
Bhushan Jain, Chia-Che Tsai*, Don Porter

A Clairvoyant Approach to
Evaluating Software (In)security

*

2

Which is More Secure?

Can we evaluate security empirically?

3
Most just use LoC and #CVE reports as prediction of security

0

100

200

300

400

500

Lines of Code #(CVE reports) Formally verified
/ proved

Eurosys
ASPLOS
SOSP
PLDI
CCS

384

163

74
0

100

200

300

400

500

Lines of Code #(CVE reports)

Eurosys
ASPLOS
SOSP
PLDI
CCS

384

163

0

100

200

300

400

500

Lines of Code

Eurosys
ASPLOS
SOSP
PLDI
CCS

384

How do Researchers Evaluate Security Now?
of papers using the approaches

for evaluation or indication of security

4

Is it a Good Idea to Use Lines of Code?

Conventional wisdom:
– # of LoC  # of bugs
– Easy to formally verify or code review small LoC

“There are, on the average, about 21 bugs per KLoC discoverable”
[Gaffney, TOSE '84]

“Commercial software typically has 20 to 30 bugs for every 1,000
lines of code”

—CMU’s CyLab quoted by WIRED magazine in 2004

LoC seems logical way to predict security problems

5

Is LoC Correlated to #(Vulnerabilities)?

164 applications
– Open-source
– 5-20 years in CVE DB
– Primary language:

• C: 126
• C++: 20
• Python: 6
• Java: 12

0
100
200
300
400
500
600
700
800

0 5000 10000 15000

(C
VE

 re
co

rd
s)

kLoC (Any Languages)

C

C++

Python

Java

Primary
Language:

1

10

100

1000

1 10 100 1000 10000 100000

(C
VE

 re
co

rd
s)

kLoC (Any Languages)

C

C++

Python

Java

Primary
Language:

Log10

Log10

Low LoC = low #CVE High LoC = High #CVE

LoC not significant within
orders of magnitude

6

LoC not a reliable predictor of vulnerabilities

7

May be we can try program complexity?

Complexity not necessarily correlated to the #CVE reports

Conventional wisdom:
– Complex program 

high probability of
vulnerabilities

Cyclomatic Complexity
[McCabe, TOSE '76]:
of linearly
independent paths

1

10

100

1000

100 1000 10000 100000 1000000

(C

VE
 re

co
rd

s)
Cyclomatic Complexity Metric

C

C++

Python

Java

Primary
Language:

Log10

Log10

Complexity too is noisy
within orders of magnitude

8

Other Conventional Wisdom

Large attack surface more opportunities for attacker
– Relative Attack Surface Quotient (RASQ) [Howard et al., 2005]

– Resources, communication channels, access rights for attackers
– Specific to configuration

Secure design guidelines  less # of vulnerabilities
– Design Security Standards

• NIST 800-55, Common Criteria, ISO/IEC 27004

– Qualitative, subjective, no precise evaluation model

These wisdom are mostly qualitative

9

Code Properties Reveal Security Aspects

Lines of code

Cyclomatic complexity

Attack surface

Choice of language

Difficulty of code-checking/verification

Variant of execution paths

Number of paths to attack

Safety of languages & runtimes

Code Properties Security Aspects

Weighted aggregation covers more security aspects

10

Code properties in isolation doesn’t evaluate
security. Aggregation may help.

11

Ideal Security Evaluation

Predict risk of compromise
– Attacker effort (qualitative)
– Vulnerabilities (quantitative)

Help improve code over versions

Improved code = Improved metric score

Compare similar software

Predict # and severity of all vulnerabilities

12

Can We Just Predict Bugs Instead?

“Many security holes in software are the result of software
bugs...”

— Seth Hallem, CEO of Coverity, 2004

Vast research predict bugs based on code properties
– A weighted correlation of code properties and bugs
– Too many false positives
– Need human intervention

Maybe #bugs is a good way of predicting vulnerabilities

13

Bugs and Vulnerabilities: It’s Complicated!

Bugs don’t foreshadow vulnerabilities
– Study [Camilo et al., MSR '15] : # of bugs  # of vulnerabilities
– Buggiest files files with many vulnerabilities

Code properties may have different relation to vulnerabilities
– Study [Shin et al., TOSE '11] : some code properties are indicative
– #functions, #declarations, #preprocessing lines, #branches, #input

and output arguments to a function

Vulnerabilities may correlate with code properties differently

14

Let’s Learn the Correlation

Hypothesis:
– Machine learnable correlation between code properties & vulnerabilities

May not be perfect, but we have to do SOMETHING

https://imgs.xkcd.com/comics/correlation.png

15

What Do We Need?

Large ground truth data
– More than 80,000 vulnerabilities in 400 applications and systems

Representative data
– #CVE Reports vary based on maturity and attention received

May be missing security-indicative code properties
– Any suggestions are most welcome!

Normalize for missing data

16

Calculating Other Code Properties

Data flow analysis
– # of expressions, functions, data structures

Control flow analysis
– # of calling and return targets

Abstract interpretation
– # of paths triggered by specific range of inputs

Static analysis can help collect more properties

17

Vulnerability Information
CVE-2016-8740 Detail

Impact
CVSS v3 Base Score:

Impact Score:
Exploitability Score:
Attack Vector (AV):

Attack Complexity (AC):
Privileges Required (PR):

User Interaction (UI):
Scope (S):

Confidentiality (C):
Integrity (I):

Availability (A):

7.5
3.6
3.9
Network
Low
None
None
Unchanged
None
None
High

• Input Validation (CWE-20)
• Resource Management Errors (CWE-399)

Vulnerability Type

• cpe:2.3:a:apache:http_server:2.4.17:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.18:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.19:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.20:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.21:*:*:*:*:*:*:*

Configuration

Root causes

Severity
& attack properties Affected versions

A vector of information available from CVE reports

18

System Proposal

CVE
database

App 1

App 2

App N

...

Selecting ground truth:
Applications with

converging CVE history

19

System Proposal

CVE
database

(Lang,LoC,Cyclo,RASQ,…)

(Lang,LoC,Cyclo,RASQ,…)

(Lang,LoC,Cyclo,RASQ,…)

...

St
at

ic
 A

na
ly

si
s

To
ol

sApp 1

App 2

App N

...

Automated testbed
to collect a vector of code

properties

20

System Proposal

CVE
database

(Lang,LoC,Cyclo,RASQ,…)

(Lang,LoC,Cyclo,RASQ,…)

(Lang,LoC,Cyclo,RASQ,…)

...

St
at

ic
 A

na
ly

si
s

To
ol

sApp 1

App 2

App N

...

AV=(N,A,L,P),AC=…

AV=(N,A,L,P),AC=…

AV=(N,A,L,P),AC=…

...
ML (w/ cross validation)

Classifiers
Mining correlation

between code properties
& vulnerability classes

21

AV=(N,A,L,P),AC=…

AV=(N,A,L,P),AC=…

AV=(N,A,L,P),AC=…

System Proposal

CVE
database

(Lang,LoC,Cyclo,RASQ,…)

(Lang,LoC,Cyclo,RASQ,…)

(Lang,LoC,Cyclo,RASQ,…)

...

St
at

ic
 A

na
ly

si
s

To
ol

sApp 1

App 2

App N

... ...
ML (w/ cross validation)

Classifiers AV=(N,A,L,P),AC=…St
at

ic
 A

na
ly

si
s

To
ol

s

Classifiers

The eval result is
prediction of vulnerability

severity & classes

Target
Application

Classifiers predict #, severity, and classes of vulnerabilities

22

Oh No! Not Another Security Metric!

Our metric is:
– Easily extendable
– Can only improve with time (more CVE data)
– Doesn’t rely on only one code property
– Gives useful feedback to developers

Supposed to be the one metric to rule them all!

https://imgs.xkcd.com/comics/standards.png

23

Using the Metric

 Confirm or update conventional wisdom

 Balance multiple properties

Hint possible security enhancement:
– Defenses against potential attacks
– Improve code property

we propose to build a series of classifiers for SW vulnerability:

EX:
E [AV (Attack Vector) = N (Network)] =
Lang × W0 + Log10(LoC) × W1 + Cyclo × W2 + RASQ × W3 + …

More than just
another

“security score”!

Metric can be integrated with regression testing

24

Conclusion

LoC, complexity, other metrics are noisy

We propose to approximate risk of having a vulnerability

Learn weighted relation of code properties to vulnerabilities

Challenge:
– Extract meaning from incomplete ground truth

Bhushan Jain
bhushan@cs.unc.edu

	Slide Number 1
	Which is More Secure?
	How do Researchers Evaluate Security Now?
	Is it a Good Idea to Use Lines of Code?
	Is LoC Correlated to #(Vulnerabilities)?
	LoC not a reliable predictor of vulnerabilities
	May be we can try program complexity?
	Other Conventional Wisdom
	Code Properties Reveal Security Aspects
	Code properties in isolation doesn’t evaluate security. Aggregation may help.
	Ideal Security Evaluation
	Can We Just Predict Bugs Instead?
	Bugs and Vulnerabilities: It’s Complicated!
	Let’s Learn the Correlation
	What Do We Need?
	Calculating Other Code Properties
	Vulnerability Information
	System Proposal
	System Proposal
	System Proposal
	System Proposal
	Oh No! Not Another Security Metric!
	Using the Metric
	Conclusion

