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What is a Real-Time System?
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Image credit: DaimlerChrysler AG via Wikimedia Commons

“right answer at the right time”

predictability = a priori validation of temporal correctness

http://en.wikipedia.org/wiki/File:Airbag3.jpg
http://en.wikipedia.org/wiki/File:Airbag3.jpg
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Scheduling in a Real-Time OS (RTOS)
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A set of recurrent tasks with temporal 
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor
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Scheduling in a Real-Time OS (RTOS)

4

A set of recurrent tasks with temporal 
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor

tasks
request 

processor
service
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Scheduling in a Real-Time OS (RTOS)
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A set of recurrent tasks with temporal 
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor

Allocates processor such
that all constraints are met.

tasks
request 

processor
service
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Locking in an RTOS
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A set of recurrent tasks with temporal 
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Processor

tasks request
processor + resource(s)

serially reusable 
resources
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Locking in an RTOS
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A set of recurrent tasks with temporal 
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

RTOS

Allocates both together such
that all constraints are met.

tasks request
processor + resource(s)

serially reusable 
resources

P1P2P3P4P5P6Processor



UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

P1 P2 P3 P4 P5 P6

Locking in a Real-Time OS
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A set of recurrent tasks with temporal 
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

How to allocate multiple processors
and resources  such that all constraints are met?

tasks request
processor + resource(s)

serially reusable 
resources

The Emergence of
Multicore Processors

The “standard” hardware platform is changing / has changed.
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Why Real-Time on Multicore?
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To reduce size, weight, and power 
(SWaP) requirements.

Cost, availability: commercial-off-the-shelf (COTS)  
processors likely to be multicore chips.

High computational demands:
HD media, computer vision, motion planning…
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Why Real-Time on Multicore?
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To reduce size, weight, and power 
(SWaP) requirements.

MARVIN Mk II: unmanned autonomous vehicle (UAV)

Technische Universität Berlin
Musial et al., 2006

Motivating example:

Mission
Detect forest fires

during dry summer months.
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Why Real-Time on Multicore?
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To reduce size, weight, and power 
(SWaP) requirements.

MARVIN Mk II: unmanned autonomous vehicle (UAV)

Payload:
pan & tilt camera 

and infrared sensor.

UAV tethered to ground-
based mission planning.

Technische Universität Berlin
Musial et al., 2006

Motivating example:
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Motivating example:

Technische Universität Berlin
Musial et al., 2006

Why Real-Time on Multicore?
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MARVIN Mk II: unmanned autonomous vehicle (UAV)

UAV tethered to ground-
based mission planning.

Two computers for flight controller + payload

2x CPUs, 2x power supply (batteries),
 2x cabling, 2x cooling…

Mission planning

Not enough on-board 
computational 

resources! 

Would need more 
space, weight, power, 

cooling, maintenance...

Why not use just one, more powerful multicore chip…?

Payload:
pan & tilt camera 

and infrared sensor.
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Motivating example:

Technische Universität Berlin
Musial et al., 2006
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MARVIN Mk II: unmanned autonomous vehicle (UAV)

UAV tethered to ground-
based mission planning.

Payload:
pan & tilt camera 

and infrared sensor.

Temporal failure =
wobbly flight or crash.

Predictable temporal isolation required.

Temporal failure =
briefly “looks in wrong direction.”

Temporal failure =
UAV “hesitates” a little longer.
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P1 P2 P3 P4 P5 P6

Locking in a Real-Time OS
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A set of recurrent tasks with temporal 
constraints (= deadlines).
Example: poll acceleration sensor every 10ms

T1
T2

T3
Tn…

tasks request
processor + resource(s)

serially reusable 
resources

Predictable Real-Time Kernel

Algorithms must be both
analytically sound and efficiently implementable.

How to allocate multiple processors
and resources such that all constraints are met?
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(i.e., idle time required to meet all timing constraints)

Two main causes:
1. Algorithmic limitations (non-optimal scheduling decisions).
2. Runtime overheads (RTOS inefficient).

Capacity Loss
Processor utilization that cannot be allocated
to real-time tasks without risking temporal failure.
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Thesis Statement
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When both overhead-related and algorithmic capacity loss 
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and 
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is 
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the 
impact of bin-packing limitations in the soft real-time case. 
Further,

(iv) multiprocessor locking protocols exist that are both 
efficiently implementable and asymptotically optimal with 
regard to the maximum duration of blocking.
Parts 2 & 3: How to implement locking.

(underlined terms will be defined shortly)

Part 1:

Which scheduler to use.
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When both overhead-related and algorithmic capacity loss 
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and 
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is 
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the 
impact of bin-packing limitations in the soft real-time case. 
Further,

(iv) multiprocessor locking protocols exist that are both 
efficiently implementable and asymptotically optimal with 
regard to the maximum duration of blocking.

Thesis Statement
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Parts 2 & 3: How to implement locking.

(underlined terms will be defined shortly)
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When both overhead-related and algorithmic capacity loss 
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and 
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is 
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the 
impact of bin-packing limitations in the soft real-time case. 
Further,

(iv) multiprocessor locking protocols exist that are both 
efficiently implementable and asymptotically optimal with 
regard to the maximum duration of blocking.

Thesis Statement
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(underlined terms will be defined shortly)



Part 1

Scheduling
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Scheduling in Theory and Practice

20

Scheduling Theory:

“we consider overheads to be negligible”

RTOS Developers:

overheads, overheads, overheads…
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Scheduling in Theory and Practice

21

Scheduling Theory:

“we consider overheads to be negligible”

RTOS Developers:

overheads, overheads, overheads…

My contribution: an evaluation that reflects
both overhead-related and algorithmic capacity loss.
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Methodology & Case Study
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Choosing a Scheduler for a 24-Core Intel System

RTOS Platform:
➡  Real-time Linux extension (v2.6.36).
➡  Supports scheduler plugins.
➡  Principle developer, project lead.
➡  Since 2006: 9 releases, spanning 17 kernel versions.

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems
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Methodology & Case Study
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Choosing a Scheduler for a 24-Core Intel System

RTOS Platform:
➡  Real-time Linux extension (v2.6.36).
➡  Supports scheduler plugins.
➡  Principle developer, project lead.
➡  Since 2006: 9 releases, spanning 17 kernel versions.

HW Platform:
➡  4 sockets
➡  6 cores per socket (Intel 64bit Xeon L7455)
➡  3 levels of cache (2 shared + 1 private)
➡  Details later…

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems
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Methodology & Case Study
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Choosing a Scheduler for a 24-Core Intel System

RTOS Platform:
➡  Real-time Linux extension (v2.6.36).
➡  Supports scheduler plugins.
➡  Principle developer, project lead.
➡  Since 2006: 9 releases, spanning 17 kernel versions.

HW Platform:
➡  4 sockets
➡  6 cores per socket (Intel 64bit Xeon L7455)
➡  3 levels of cache (2 shared + 1 private)
➡  Details later…

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux Testbed for Multiprocessor Scheduling 
in Real-Time systems

Next:
background review.

Then:
case study details

and results.
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Sporadic Task Model
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1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
  while (true) {
    wait_for_event();
    process_event();
    signal_event_processed();
  }
}

Background Review
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Sporadic Task Model
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1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
  while (true) {
    wait_for_event();
    process_event();
    signal_event_processed();
  }
}

Sequence of jobs (= invocations)

Background Review
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Sporadic Task Model
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1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
  while (true) {
    wait_for_event();
    process_event();
    signal_event_processed();
  }
}

job release

job completion

Background Review
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1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
  while (true) {
    wait_for_event();
    process_event();
    signal_event_processed();
  }
}

job release

job completion

Background Review
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Sporadic Task Model
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1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

void recurrent_task() {
  while (true) {
    wait_for_event();
    process_event();
    signal_event_processed();
  }
}

job release

job completion

deadline
Background Review
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Deadline Constraint
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A job should complete by its deadline.
If it does not, it is tardy.

1 2 3 54 6 7 8 109 11 12 13 140

T1

J1,1

Tardiness: extent of deadline miss

Implicit: next job does not arrive before deadline.

Background Review
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Hard vs. Soft Real-Time
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Hard Real-Time (HRT)

Each job meets its deadline (= zero tardiness).

Soft Real-Time (SRT)

Maximum deadline tardiness is bounded
by a (reasonably small) constant.

Background Review
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Hard vs. Soft Real-Time
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Hard Real-Time (HRT)

Each job meets its deadline (= zero tardiness).

Soft Real-Time (SRT)

Maximum deadline tardiness is bounded
by a (reasonably small) constant.

If computation is “bufferable,”
deadline miss may be masked with 
finite buffer (e.g., video decoding).

Background Review
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Processor Requirement
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Task Utilization

fraction of processor capacity required by task

Total Utilization

Sum of all task utilizations:
min. processor capacity required by task set.
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Schedulers for Sporadic Tasks
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Task schedulable:

Task can be shown a priori to
always satisfy its temporal constraint

under a given scheduler
(w.r.t. HRT or SRT interpretation).

In my dissertation:
22 schedulers.

In this talk:
5 selected schedulers.

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue. 

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue. 

Example: cores that share 
a cache form a cluster.

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue. 

Online: schedule jobs 
preemptively from a 

priority queue.

Jobs may migrate,
but only within cluster.

Offline: assign 
tasks to clusters.

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

(1) Group cores into clusters.
(2) Statically assign tasks to clusters before runtime.
(3) Schedule each cluster individually from a per-cluster job queue. 

Background Review
Job Priority Order

Earliest-Deadline First (EDF)
(order by increasing deadline)

Fixed-Priority (FP)
(manually assign priorities to tasks)
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling

Two common special cases:
one-core clusters and a single cluster

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Good cache affinity,
low contention. Weak cache affinity,

high contention.

larger clusters = higher overheads

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2
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J2

J3

J4

clustered scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

task-to-cluster assignment ≈ bin packing

Background Review
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Bin Packing

44

three identical tasks
task utilization! = 2/3
total utilization! = 2

! ! ! ! ! two unit processors

2/3 2/3 2/3

0.5

0.0

1.0

ca
pa

ci
ty

Background Review
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Bin Packing
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three identical tasks
task utilization! = 2/3
total utilization! = 2

! ! ! ! ! two unit processors

2/3 2/3
2/30.5

0.0

1.0

Processor Overloading

Even though there is sufficient total capacity, 
the last task cannot be placed.

ca
pa

ci
ty

Background Review
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Bin Packing

44

three identical tasks
task utilization! = 2/3
total utilization! = 2

! ! ! ! ! two unit processors

2/3 2/3
2/30.5

0.0

1.0

Processor Overloading

Even though there is sufficient total capacity, 
the last task cannot be placed.

Capacity loss approaching
50% is possible under 

partitioning.

ca
pa

ci
ty

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

larger clusters = higher overheads

smaller clusters = harder bin packing instance

Background Review
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Clustered Multiprocessor Scheduling
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Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2 
Cache

L2 
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Two common special cases:
one-core clusters and a single cluster

Partitioned FP (P-FP) available in most RTOSs (and Linux, too).
Easiest variant to implement: simple uniprocessor extension.

Background Review
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Main Memory

L3 Uniform, Inclusive

L1 
Data

Core 
4

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
0

L1 
Instr.

L1 
Data

Core 
12

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
8

L1 
Instr.

L1 
Data

Core 
20

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
16

L1 
Instr.

 Xeon L7455 Hardware Topology

47

Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
6

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
14

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
22

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
4

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
12

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
20

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
7

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
15

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
23

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
5

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
13

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
21

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
17

L1 Instr.
8-way, 32kB

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.
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Main Memory

L3 Uniform, Inclusive

L1 
Data

Core 
4

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
0

L1 
Instr.

L1 
Data

Core 
12

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
8

L1 
Instr.

L1 
Data

Core 
20

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
16

L1 
Instr.

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.
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Main Memory

L3 Uniform, Inclusive

L1 
Data

Core 
4

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
0

L1 
Instr.

L1 
Data

Core 
12

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
8

L1 
Instr.

L1 
Data

Core 
20

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
16

L1 
Instr.

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.

Private L1 caches
(32 KB each).

Two cores each share a 
unified L2 cache (3MB).
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Main Memory

L3 Uniform, Inclusive

L1 
Data

Core 
4

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
0

L1 
Instr.

L1 
Data

Core 
12

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
8

L1 
Instr.

L1 
Data

Core 
20

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
16

L1 
Instr.

Six cores per socket; each clocked at 2.16 GHz.
Four sockets for a total of 24 cores.All six cores share a unified 

L3 cache (12 MB).
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Main Memory

L3 Uniform, Inclusive

L1 
Data

Core 
4

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
0

L1 
Instr.

L1 
Data

Core 
12

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
8

L1 
Instr.

L1 
Data

Core 
20

L2 Cache Uniform, 
Inclusive

L1 
Instr.

L1 
Data

Core 
16

L1 
Instr.

Clustered Scheduling Options
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Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
6

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
14

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
22

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
4

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
12

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
20

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
7

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
15

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
23

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
5

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
13

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
21

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
17

L1 Instr.
8-way, 32kB
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Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
6

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
14

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
22

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
4

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
12

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
20

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
7

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
15

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
23

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
5

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
13

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
21

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
17

L1 Instr.
8-way, 32kB

Either 12 L2-based clusters of two cores each…
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Main Memory

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
6

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
2

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
14

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
10

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
22

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
18

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
4

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
0

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
12

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
8

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
20

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
16

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
7

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
3

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
15

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
11

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
23

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
19

L1 Instr.
8-way, 32kB

L3 Cache
uniform, inclusive, 12-way set associative, 12288kB

L1 Data
8-way, 32kB

Core 
5

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
1

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
13

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
9

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
21

L2 Cache
uniform, inclusive, 12-way 

set associative, 3072kB

L1 Instr.
8-way, 32kB

L1 Data
8-way, 32kB

Core 
17

L1 Instr.
8-way, 32kB

…or four L3-based clusters of six cores each.

Either 12 L2-based clusters of two cores each…



UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Five Evaluated Schedulers

54

Global Clustered Partitioned

FP
(baseline)

EDF

P-FP

G-EDF C-EDF-L2
C-EDF-L3 P-EDF

(dissertation: study with 22 scheduler configurations)
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Global Clustered Partitioned

FP
(baseline)

EDF

P-FP

G-EDF C-EDF-L2
C-EDF-L3 P-EDF

(dissertation: study with 22 scheduler configurations)

larger clusters = higher overheads

smaller clusters = harder bin packing instance
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Global Clustered Partitioned

FP
(baseline)

EDF

P-FP

G-EDF C-EDF-L2
C-EDF-L3 P-EDF

(dissertation: study with 22 scheduler configurations)

What dominates capacity loss:

Algorithmic or overhead issues?
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OS Phase

Analytical Phase
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

inefficient / debug performance

ok

extract / estimate mean, 
max, distributions
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets

Typical schedulability study 
in the scheduling literature.

Typical RTOS study.
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets

Developed over span of 5 years.
Current diff to Linux 2.6.36:

93 files changed, 14,465 insertions, 36 deletions

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets

For each scheduler,
ran 200 task sets with 1-20 tasks per core.

Total: traced >110 hours of execution,
collected >500 GB of raw samples.
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets

Model: monotonic piece-wise linear interpolation

Kernel overheads: function of task count

Cache affinity loss:
function of working set size (WSS).
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets

HRT: use worst-case overheads

SRT: use average-case overheads
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets

Schedulability experiments:
run on 64 nodes of UNC’s TOPSAIL cluster over night
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OS Phase

Analytical Phase

Implement in 
RTOS kernel

Instrument + 
measure overheads

extract / estimate mean, 
max, distributions

inefficient / debug performance

ok

Distill overhead model

Count schedulable 
task sets

Integrate with 
schedulability tests

Randomly generate 
millions of task sets

Performance Metric

Schedulability =
fraction of schedulable task sets
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When both overhead-related and algorithmic capacity loss 
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and 
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is 
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the 
impact of bin-packing limitations in the soft real-time case. 
Further,

(iv) multiprocessor locking protocols exist that are both 
efficiently implementable and asymptotically optimal with 
regard to the maximum duration of blocking.

Thesis Statement

67

(underlined terms will be defined shortly)
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In this talk In my dissertation

Utilizations

Task Periods /
Implicit Deadlines

Working Set Size
(WSS)

uniformly in
HRT: 10% – 40%
SRT: 50% – 90% 27 utilization & 

period distributions
uniformly in
[10, 100] ms

27 utilization & 
period distributions

64 KB 0 KB – 3072 KB
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total utilization

HRT schedulability
worst-case overheads, no tardiness
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larger total utilization = 
higher task count and less idle time



UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Interpretation

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20  22  24

sc
he

du
la

bi
lit

y 
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD

P-EDF-Rm C2-EDF-R1 C6-EDF-R1 G-EDF-R1C-EDF-L2 C-EDF-L3P-EDF G-EDF

total utilization

optimal, overhead-free scheduler = 1

“higher is better”scheduler performance

capacity loss

Gap to y=1 (all task sets schedulable) reflects capacity loss.
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First Result: HRT Schedulability
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]

Partitioned EDF suffers least capacity loss.
Low overheads & little algorithmic loss.
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First Result: HRT Schedulability
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Partitioned FP performs worse than Partitioned EDF.
Low overheads & more algorithmic loss.

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]
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utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]; WSS=64 KB; load CPMD
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Larger cluster sizes less competitive.
Larger cluster size = higher overheads.

total utilization

[1] [2] [3] [4] [5]

[1]

[2][3][5] [4]
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When both overhead-related and algorithmic capacity loss 
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and 
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is 
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the 
impact of bin-packing limitations in the soft real-time case. 
Further,

(iv) multiprocessor locking protocols exist that are both 
efficiently implementable and asymptotically optimal with 
regard to the maximum duration of blocking.

Thesis Statement
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C-EDF-L2 C-EDF-L3P-EDF G-EDF

SRT schedulability
average-case overheads, bounded tardiness

total utilization
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Partitioned FP and Partitioned EDF curves overlap.
Equally affected by bin-packing limitations.

total utilization

[1] [2] [3] [4] [5]

[1,2] [3] [4] [5]
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

Increasingly competitive with larger cluster sizes.
Effective at overcoming bin-packing issues.

total utilization
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C-EDF-L2 C-EDF-L3P-EDF G-EDFP-FP

total utilization

[1] [2] [3] [4] [5]

[1,2] [3] [4] [5]

Why does G-EDF perform 
better in the SRT case?

No algorithmic capacity loss in SRT 
case (Devi, 2006), but significant 

algorithmic capacity loss in HRT case.

Average-case overheads much 
lower than worst-case overheads

(long-tail distributions).
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(underlined terms will be defined shortly)

Full study:

— evaluated more than 92,000,000 task sets.

— results in more than 60,000 schedulability plots.
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Serially-Reusable Shared Resources

86

message buffers, I/O devices, device state,…

Mutual Exclusion

Resources protected by locks.

Real-Time Locking Protocol

Avoid unpredictable / unbounded 
blocking due to unavailable resources.
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Busy-Wait / Spin
=

non-preemptively
execute delay loop

=
spinlock

Suspend
=

taken off the ready queue 
by the RTOS

=
semaphore

Spinlocks vs. Semaphores

87

Jobs must wait for resources to become available.
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Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.
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Part 2: Contributions
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Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.
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Part 2: Contributions
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Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed)
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.

High-level view of semaphore 
protocols first.
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What is “Blocking”?

91

Not every delay is “blocking” in a real-time system.

Uniprocessor:

Higher-priority jobs should not have to wait for lower-priority jobs.

Lower-priority jobs should always wait for higher-priority jobs.

Background Review
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What is “Blocking”?

92

Priority Inversion

A higher-priority job is delayed
because it waits for a lower-priority job.

(job should be scheduled, but is not)

Not every delay is “blocking” in a real-time system.

Background Review
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What is “Blocking”?

93

Priority Inversion

A higher-priority job is delayed
because it waits for a lower-priority job.

(job should be scheduled, but is not)

(uniprocessor case)

Not every delay is “blocking” in a real-time system.
“blocking in a real-time system”

=

times of priority inversion

=

pi-blocking

Background Review
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The Generalization Question
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Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem 
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

Background Review
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The Generalization Question

95

Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem 
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

Any task in any task set: pi-blocked by at 
most one critical section. 

Background Review
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The Generalization Question
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Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem 
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

How does the bound generalize to 
multiprocessor?

O(1)?    O(m)?     O(n)?    Worse?

m identical processors n sporadic tasks

Background Review
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The Generalization Question
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Uniprocessor PI-Blocking Optimality

On a uniprocessor, the real-time mutual exclusion problem 
can be solved with O(1) maximum pi-blocking.

[Sha, Rajkumar, and Lehozcky, 1990; Baker, 1991]

m identical processors n sporadic tasks

My Result: it depends.
— there are two kinds of schedulability analysis —

How does the bound generalize to 
multiprocessor?

O(1)?    O(m)?     O(n)?    Worse?
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Two Kinds of Schedulability Analysis

98

T1actual execution:

scheduled without resource

executing critical section

job release job completion

deadline job suspended

analyzing suspensions is notoriously difficult
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Two Kinds of Schedulability Analysis
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analyzing suspensions is notoriously difficult

T1actual execution:

Processor not used = other jobs can execute.

scheduled without resource

executing critical section

job release job completion

deadline job suspended
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Two Kinds of Schedulability Analysis
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analyzing suspensions is notoriously difficult

T1actual execution:

Processor not used = other jobs can execute.

schedulability test

YES

NO

Constraints 
met?

task set
platform

predictability requires a priori analysis
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schedulability test

YES

NO

Constraints 
met?

task set
platform

Two Kinds of Schedulability Analysis
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analyzing suspensions is notoriously difficult

T1actual execution:

Exploiting knowledge of suspensions in 
schedulability tests is very difficult.
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suspension-oblivous (s-oblivious)

Two Kinds of Schedulability Analysis

102

analyzing suspensions is notoriously difficult

T1actual execution:

analyzed as:

T1

simplifying, safe assumption:
treat suspension time as execution time
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Two Kinds of Schedulability Analysis
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analyzing suspensions is notoriously difficult

T1actual execution:

analyzed as:

T1

T1

suspension-oblivous (s-oblivious)

suspension-aware (s-aware)

Ideal:
accurate analysis.
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suspension-oblivous (s-oblivious)

suspension-aware (s-aware)

Two Kinds of Schedulability Analysis

104

analyzing suspensions is notoriously difficult

T1actual execution:

analyzed as:

T1

T1

The type of schedulability analysis in use

subtly affects the definition of pi-blocking.



UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Suspension-Oblivious Results
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Suspensions modeled as execution.

T1

suspension-oblivous (s-oblivious)
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Suspension-Oblivious Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global

Partitioned

Clustered
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Suspension-Oblivious Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m)

Partitioned Ω(m)

Clustered Ω(m)
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Suspension-Oblivious Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) —

Partitioned Ω(m) Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) —

MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning
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Suspension-Oblivious Results

109

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning
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Suspension-Oblivious Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

Asymptotically optimal
(approximately within factor of two)
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Suspension-Oblivious Results

111

m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

Uses priority queues.
Uses FIFO queues.
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Suspension-Oblivious Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(m) O(m) / OMLP —

Partitioned Ω(m) O(m) / OMLP Ω(m⋅n) / MPCP-VS
(Lakshmanan et al., 2009)

Clustered Ω(m) O(m) / OMLP —

OMLP ! ! ! = O(m) Locking Protocol
MPCP-VS != Multiprocessor Priority Ceiling Protocol with Virtual Spinning

Next: overhead-aware schedulability 
study for non-asymptotic comparison.
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Resource-Sharing Parameters
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In this talk In my dissertation

Number of 
resources

Access probability

Critical Section 
Lengths

6 1, 3, 6, 12, 24

25% 10%, 25%, 40%, 55%, 
70%,  85%

uniformly in
[1, 15] µs

short: [1, 15] µs  
medium: [1, 100] µs
long: [5, 1280] µs
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S-Oblivious Schedulability Comparison
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phase-fair RW
[1] [2] [3]

[1]

[2][3]

task-fair RW task-fair mutex

total utilization

HRT schedulability
worst-case overheads, no tardiness
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P-EDF/OMLP
[1] [2]

[1]

[2]

total utilization

P-FP/MPCP-VS

S-Oblivious Schedulability Comparison
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P-EDF/OMLP
[1] [2]

[1]

[2]

total utilization

P-FP/MPCP-VS

S-Oblivious Schedulability ComparisonOMLP yields better schedulability than the 
MPCP-VS in in virtually* all tested scenarios.

*Long critical sections are equally 
troublesome under each of the protocols.
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Suspension-Aware Results
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suspension-aware (s-aware)
T1

Suspensions analyzed in detail.
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Suspension-Aware Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global

Clustered

Partitioned
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n)

Clustered Ω(n)

Partitioned Ω(n)
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n)  Ω(m⋅n) /
other PCP variant

Clustered Ω(n) —

Partitioned Ω(n)
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP 

DPCPCPDPCPDMPC
MPCP   ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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Suspension-Aware Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) (special cases)  Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP 

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP   ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)
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Suspension-Aware Results
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) (special cases)  Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP 

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP   ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Asymptotically optimal
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) —
[O(n) in special cases]

 Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP 

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP   ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Tightness is still an open 
problem in the general case.
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) —
[O(n) in special cases]

 Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP 

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP   ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Uses priority queues.

Uses FIFO queues.
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m identical processors n sporadic tasks

My Work
Lower Bound

My Work
Bound / Protocol

Prior Work
Bound / Protocol

Global Ω(n) —
[O(n) in special cases]

 Ω(m⋅n) /
other PCP variant

Clustered Ω(n) — —

Partitioned Ω(n) O(n) / FMLP+
 Ω(m⋅n) / MPCP
Ω(m⋅n) / DPCP 

DPCPCPDPCPDMPCFMLP+ ! = FIFO Mutex Locking Protocol
MPCP   ! = Multiprocessor Priority Ceiling Protocol (Rajkumar, 1990)
DPCP! ! = Distributed Priority Ceiling Protocol (Rajkumar et al., 1988)

Next: overhead-aware schedulability 
study for non-asymptotic comparison.
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phase-fair RW
[1] [2] [3]

[1]

[2][3]

task-fair RW task-fair mutex

total utilization

HRT schedulability
worst-case overheads, no tardiness

same parameters as before
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FMLP+
[1] [2]

[1]

[3]

total utilization

MPCP

S-Aware Schedulability Comparison

[3]
DPCP

[2]

Scheduler: P-FP
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FMLP+
[1] [2]

[1]

[3]

total utilization

MPCP

S-Aware Schedulability Comparison

[3]
DPCP

[2]

FMLP+ yields better schedulability than 
either the MPCP or the DPCP in virtually* all 

tested scenarios.

*Long critical sections are equally 
troublesome under each of the protocols.

Scheduler: P-FP
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Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.
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Concerning semaphore protocols.
➡Notions of blocking optimality. 
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.

 s-aware and s-oblivious
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Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.

Three OMLP variants and the FMLP+.
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Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.

Achieve higher schedulability than “classic” protocols.
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Concerning semaphore protocols.
➡Notions of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.

Next: brief look at spinlocks.
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Task-Fair Queue Lock
Waiting jobs form a FIFO spin queue.

Job Job JobJob

Non-Preemptive
Jobs cannot be preempted while spinning 

or executing their critical section.

Background Review



UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Non-Preemptive Task-Fair Queue Lock
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Task-Fair Queue Lock
Waiting jobs form a FIFO spin queue.

Job Job JobJob

Non-Preemptive
Jobs cannot be preempted while spinning 

or executing their critical section.

Background Review

Advantages:

low overheads, no analysis of suspensions required.

Disadvantages:

waste processor cycles,
non-preemptivity can be problematic.
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In this talk In my dissertation

Number of 
resources

Access probability

Critical Section 
Lengths

6 1, 3, 6, 12, 24

25% 10%, 25%, 40%, 55%, 
70%,  85%

uniformly in
[1, 15] µs

short: [1, 15] µs  
medium: [1, 100] µs
long: [5, 1280] µs



UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18  20  22  24

sc
he

du
la

bi
lit

y 
[h

ar
d]

utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; period uniformly in [10, 100]
 wss=4KB; nres=6; pacc=0.10; short critical sections

P-EDF-R1/MX-Q P-EDF-R1/OMLP P-FP-R1/FMLP+

S-Oblivious vs. S-Aware vs. Spinlocks
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phase-fair RW
[1] [2] [3]

[1]

[2][3]

task-fair RW task-fair mutex

total utilization

HRT schedulability
worst-case overheads, no tardiness
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P-EDF/Spinlocks
[1] [2]

[1]

[3]

total utilization

P-EDF/ OMLP

S-Oblivious vs. S-Aware vs. Spinlocks

[3]
P-FP/ FMLP+

[2]

Spinlocks improve schedulability compared to 
the s-aware FMLP+ and the s-oblivious OMLP.
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P-EDF/Spinlocks
[1] [2]

[1]

[3]

total utilization

P-EDF/ OMLP

S-Oblivious vs. S-Aware vs. Spinlocks

[3]
P-FP/ FMLP+

[2]

Surprise: the s-aware protocol (FMLP+) is not much 
better then the best best s-oblivious protocol (OMLP).
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P-EDF/Spinlocks
[1] [2]

[1]

[3]

total utilization

P-EDF/ OMLP

S-Oblivious vs. S-Aware vs. Spinlocks

[3]
P-FP/ FMLP+

[2]

Reasons

Spinlocks incur an order of magnitude lower overheads 
(no system calls, no loss of cache affinity).

Analysis of suspensions is very pessimistic.

Existing s-aware analysis is not much more precise 
than the much simpler s-oblivious approach.
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Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.
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Concerning semaphore protocols.
➡Notion of blocking optimality.
➡Several asymptotically optimal semaphore protocols.
➡These protocols perform well in practice.

Concerning spinlock protocols.
➡ Improved blocking analysis (very technical; not discussed).
➡Overhead-aware comparison of semaphores and 

spinlocks in terms of schedulability.Use non-preemptive task-fair spinlocks in practice!



Part 3

Reader-Writer Exclusion
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Readers
➡Only observe state of shared resource.
➡May access resource concurrently with other readers.

Writers
➡May modify state of shared resource.
➡Require exclusive access.

R

W

Courtois, P., Heymans, F., and Parnas, D. (1971). Concurrent control with “readers” and “writers”. Communications of the ACM, 14(10):667–668.

(Courtois et al., 1971)
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R

W

My contributions:

First analysis of RW locks in the context of 
multiprocessor real-time systems.

A new type of RW lock: phase-fair RW locks.

Courtois, P., Heymans, F., and Parnas, D. (1971). Concurrent control with “readers” and “writers”. Communications of the ACM, 14(10):667–668.

(Courtois et al., 1971)
Readers
➡Only observe state of shared resource.
➡May access resource concurrently with other readers.

Writers
➡May modify state of shared resource.
➡Require exclusive access.
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RW Lock Type Wort-case 
improvement?

Blocking analysis 
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

146

Prior Work: RW Lock Choices
How to order conflicting reads and writes?
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Writer-Preference

Reader-Preference

Task-Fair

Other
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Prior Work: RW Lock Choices
How to order conflicting reads and writes?
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RW Lock Type Wort-case 
improvement?

Blocking analysis 
available?

Writer-Preference

Reader-Preference

Task-Fair

Other
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No strong progress guarantees—ordering is HW dependent.

Prior Work: RW Lock Choices
How to order conflicting reads and writes?
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RW Lock Type Wort-case 
improvement?

Blocking analysis 
available?

Writer-Preference

Reader-Preference

Task-Fair

Other
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Let’s look at Writer-Preference RW Locks...

Prior Work: RW Lock Choices
How to order conflicting reads and writes?
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Reader Queue

Writer-Preference RW Lock
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R

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.
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Writer-Preference RW Lock
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R

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

R
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Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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R

i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

R

W

R



UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

W

R

R

Writer Preference
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Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

W

RR

W
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Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

W

RR

WW

R
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Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RR

W
W

RR

W
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Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RR

W

RR

WW

R
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Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RRRR

W
W

RR

W
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Critical Section

Writer Queue

Reader Queue

Writer-Preference RW Lock
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i. Readers wait if writers are present.

ii.Writers enter in FIFO order.

RRRR

W

RR

W

Starvation!
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RW Lock Type Wort-case 
improvement?

Blocking analysis 
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

160

Also allows starvation!

Prior Work: RW Lock Choices
How to order conflicting reads and writes?
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RW Lock Type Wort-case 
improvement?

Blocking analysis 
available?

Writer-Preference

Reader-Preference

Task-Fair

Other
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Let’s look at Task-Fair RW Locks...

Prior Work: RW Lock Choices
How to order conflicting reads and writes?
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Critical Section
Queue

Task-Fair RW Lock
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WR

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

RRR
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Critical Section
Queue

Task-Fair RW Lock
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W
R

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

RRRW
W
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Critical Section
Queue

Task-Fair RW Lock

164

W
R

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

RRRWW

Later Writer Arrival
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Critical Section
Queue

Task-Fair RW Lock
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R

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

R

R

RWW

No starvation!
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Critical Section
Queue

Task-Fair RW Lock
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WR

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

RRRWW

Let’s rewind...
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Critical Section
Queue

Task-Fair RW Lock
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WR

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

R RR WW

Change in arrival sequence.
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Critical Section
Queue

Task-Fair RW Lock
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W
R

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

R RR WW
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Critical Section
Queue

Task-Fair RW Lock
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R

i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

R RR WW

Only single reader enters!
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Critical Section
Queue

Task-Fair RW Lock
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i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

R RR
W

W
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Critical Section
Queue

Task-Fair RW Lock
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i. Readers and writers both enter in FIFO 
order.

ii.Consecutive readers enter together.

R
R

R W

Lack of ParallelismLong Delay!
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RW Lock Type Wort-case 
improvement?

Blocking analysis 
available?

Writer-Preference

Reader-Preference

Task-Fair

Other

172

Can be analyzed, but worst case similar to mutex.

Prior Work: RW Lock Choices
How to order conflicting reads and writes?
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RW Lock Type Wort-case 
improvement?

Blocking analysis 
available?

Writer-Preference

Reader-Preference

Task-Fair

Other
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Prior Work: RW Lock Choices
How to order conflicting reads and writes?

My contribution:

A new type of RW lock with
analytical worst-case improvement.
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Preference 
Locks

Task-Fair 
Locks

Increasing “fairness”



UNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Operating Systems

Design Space
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Preference 
Locks

Task-Fair 
Locks

Increasing “fairness”

Lack of parallelism!
=

Too “fair”!

Allows starvation!
=

Not “fair” enough!
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Design Space
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Increasing “fairness”

Preference 
Locks

Task-Fair 
Locks

What’s here?
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Phase-Fair
Reader-Writer Locks

A New Type of RW Lock
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Phase-Fair
Reader-Writer Locks

“Polite” Readers and Writers

178

Readers give preference to writers.
Writers give preference to readers.

“Please, after you…”
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All readers enter when unblocked by an
exiting writer (unless there are no writers).

A writer enters when unblocked by the
last exiting reader (unless there are no writers).

Effect: reader phases and writer phases alternate.

(paraphrased)
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R

Phase-Fair RW Lock

180

Critical Section

Writer Queue

Reader Queue

WW
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Phase-Fair RW Lock

181

Critical Section

Writer Queue

Reader Queue
W

W

R

W

staggering indicates arrival order
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Critical Section

R

Phase-Fair RW Lock
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Writer Queue

Reader Queue
W

W

R

W

staggering indicates arrival order

All readers enter when unblocked by an
exiting writer (unless there are no writers).
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Critical Section

Writer Queue

Reader Queue

WW

R

R

R

All readers enter when unblocked by an
exiting writer (unless there are no writers).
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Critical Section

Writer Queue

Reader Queue

WW

R

R

RR R

A writer enters when unblocked by the
last exiting reader (unless there are no writers).
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Critical Section

Writer Queue

Reader Queue
W

W

RR R

All readers enter when unblocked by an
exiting writer (unless there are no writers).
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Phase-Fair RW Lock
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Critical Section

Writer Queue

Reader Queue

W
R

R

R

Effect: reader phases and writer phases alternate.
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Assumptions
➡Resource request (protocol, spin loop, critical section) 
executed non-preemptively.

➡m processors
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Assumptions
➡Resource request (protocol, spin loop, critical section) 
executed non-preemptively.

➡m processors

Lock Type Reader 
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)
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Lock Type Reader 
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)

Assumptions
➡Resource request (protocol, spin loop, critical section) 
executed non-preemptively.

➡m processors

Reader must wait for at most one
reader and one writer phase.
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Lock Type Reader 
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)

Assumptions
➡Resource request (protocol, spin loop, critical section) 
executed non-preemptively.

➡m processors

Blocking under Phase-Fair RW Locks
is asymptotically optimal.

Reader must wait for at most one
reader and one writer phase.



UNC Chapel HillUNC Chapel Hill

Scheduling and Locking in Multiprocessor Real-Time Systems

Blocking Analysis

191

Lock Type Reader 
Blocking

(# of phases)

Writer Blocking
(# of phases)

Task-Fair Mutex O(m) O(m)

Task-Fair RW O(m) O(m)

Phase-Fair RW O(I) O(m)

Assumptions
➡Resource request (protocol, spin loop, critical section) 
executed non-preemptively.

➡m processors

Blocking under Phase-Fair RW Locks
is asymptotically optimal.

Reader must wait for at most one
reader and one writer phase.

But can phase-fair locks
be implemented efficiently

on real hardware?
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Cache-hot micro-benchmark on an Intel Xeon X5650 (“Westmere”, Core i7). 
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Do task-fair RW and
phase-fair RW locks yield 

schedulability improvements?
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In this talk In my dissertation

Number of 
resources

Access probability

Write ratio

Critical Section 
Lengths

6 6, 12, 24

25% 10%, 25%, 40%

20% 10%, 20%, 30%,
50%, 75%

uniformly in
[1, 15] µs

short: [1, 15] µs  
medium: [1, 100] µs
long: [5, 1280] µs
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In this talk In my dissertation

Number of 
resources

Access probability

Write ratio

Critical Section 
Lengths

6 6, 12, 24

25% 10%, 25%, 40%

20% 10%, 20%, 30%,
50%, 75%

uniformly in
[1, 15] µs

short: [1, 15] µs  
medium: [1, 100] µs
long: [5, 1280] µs

Full study:

— In total, 7,290 parameter combinations.

— Evaluated more than 34,000,000 task sets.

— Results in more than 100,000 schedulability plots.

I’ll show you one typical example…
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HRT schedulability
worst-case overheads, no tardiness
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RW spinlocks improve schedulability compared to mutex spinlocks.

Phase-fair RW locks yield greater improvement than task-fair RW locks.

Scheduler: P-EDF 
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When both overhead-related and algorithmic capacity loss 
are considered on a current multicore platform,

(i) partitioned scheduling is preferable to global and 
clustered approaches in the hard real-time case,

(ii) partitioned earliest-deadline first (P-EDF) scheduling is 
superior to partitioned fixed-priority (P-FP) scheduling and

(iii) clustered scheduling can be effective in reducing the 
impact of bin-packing limitations in the soft real-time case. 
Further,

(iv) multiprocessor locking protocols exist that are both 
efficiently implementable and asymptotically optimal 
with regard to the maximum duration of blocking.

Thesis Statement
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Scheduling and Locking in Multiprocessor 
Real-Time Operating Systems

Hard Real-Time

Use partitioned EDF.

Soft Real-Time

Support clustered scheduling.



Scheduling and Locking in Multiprocessor 
Real-Time Operating Systems

Keep it simple

 Use non-preemptive spinlocks.
Use FIFO queues: optimal and practical.

Be polite

Phase-fair RW locks can be implemented 
efficiently and improve worst-case analysis.
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RTOS Implementation.
➡Hierarchical scheduling / container framework.
➡Reduce lock contention in global and clustered scheduling.

Locking Optimality.
➡ Improved bounds under s-aware analysis.
➡Nested requests.

Non-blocking synchronization.
➡Wait-free, lock-free.
➡Read-copy update (RCU).

Experiments
➡Use worst-case execution time analysis.
➡Use more real applications.

http://www.mpi-sws.org

http://www.mpi-sws.org
http://www.mpi-sws.org
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