
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Polymorphism

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Static Type Checking & Redundancy
Assumptions so far.
➡Each name is bound to exactly one entity (e.g., a subroutine).
➡Static typing: every entity has a specific type.

Suppose we wanted to extract the first element of a 2-tuple.
➡Easy in Prolog or Python.
‣Dynamic type checking: no type violation at runtime.

➡Hard to do in (basic) Haskell or Java (if it had tuples).
‣What is the type of the first element?
‣What is the type of the second element?
‣What is the type of getFirst?

2
Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Idea: Type Variables
Problem with specific types.
➡ Unnecessarily constrained.
‣E.g., tuple de-structuring does not depend on type, so why have
restrictions?

What if we could write it for “any” type?
➡ Analogy: arithmetic with numbers vs. arithmetic with variables.
➡ Raises level of abstraction.
‣Often called generic programming.

3

getFirst :: (a, b) -> a
getFirst (x, y) = x

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Idea: Type Variables
Problem with specific types.
➡ Unnecessarily constrained.
‣E.g., tuple de-structuring does not depend on type, so why have
restrictions?

What if we could write it for “any” type?
➡ Analogy: arithmetic with numbers vs. arithmetic with variables.
➡ Raises level of abstraction.
‣Often called generic programming.

4

getFirst :: (a, b) -> a
getFirst (x, y) = x

Haskell: lower-case letters are type variables.
getFirst is defined for all types a and b without

specific restrictions, i.e. any type.

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Parametric Polymorphism
Parametrized subroutines.
➡Defined in terms of one or more type parameters.
➡ “Subroutine recipe:” how to define a specific instance of the

family of subroutines given specific types.

Implementation.
➡Compiler can generate type-specific versions.
‣Or, if possible, code that works with any type (e.g., getFirst).

➡Type checking becomes more complicated.
‣ In fact, with certain kinds of polymorphism, type system can
be come undecidable (for details see grad school).

Widespread in modern imperative languages.
➡Often called generic programming.

5
Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Type Classes
What is the type of multiplication?
➡Can take any two numbers.
‣There are many number types: Int, Float, …

➡But not just any type.
‣E.g., addition of tuples not (uniquely) defined.

Idea: type restrictions.
➡Multiplication defined for all types such that the

type is a number.

6

> :t (*)
(*) :: (Num a) => a -> a -> a

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Type Classes
What is the type of multiplication?
➡Can take any two numbers.
‣There are many number types: Int, Float, …

➡But not just any type.
‣E.g., addition of tuples not (uniquely) defined.

Idea: type restrictions.
➡Multiplication defined for all types such that the

type is a number.

7

> :t (*)
(*) :: (Num a) => a -> a -> a

Haskell: if a is a member of the type class Num…

…then… …multiplication is
defined as function that

maps 2 as to one a.

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Polymorphic Types

Composite types with type variables.
➡Some data structures are defined for any type.
‣List, Tree, Map, Stack, etc.
‣“a X of Y”, e.g., “a List of Int”

➡Generic or parametrized types.
➡Heavily used in collection libraries.

8

data Tree a = Nil
 | Node { left :: Tree a
 , value :: a
 , right :: Tree a
 }

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Polymorphic Types

Composite types with type variables.
➡Some data structures are defined for any type.
‣List, Tree, Map, Stack, etc.
‣“a X of Y”, e.g., “a List of Int”

➡Generic or parametrized types.
➡Heavily used in collection libraries.

9

data Tree a = Nil
 | Node { left :: Tree a
 , value :: a
 , right :: Tree a
 }

Type parameter used for components.

Haskell: Tree type is parametrized.

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Ad-Hoc Polymorphism / Overloading

What about multiplication in Java?
➡Defined for a few specific types.
➡Uses same symbol ʻ*ʼ.

Overloading.
➡Same name is used for multiple bindings.
➡Disambiguated based on types.
➡Context-independent: only parameter types used

for disambiguation.
➡Context-dependent: parameter types may be

ambiguous if return type is unambiguous.

10
Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Ad-Hoc Polymorphism / Overloading

What about multiplication in Java?
➡Defined for a few specific types.
➡Uses same symbol ʻ*ʼ.

Overloading.
➡Same name is used for multiple bindings.
➡Disambiguated based on types.
➡Context-independent: only parameter types used

for disambiguation.
➡Context-dependent: parameter types may be

ambiguous if return type is unambiguous.

11

Haskell: ad-hoc polymorphism is not supported;
polymorphic code is required to use type classes.

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Type Classes in Haskell
Definition of a type.
➡A set of values.
➡A set of operations that can be applied to values of

the types.

Definition of a type class.
➡A set of types that for which a number of standard

operations is declared.
‣e.g., “every Numeric type must support addition”

➡Haskellʼs way of controlling overloading.
‣A function can only be overloaded if it is defined by
a type class.

12
Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Type Classes in Haskell
Definition of a type.
➡A set of values.
➡A set of operations that can be applied to values of

the types.

Definition of a type class.
➡A set of types that for which a number of standard

operations is declared.
‣e.g., “every Numeric type must support addition”

➡Haskellʼs way of controlling overloading.
‣A function can only be overloaded if it is defined by
a type class.

13

Common Type Classes

Eq — values can be tested for equality (==, /=)
Ord — values are ordered (<, <=, >, >=, max, min)
Show — can be converted to string (show)
Read — can be parsed from a string (read)
Num — a numeric type (+, -, *, negate, abs, signum)
Integral — integers (mod, div)
Fractional — divisible numbers (/, recip)

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Defining a Type Class

14

-- Minimal complete definition: either '==' or '/='.
--
class Eq a where
 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)
 x == y = not (x /= y)

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.
➡Specifies a name.
➡Required operations (+ types!)
➡Default implementations.

Thursday, April 8, 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Defining a Type Class

15

-- Minimal complete definition: either '==' or '/='.
--
class Eq a where
 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)
 x == y = not (x /= y)

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.
➡Specifies a name.
➡Required operations (+ types!)
➡Default implementations.

Define name.

Thursday, April 8, 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Defining a Type Class

16

-- Minimal complete definition: either '==' or '/='.
--
class Eq a where
 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)
 x == y = not (x /= y)

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.
➡Specifies a name.
➡Required operations (+ types!)
➡Default implementations.

Required operations
and associated types.

Thursday, April 8, 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Defining a Type Class

17

-- Minimal complete definition: either '==' or '/='.
--
class Eq a where
 (==), (/=) :: a -> a -> Bool

 x /= y = not (x == y)
 x == y = not (x /= y)

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

Type Class Definition.
➡Specifies a name.
➡Required operations (+ types!)
➡Default implementations.

Default Implementations:
User can specify either function, the missing
one uses the default implementation. If user

provides both, then default is overruled.

Thursday, April 8, 2010

http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq
http://www.haskell.org/ghc/docs/latest/html/libraries/base-4.2.0.0/Prelude.html#t%3AEq

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Declaring a Type Class Instance

18

adding a type to a type class
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
 (==) = repl_equal

Define functions + instance.
➡Define appropriate functions like any other function.
➡Add an instance declaration to overload type class

symbols.

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Declaring a Type Class Instance

19

adding a type to a type class
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
 (==) = repl_equal

Define functions + instance.
➡Define appropriate functions like any other function.
➡Add an instance declaration to overload type class

symbols.

Simple Algebraic Type
(works for any type)

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Declaring a Type Class Instance

20

adding a type to a type class
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
 (==) = repl_equal

Define functions + instance.
➡Define appropriate functions like any other function.
➡Add an instance declaration to overload type class

symbols.

Simple Equality Function
can be arbitrarily complicated

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Declaring a Type Class Instance

21

adding a type to a type class
data Reply = Yes | No | Maybe

repl_equal :: Reply -> Reply -> Bool
repl_equal Yes Yes = True
repl_equal No No = True
repl_equal Maybe Maybe = True
repl_equal _ _ = False

instance Eq Reply where
 (==) = repl_equal

Define functions + instance.
➡Define appropriate functions like any other function.
➡Add an instance declaration to overload type class

symbols.

instance declaration
add equations to standard operations
missing symbols will use default impl.

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Deriving Standard Classes

22

compiler-generated instances
Repetition.
➡Some type class instances almost always look the same.
➡E.g., Eq, Show, Read, …
➡Defining such instances over and over is tedious.

Derived instances.
➡Built-in support for some special type classes.
➡Tell compiler to generate appropriate code.

data Reply = Yes | No | Maybe
 deriving (Eq)

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Type Class Hierarchy

23

Generalizations.
➡Some type classes have a hierarchical relationship.
➡E.g., an Integral type should also a Num type.
➡This can be required in the type class definition.
‣Enforced by compiler.

class (Eq a) => Ord a where
 compare :: a -> a -> Ordering
 (<), (<=), (>), (>=) :: a -> a -> Bool
 max, min :: a -> a -> a

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Type Class Hierarchy

24

Generalizations.
➡Some type classes have a hierarchical relationship.
➡E.g., an Integral type should also a Num type.
➡This can be required in the type class definition.
‣Enforced by compiler.

class (Eq a) => Ord a where
 compare :: a -> a -> Ordering
 (<), (<=), (>), (>=) :: a -> a -> Bool
 max, min :: a -> a -> a

Hierarchy:
Every ordered type must also

have a concept of equality.

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Polymorphic Instances

25

How to declare instances for polymorphic types?

data Tree a = Nil
 | Node { val :: a, left :: Tree a, right :: Tree a}

Tree node equality.
➡Nil equals nil.
➡Node equals node if values are equal and subtrees

are equal.
‣What if a is not actually in Eq?

instance (Eq a) => Eq (Tree a) where
 Nil == Nil = True
 Node v1 l1 r1 == Node v2 l2 r2 = v1 == v2 && l1 == l2 && r1 == r2
 _ == _ = False

Thursday, April 8, 2010

UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts13: Polymorphism

Polymorphic Instances

26

How to declare instances for polymorphic types?

data Tree a = Nil
 | Node { val :: a, left :: Tree a, right :: Tree a}

Tree node equality.
➡Nil equals nil.
➡Node equals node if values are equal and subtrees

are equal.
‣What if a is not actually in Eq?

instance (Eq a) => Eq (Tree a) where
 Nil == Nil = True
 Node v1 l1 r1 == Node v2 l2 r2 = v1 == v2 && l1 == l2 && r1 == r2
 _ == _ = False

Polymorphic Instance:
Instance only defined for types with

equality; undefined otherwise.

Thursday, April 8, 2010

