Homework Assignment 3

Posted: 2/23/2010
Due: 3/16/2010 extended to 3/18/2010

The assignment is due in class; please follow the instructions on the homework submission form.

The coverage of Prolog was necessarily not exhaustive. You are expected to study the Prolog
resources made available on the class homepage prior to asking for help.

| strongly recommend solving (most of) the assignment before spring break because there will be
no office hours after spring break before the assignment is due. Make sure you have at least a
solid idea on how to solve each part by 03/02/2010.

Obijectives
Write basic Prolog clauses and queries.
Write recursive Prolog clauses.
Implement a recursive data structure in Prolog (extra credit).

Related Files

Homework submission form:
http://www.cs.unc.edu/Courses/comp524-s10/hw/submission-form.pdf

Part 1
Solve “Practical Exercise 2, part (1)” on page 27 of Logic Programming with Prolog [1].

Questions (a)—(d) ask you to devise and test goals. Copy and paste your queries and the
obtained answers into a plain text file.

You do not have to solve part (2), which is concerned with persons.

Part 2

Write a knowledge base and rules for a simple security policy:

» Murray, Alan, and John are administrators.

» Brian is the director.

» Bjorn, Dawn, Donna, Katrina, and Tricia are users.

» Bjorn teaches COMP 524.

» Aaron teaches COMP 110.

» Any administrator may update any class mailing list.

» A director may act as an administrator at any time.

» A class mailing list may be be updated by the person that is teaching the class.
» A user may read any class mailing list.

Design and test queries that a) finds all people that may update COMP 524’s class mailing list
and b) find all people that may read COMP 524's class mailing list.

Part 3

Write a clause power/3 to raise a number to some integral, non-negative power using only
multiplication, e.g., power (X, Y, Result) should unify Result with XY¥.

COMP 524 Homework Assignment 3 1


http://www.cs.unc.edu/Courses/comp524-s10/hw/submission-form.pdf
http://www.cs.unc.edu/Courses/comp524-s10/hw/submission-form.pdf

Write a clause £ib/2 to compute Fibonacci numbers, e.g., £ib(X, N) should unify X with
the N™ Fibonacci number.

Write a clause prime/1 that tests whether a given integral, non-negative number is a prime
number, e.g., the goal prime (X) is satisfied only if X is a prime number. A number X is a
prime number if and only if there does not exist another number ¥, 1 < Y < X, such that Y
divides X without remainder.

Part 4

This part is concerned with dates represented as the structure date (Day, Month, Year),
e.g., the due date of this assignment is represented by date (16, 3, 2010).

Write a clause valid_date/1 that is satisfied only if a given date on or after 1/1/1583
represents a day that existed under consideration of leap years, e.g. the query valid_date
(29, 2, 2010)) should not be satisfied and thus yield the answer no.

This requires an implementation of the Gregorian calendar [2]. The answer can be computed
based on the following facts:

» 1/1/1583 was a Saturday.

» “The Cregorian leap year rule is: Every year that is exactly divisible by four is a leap year,
except for years that are exactly divisible by 100; the centurial years that are exactly divisible
by 400 are still leap years. For example, the year 1900 is not a leap year; the year 2000 is a
leap year.” [2]

Write a clause weekday/ 2 that determines for any date on or after 1/1/1583 the weekday
(monday, tuesday, ..., sunday) of the date, e.g., weekday (date(16, 3, 2010), X)
should bind X to tuesday.

Write a clause last workday of month/1 that determines whether a given date is the
last workday (i.e., not a Sunday or Saturday; ignore government holidays) of a month.

Let a date’s sequence number denote the number of days that have passed since 1/1/1583.
Write a clause prime_date/1 that is satisfied only if a given date’s sequence number is
prime.

Find you whether your birthday is a prime date (this may take a while, depending on your
implementation of prime/1).

Part 5

Write a short essay (max. 1 page) on how Prolog could be embedded as part of a larger
application to increase flexibility and simplify overall system complexity.

Be creative; surprise me with something that neither me nor any of the other students have
thought of. However, your proposal should be conceivably implementable with algorithms
known today (e.g., no super-human Al, no Skynet).

Extra Credit 1

Write a Prolog “library” (simply a file with a number of clauses) that offers an API to a binary
tree abstract data type. You API should offer clauses for (at least) the following operations:

» empty_tree(X) unifies X with an empty tree.
» singleton_tree(Elem, X) unifies X with a tree that only contains Elem.
»min_ tree(Tree, X) unifies X with the smallest element in Tree.
» max_tree(Tree, X) unifies X with the largest element in Tree.
COMP 524 Homework Assignment 3 2



» add_tree(Elem, Tree, NewTree) unifies NewTree with a tree that contains all
elements of Tree and Elem.

» print_tree(Tree) outputs a Graphviz-compatible [3] description of Tree. The
depiction should represent both the tree’s structure and the value of each node.

Extra Credit 2

Extend your binary tree library to support extraction:

» extract min tree(Tree, X, Rest) unifies X with the smallest element in Tree and
Rest with a tree that contains all elements in Tree with the exception of X.

» extract _max tree(Tree, X, Rest) unifies X with the largest element in Tree and
Rest with a tree that contains all elements in Tree with the exception of X.

Extra Credit 3

Modify your binary tree library to use a balanced tree algorithm of your choosing(e.g., red-
black trees or AVL trees).

Guidelines

Your solution must be executable with SWI Prolog on the class host stetson.cs.unc.edu.

You cannot discuss Part 5 or any of the extra credit parts. You may discuss possible
approaches to Parts 1-4 with other students, but you cannot share source code.

Telling someone what to type constitutes sharing of source code!

You may only use the standard library of Prolog. When solving the extra credit problems, the
tree implementation should be done from “first principles” and not excessively rely on library
data structures.

Hints:

» Skim Chapters 1, 2, and 3 in [1] before solving Parts 1 and 2.

» Skim Chapters 4 and 6 in [1] before solving Parts 3 and 4.

» Skim Chapter 5 before solving Extra Credit 1.

» Simplify complex clauses by composing them from simpler “helper clauses.”

Deliverables

The Prolog source code for Parts 1-4 (and the extra credit problems, should you choose to
solve them).

A text file (plain text of PDF) that contains a transcript of the queries of Part 1.
A text file (plain text of PDF) that contains a transcript of the queries of Part 2.
A text file (plain text or PDF) that contains the answers to Part 5.

Grading
Your solution will predominantly graded on correctness.
5 points — Part 1. 15 points — Extra Credit 1.
15 points — Part 2. 10 points — Extra Credit 2.
25 points — Part 3. 25 points — Extra Credit 3.

35 points — Part 4.
20 points — Part 5.

COMP 524 Homework Assignment 3 3



Style Guide

Please write your Prolog programs in a style such that your code resembles the examples in
Logic Programming with Prolog.

Avoid cut (!) and negation (\+, \=) whenever possible.

References
1. Logic Programming with Prolog, Max Bramer, 2005. Springer Verlag, ISBN 1852339381.
http://search.lib.unc.edu/searchR=UNCb5201841.
2. Introduction to Calendars, The United States Naval Meteorology and Oceanography
Command, http://aa.usno.navy.mil/fag/docs/calendars.php.
3. The DOT Language, http://www.graphviz.org/doc/info/lang.html.

COMP 524 Homework Assignment 3


http://search.lib.unc.edu/search?R=UNCb5201841
http://search.lib.unc.edu/search?R=UNCb5201841
http://aa.usno.navy.mil/faq/docs/calendars.php
http://aa.usno.navy.mil/faq/docs/calendars.php
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html

