload type class symbols.
Declaring a Type Class Instance

adding a type to a type class

<table>
<thead>
<tr>
<th>data Reply = Yes</th>
<th>No</th>
<th>Maybe</th>
</tr>
</thead>
<tbody>
<tr>
<td>repl_equal :: Reply -> Reply -> Bool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repl_equal Yes Yes = True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repl_equal No No = True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repl_equal Maybe Maybe = True</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repl_equal _ _ = False</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

instance Eq Reply where
(==) = repl_equal

Simple Algebraic Type
(works for any type)

Define functions + instance.

- Define appropriate functions like any other function.
- Add an instance declaration to overload type class symbols.
13: Polymorphism

Simple Equality Function

can be arbitrarily complicated

```haskell
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
  (==) = repl_equal
```

Define functions + instance.

- **Define appropriate functions** like any other function.
- **Add an instance declaration** to overload type class symbols.
Define functions + instance.

- Define appropriate functions like any other function.
- Add an instance declaration to overload type class symbols.

data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
 (==) = repl_equal
Deriving Standard Classes

compiler-generated instances

Repetition.
- Some type class instances almost always look the same.
- E.g., `Eq`, `Show`, `Read`, ...
- Defining such instances over and over is tedious.

Derived instances.
- Built-in support for some special type classes.
- Tell compiler to generate appropriate code.

```haskell
data Reply = Yes | No | Maybe deriving (Eq)
```
Type Class Hierarchy

Generalizations.

- Some type classes have a hierarchical relationship.
- E.g., an Integral type should also be a Num type.
- This can be required in the type class definition.
 - Enforced by compiler.

```haskell
class (Eq a) => Ord a where
  compare :: a -> a -> Ordering
  (<=), (>), (>=) :: a -> a -> Bool
  max, min :: a -> a -> a
```
Type Class Hierarchy

Generalizations.

→ Some type classes have a hierarchical relationship.

→ E.g., an `Integral` type should also be a `Num` type.

→ This can be required in the type class definition.

 Enforced by compiler.

Hierarchy:
Every ordered type must also have a concept of equality.

```haskell
class (Eq a) => Ord a where
    compare :: a -> a -> Ordering
    (<), (<=), (>, >=) :: a -> a -> Bool
    max, min :: a -> a -> a
```
Polymorphic Instances

How to declare instances for polymorphic types?

```haskell
data Tree a = Nil |
            Node { val :: a, left :: Tree a, right :: Tree a}
```

Tree node equality.

- Nil equals nil.
- Node equals node if values are equal and subtrees are equal.

What if a is not actually in Eq?

```haskell
instance (Eq a) => Eq (Tree a) where
  Nil == Nil = True
  Node v1 l1 r1 == Node v2 l2 r2 = v1 == v2 && l1 == l2 && r1 == r2
  _ == _ = False
```
Polymorphic Instances

How to declare instances for polymorphic types?

data Tree a = Nil |
 Node { val :: a, left :: Tree a, right :: Tree a }

Tree node equality.

⇒ Nil equals nil.
⇒ Node equals node if values are equal and subtrees are equal.
 What if a is not actually in Eq?

instance (Eq a) => Eq (Tree a) where
 Nil == Nil = True
 Node v1 l1 r1 == Node v2 l2 r2 = v1 == v2 && l1 == l2 && r1 == r2
 _ == _ = False

Polymorphic Instance:
Instance only defined for types with equality; undefined otherwise.