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Which is More Secure?

Can we evaluate security empirically?
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Most just use LoC and #CVE reports as prediction of security
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Is it a Good Idea to Use Lines of Code?

Conventional wisdom: 
– # of LoC  # of bugs
– Easy to formally verify or code review small LoC

“There are, on the average, about 21 bugs per KLoC discoverable”
[Gaffney, TOSE '84]

“Commercial software typically has 20 to 30 bugs for every 1,000 
lines of code”

—CMU’s CyLab quoted by WIRED magazine in 2004

LoC seems logical way to predict security problems
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Is LoC Correlated to #(Vulnerabilities)?

164 applications
– Open-source
– 5-20 years in CVE DB
– Primary language:

• C: 126
• C++: 20
• Python: 6
• Java: 12
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LoC not a reliable predictor of vulnerabilities
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May be we can try program complexity?

Complexity not necessarily correlated to the #CVE reports

Conventional wisdom: 
– Complex program 

high probability of 
vulnerabilities

Cyclomatic Complexity 
[McCabe, TOSE '76]:              
# of linearly 
independent paths
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Other Conventional Wisdom

Large attack surface more opportunities for attacker
– Relative Attack Surface Quotient (RASQ) [Howard et al., 2005]

– Resources, communication channels, access rights for attackers
– Specific to configuration

Secure design guidelines  less # of vulnerabilities
– Design Security Standards

• NIST 800-55, Common Criteria, ISO/IEC 27004

– Qualitative, subjective, no precise evaluation model

These wisdom are mostly qualitative
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Code Properties Reveal Security Aspects

Lines of code

Cyclomatic complexity

Attack surface

Choice of language

Difficulty of code-checking/verification

Variant of execution paths

Number of paths to attack

Safety of languages & runtimes

Code Properties Security Aspects

Weighted aggregation covers more security aspects
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Code properties in isolation doesn’t evaluate 
security. Aggregation may help.
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Ideal Security Evaluation

Predict risk of compromise
– Attacker effort (qualitative)
– Vulnerabilities (quantitative)

Help improve code over versions

Improved code = Improved metric score

Compare similar software

Predict # and severity of all vulnerabilities
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Can We Just Predict Bugs Instead? 

“Many security holes in software are the result of software 
bugs...”

— Seth Hallem, CEO of Coverity, 2004

Vast research predict bugs based on code properties
– A weighted correlation of code properties and bugs
– Too many false positives
– Need human intervention

Maybe #bugs is a good way of predicting vulnerabilities
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Bugs and Vulnerabilities: It’s Complicated!

Bugs don’t foreshadow vulnerabilities
– Study [Camilo et al., MSR '15] : # of bugs  # of vulnerabilities
– Buggiest files         files with many vulnerabilities

Code properties may have different relation to vulnerabilities
– Study [Shin et al., TOSE '11] : some code properties are indicative
– #functions, #declarations, #preprocessing lines, #branches, #input 

and output arguments to a function

Vulnerabilities may correlate with code properties differently
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Let’s Learn the Correlation

Hypothesis:
– Machine learnable correlation between code properties & vulnerabilities

May not be perfect, but we have to do SOMETHING

https://imgs.xkcd.com/comics/correlation.png
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What Do We Need?

Large ground truth data
– More than 80,000 vulnerabilities in 400 applications and systems

Representative data
– #CVE Reports vary based on maturity and attention received

May be missing security-indicative code properties
– Any suggestions are most welcome!

Normalize for missing data
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Calculating Other Code Properties

Data flow analysis
– # of expressions, functions, data structures

Control flow analysis
– # of calling and return targets

Abstract interpretation
– # of paths triggered by specific range of inputs

Static analysis can help collect more properties
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Vulnerability Information 
CVE-2016-8740 Detail

Impact
CVSS v3 Base Score:

Impact Score:
Exploitability Score:
Attack Vector (AV):

Attack Complexity (AC):
Privileges Required (PR):

User Interaction (UI):
Scope (S):

Confidentiality (C):
Integrity (I):

Availability (A):

7.5
3.6
3.9
Network
Low
None
None
Unchanged
None
None
High

• Input Validation (CWE-20)
• Resource Management Errors (CWE-399)

Vulnerability Type

• cpe:2.3:a:apache:http_server:2.4.17:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.18:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.19:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.20:*:*:*:*:*:*:*
• cpe:2.3:a:apache:http_server:2.4.21:*:*:*:*:*:*:*

Configuration

Root causes

Severity
& attack properties Affected versions

A vector of information available from CVE reports



18

System Proposal
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System Proposal
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System Proposal
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Classifiers predict #, severity, and classes of vulnerabilities
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Oh No! Not Another Security Metric!

Our metric is:
– Easily extendable
– Can only improve with time (more CVE data)
– Doesn’t rely on only one code property
– Gives useful feedback to developers

Supposed to be the one metric to rule them all! 

https://imgs.xkcd.com/comics/standards.png



23

Using the Metric

 Confirm or update conventional wisdom

 Balance multiple properties

Hint possible security enhancement:
– Defenses against potential attacks
– Improve code property

we propose to build a series of classifiers for SW vulnerability:

EX:
E [AV (Attack Vector) = N (Network) ] =
Lang × W0 + Log10(LoC) × W1 + Cyclo × W2 + RASQ × W3 + …

More than just 
another 

“security score”!

Metric can be integrated with regression testing
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Conclusion

LoC, complexity, other metrics are noisy

We propose to approximate risk of having a vulnerability

Learn weighted relation of code properties to vulnerabilities

Challenge: 
– Extract meaning from incomplete ground truth

Bhushan Jain
bhushan@cs.unc.edu
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