Obiject-Orientation

P

g

COMP 524: Programming Language Concepts
Bjorn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

What is OO¢2

Conceptual model.

= Objects: opaque entities that have an identity, state, and
behavior.

= Objects communicate by sending messages to each other.

Metaphors.
= Orchestra model.

» Lot’s of experts that can do one task well.

» One conductor that coordinates overall problem solution.
= Service provider model.

» An object provides (exactly) one service.

» May rely on sub-contractors.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

What is OO¢2

Conceptual model.

= Objects: opaque entities that have an identity, state, and
behavior.

= Objects communicate by sending messages to each other.

Metaphors.
= Orchestra model.
» Lot’s of experts that can do one task well.

-

OO is a natural fit for problem decomposition:
humans tend to think in terms of “objects” that “do” “things”.
OO recognizes this and supports this way of thinking.

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Benefits of OO

Key features.
= Encapsulation, information hiding.
» Reduces complexity, conceptual load, likelihood of errors.

= Inheritance.
» Increases productivity and code reuse.

= Abstraction, clean interfaces.
» Improves code reuse, separation of concerns.
» Enables large teams to develop in parallel.

= Sub-type polymorphism.
» Code reuse.

= Decoupling.
» Code reuse.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Benefits of OO

Key features.
= Encapsulation, information hiding.
» Reduces complexity, conceptual load, likelihood of errors.

= Inheritance.
» Increases productivity and code reuse.

= Abstraction, clean interfaces.
» Improves code reuse, separation of concerns.
> Enfables large teams to develop in parallel.

= Sul _ _ |
cc OO has succeeded in practice because it

makes individual developers and
G teams as a whole more productive
(compared to procedural languages).

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Two Flavors of OO

Focus on OO Concepts.
= Pioneered by Smalltalk.
» Adopted by Ruby, Python, Javascript, etc.

= Very dynamic.
» Late binding.
» Dynamic type checking.
» Objects of the same class can differ in structure.

Focus on Implementation.
= Pioneered by Simula 67.
» Adopted by C++, Java, C#, Eiffel, etc.

= Composite types.

= Some components are functions.

= All objects of one class must have same structure (memory layout).
= Optional early-binding.

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Two Flavors of OO

‘Focus on 00 Concepts.
= Pioneered by Smalltalk.
» Adopted by Ruby, Python, Javascript, etc.

" >,
= Very dynamic. e

» Late binding.
» Dynamic type checking.
» Objects of the same class can differ in struct.

Focus on lm—"*——4-2=-

= Pioneered _ _ _ _ _
,Adopted| PUre object orientation: everything iIs an

object (even numbers, functions, etc).

= Composite
= Some co
= All objects of one class must have same structure (memory layout).
= Optional early-binding.

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Model and Implementation

Upon receipt of a message (= method call),

an object may change state (= update its attributes),

collaborate with other objects
(= call methods of other objects),

and finally reply (= return value).

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation

Multiple Inheritance

class Person {
vold haveFun() {...};
void work() {...};

¥

class Teacher extends Person {
void study() { ... }; // newly define study()
void work() { study(); ... }, // override work()

¥

class Researcher extends Person {
void study() { ... }; // newly define study()
void work() { study(); ... }, // override work()

¥

class Professor extends Teacher, Researcher {
vold haveFun() { work() };
h

(new Professor()).haveFun();

UNC Chapel Hill

Thursday, April 15, 2010

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

14: Object-Orientation

COMP 524: Programming Language Concepts

Multiple Inheritance

class person { Which work() will be called?
volid haveFun() {...} i i
void work() {...}; | Which study() will be called?
h
class Teacher extends Person {
void study() { ... }; // ner define study()
TTVOTIO WOTK() ¢ Y ..., // override work()
J

class Researcher extendc Person {

| void study() { A/// newly define study()

v01 wWor ; . }; // override work()

¥

class Professor tends Teacher, Researcher {
vold haveFun/g4 { work() };
) \

|(new Professor()).haveFun();'

UNC Chapel Hill

Thursday, April 15, 2010

Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Mix-in Inheritance

Restricted alternative to multiple inheritance.
=|_inear “true” inheritance: only single base class.
=(Can mix-in traits with a class.

»e.d., Java interfaces.

Interfaces + delegation.
=Pure interfaces: lot’s of repeated code.
»rJava’s interfaces do not include default
Implementation.

=Better alternative: provide a default class; delegate to
member object.

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Delegation Example

interface Bar {
vold bar();

}

class DefaultBar implements Bar {
void bar() { ... };

}

class MyClass implements Bar {
private DefaultBar barImpl = new DefaultBar();

void bar() { barImpl.bar(); }
}

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Delegation Example

Default implementation to avoid repetition.

interface Bar {
vold bar();

}

class DefaultBar implements Bar {

void bar() { ... };

}

class MyClass implements Bar {
private DefaultBar barImpl = new DefaultBar();

void bar() { barImpl.bar(); }
}

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Delegation Example

Delegate calls to default implementation.

interface Bar {
vold bar();

}

class DefaultBar implements Bar {

void bar() { ... };

class MyClass implements Bar {
private DefaultBar barImpl = new DefaultBar();

void bar() { barImpl.bar(); }
}

\ —

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Delegation Example

interface Bar {
vold bar();

}

class DefaultBar implements Bar {
void bar() { ... };

}

class MyClass implements Bar {
private DefaultBar barImpl = new DefaultBar();

void bar() { barImpl.bar(); }
}

C# provides explicit delegate syntax

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation

COMP 524: Programming Language Concepts

Delegation Example

interface Bar {
vold bar();

}

trait Similarity {

}

def i1sSimilar(x: Any): Boolean
def i1sNotSimilar(x: Any): Boolean =

Scala’s traits allow default implementations as
part of the interface definition:

li1sSimilar(x)

From: http://www.scala-lang.org/node/126

UNC Chapel Hill

Brandenburg — Spring 2010

http://www.scala-lang.org/node/126
http://www.scala-lang.org/node/126

14: Object-Orientation COMP 524: Programming Language Concepts

Early vs. Late Binding

Early Binding.

=Static name resolution.

=Compiler determines at compile time which code
will be called.

=As efficient as a regular procedure call.

Late Binding.

=Name is resolved at runtime.
=Requires dynamic method dispatch.
=|ncurs (small) overhead.

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation

Binding Time Example

class A {
volid aFun() {...};

class B extend A {
vold aFun() {...};

A obj = new B();
obj.aFun();

UNC Chapel Hill

Thursday, April 15, 2010

Brandenburg — Spring 2010

COMP 524: Programming Language Concepts

14: Object-Orientation COMP 524: Programming Language Concepts

Binding Time Example

Super-class reference type.

class A {
volid aFun() {...};

}

class B extend A {
vold aFun() {...};

}

/ f
[A obj = neW'B();j
obj.arun();

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Binding Time Example

class A {
volid aFun() {...};

}

class B extend A {

['void aFun()j{...}; ;

} Late binding:

A obj = new B(); B.aFun() is
1< called.

[obj.aFun();J

=

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Binding Time Example

class A { Early binding:

l void aFun/() W A.aFun() is
y)

called.

class B extend A {
void aFun() {...}:

}

A ob] = new B(
[obj.aFun();J

=

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Binding Time Example

Late binding: type of the object determines the method.
carly binding: type of the reference determines the method.

}

class B extend A {
vold aFun() {...};

}

[tA obj = neW'B();j
obj.aFun();

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Fragile Base Classes

apparently correct changes to a base
class that break subclasses

Version 1 Version 2
class Base { class Base {
void f() { ... }; void () { ... };
void g() { ... }; void g() { ...; T(); ... };
h h
Client
class Child extends Base {
void () {7; 9(); ... };

}

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Fragile Base Classes

apparently correct changes to a base
class that break subclasses

Version 1 Version 2
class Base { class Base {
vold () { ... }; vold () { ... };
vold g() { ... }; void g() { ...; T(); ... };
h h
Client
| After upgrade:
class Child extends Base { . gn -
void F() £: g(): }: Infinite recursion.
}

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Fragile Base Classes

apparently correct changes to a base
class that break subclasses

Version 1 Version 2
class Base { class Base {
vold () { ... }; vold () { ... };
vold g() { ... }; void g() { ...; T(); ... };
h h
Client
| After upgrade:
class Child extends Base { . gn -
void F() £: g(): }: Infinite recursion.
}

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Fragile Base Classes

Large problem in practice.

=Many systems ship with large class libraries.
rE.g., Java, C#/.NET, Objective-C.

=Developers can subclass system classes.
=Every upgrade can break previously-working code!

Avoidance.

=Requires careful class design.

=|_ater implementation changes should make very
little assumptions.

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Fragile Base Classes

Large problem in practice.

=Many systems ship with large class libraries.
rE.g., Java, C#/.NET, Objective-C.

=Developers can subclass system classes.
=Every upgrade can break previously-working code!

Avoidance.

=Requires careful class design.

=|_ater implementation changes should make very
little assumptions.

Related problem: binary compatibility vs. separate
compilation. Recompilation necessary if base class
changes.

- I -

v L7

| Sremrrrrererr——
Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Class Modification at Runtime
aka “monkey patching”

Pure OO: Everything is an object.

=Even classes.

=(bjects can change state.

=|n many dynamic languages this can be used to modify
classes at runtime.
»E.g., Python, Ruby,...

Inheritance vs. modification.

=|nheritance leaves the superclass unchanged.

=Direct modification affects all modules using the class.
=|magine amending the built-in string class...

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Example: Runtime Patches

class Base(object):
def a_method(self):
print "a_method was called"

-

Output:

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Example: Runtime Patches

class Base(object):
def a_method(self):
print "a_method was called"”

“~. Class definition
with one method.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Example: Runtime Patches

class Base(object):
def a_method(self):
print "a _method was called”

-

Output:
a_method was called

J

obj = Base()

obj.a_method()

—

Create instance;
method is called.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation

COMP 524: Programming Language Concepts

Example: Runtime Patches

class Base(object):
def a_method(self):

obj = Base()
obj.a_method()

print "a_method was called"

-

Output:
a_method was called

def a_function(self, msqg):
print "a_function was

.] Define top-level
called msgj\h function...

Modify class at runtime!
Base.any_name = a_function

N

|

)

N

-

...and add it to the
class at runtime.

UNC Chapel Hill

Thursday, April 15, 2010

Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Example: Runtime Patches

class Base(object):
def a_method(self):
print "a_method was called"

-

Output:
a_method was called

obj = Base() 'a_function was called as a method of Base!]'

obj.a_method()

—
def a_function(self, msg):

print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

~)

=
Added method works on previously-created instances..

obj.any_name('"as a method of Base!™)
L Y
€

N

New “method” Is immediately available in all
Instances, as Iif declared In the class itself.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Example: Runtime Patches

class Base(object):

-

def a_method(self): Outout:
print "a_method was called" e
a_method was called
ObJ — Base() C 18 .l IV C A11CU .
obj.a_method() | Replacing methods can cause tricky bugs! |

—

def a_function(self, msg):

g st A FiionaAatr1TaAan A~ AnnllAadll mae

Can also replace (or remove)
previously-declared methods.

-

Added method works on previously-creted instances..
obj.any_name('"as a method of Base!™) l'

def dangerous(self): :
print "Replacing methods can cause tricky bugs!"™

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Ol
In Python, some built-in classes that are implemented in C cannot

be modified. In Ruby, virtually every class can be modified.

class Base(object):

ncepts

-

def a_method(self):

print "a_method was called" Output:

a_method was called

obj = Base()

def a_function(self, msg):
print "a_function was called", msg

Modify class at runtime!
Base.any_name = a_function

Added method works on previously-created instances..
obj.any_name('"as a method of Base!™)

def dangerous(self):
print "Replacing methods can cause tricky bugs!"™

Replace existing method at runtime!
Base.a_method = dangerous

obj.a_method()

a_function was called as a method of Base!
obj.a_method() Replacing methods can cause tricky bugs!

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Runtime Patches: Discussion

Uses.
= Add functionality, e.g., logging, caching, invariant checking,...
= Fix bugs in third-party module.
= Add convenience methods.
» E.g., add a "make a file with this name”™ method to the string class
(this is actually done in the Ruby-based brew package manager).

Dangers.

= [Two patches for the same class.
» Unpredictable application: “last one wins.”
» Incompatible changes.

= Corresponding source hard to find (maintenance problem).
» EQ., If you notice a bug in a class in module A, the
corresponding code could reside in modules B, C, D, ...

= Fragile updates: changes to the class being patched can render
runtime patches in any number of modules incorrect.

UNC Chapel Hill Brandenburg — Spring 2010

http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/

14: Object-Orientation COMP 524: Programming Language Concepts

Obijects without Classes
prototype-based languages

Some languages avoid classes completely.
= Pijoneered by the language Self.
= (Gaining in popularity (JavaScript is prototype-based.)

Concept.
= Everything is an object.
=(bjects have a prototype (reference to another object):
» Messages (i.e., method calls, member references) not
handled by an object are redirected to the prototype.

= (Objects are created by cloning an existing object, which
becomes the prototype.
= Exact details vary between languages.

UNC Chapel Hill Brandenburg — Spring 2010

14: Object-Orientation COMP 524: Programming Language Concepts

Prototype Example

(JavaScript)

function Bar()
this.credits
h

function Foo()
this.credits
¥

Bar.prototype.get_proto_name
Foo.prototype.get_proto_name

I~

"created by Bar"

I~

"created by Foo"

function () { return "I'm a Bar." }
function () { return "I'm a Foo." }

objl = new Bar()

obj2 = new Foo()

document .write('"

--Before--
")

document.write("objl was " + objl.credits + ": " + objl.get_proto_name())
document.write("<br=")

document.write("obj2 was " + obj2.credits + ": " + obj2.get_proto_name())

objl._ proto_
obj2._ proto__

Foo.prototype,
Bar.prototype,

document.write('"

--After--
")

document.write("objl was " + objl.credits + ": " + objl.get_proto_name())
document.write("<br=")

document.write("obj2 was " + obj2.credits + ": " + obj2.get_proto_name())

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 15, 2010

1A - ODhiact-Oriantatinn

Can change prototype at runtime.
Equivalent to changing the “class.”

Output:

function

}

function

}

obj1l
obj2

document.
document.
document.
Ic ocument.

this.credits

this.credits

Bar ()

I~

Foo()

I~

Bar.prototype.get_proto_name
Foo.prototype.get_proto_name

new Bar ()
new Foo()

write('"<
write("o
write("<
write("o

\

"created by Bar"

"created by Foo"

or><pr>--Before--
")
0]l was " + objl.credits
or>")

0j2 was " + obj2.credits

S

objl._ proto__ =
obj2._ _proto__ =

~)
Foo.prototype,

Bar.prototype,

4

document.
document.
document.
document.

write('<
write("o
write('<
write("o

or><pr>--After--
")
0j1 was " + objl.credits
or=>")

0j2 was " + obj2.credits

--After--
obj1 was created by Bar: I'm a Foo.
obj2 was created by Foo: I'm a Bar.

--Before--
W 0Obj1 was created by Bar: I'm a Bar.
J4 obj2 was created by Foo: I'm a Foo.

function () { return "I'm a Bar." }
function () { return "I'm a Foo." }

rnMp R?A‘ pr'nnr'nmminn |nnn||nnn rnnnnr)l's

objl.get_proto_name())

obj2.get_proto_name())

objl.get_proto_name())

obj2.get_proto_name())

UNC Chapel Hill

Brandenburg — Spring 2010

Thursday, April 15, 2010

