
dm-x: Protecting Volume-level Integrity for Cloud Volumes and
Local Block Devices

Anrin Chakraborti
Stony Brook University

Bhushan Jain
Stony Brook University &

UNC, Chapel Hill

Jan Kasiak
Stony Brook University

Tao Zhang
Stony Brook University &

UNC, Chapel Hill

Donald Porter
Stony Brook University &

UNC, Chapel Hill

Radu Sion
Stony Brook University

ABSTRACT
The verified boot feature in recent Android devices, which
deploys dm-verity, has been overwhelmingly successful in elim-
inating the extremely popular Android smart phone rooting
movement [25]. Unfortunately, dm-verity integrity guarantees
are read-only and do not extend to writable volumes.

This paper introduces a new device mapper, dm-x, that
efficiently (fast) and reliably (metadata journaling) assures
volume-level integrity for entire, writable volumes. In a direct
disk setup, dm-x overheads are around 6-35% over ext4 on the
raw volume while offering additional integrity guarantees. For
cloud storage (Amazon EBS), dm-x overheads are negligible.

1 INTRODUCTION
Dramatic advances have been made in recent years towards
building tamper-evident systems with a trusted computing
base (TCB). Recent TPM-based systems provide strong guar-
antees, even against attackers with temporary physical access
to the machine, by refusing to attest malicious software, and
by withholding decryption keys for untrusted storage devices.
In total, these systems assure that, at least at start-up time,
the system is starting from a clean boot of trusted software.
Unfortunately, once a system boots into a trusted software
stack, the kernel almost always mounts filesystems from disks
without equally-strong integrity protection. Recent studies
of kernel rootkits demonstrate that, even when the integrity
of kernel code is protected, compromised disk data can com-
promise kernel security by violating assumptions about data
structure layouts [7, 12].

This is significantly more critical for cloud services where
the storage server can be malicious, compromised, or simply
not as diligent in ensuring regulatory compliance or security
best practices. In fact, secure hybrid cloud strategies [9] based

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
APSys ’17, September 2, 2017, Mumbai, India
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5197-3/17/09. . . $15.00
https://doi.org/10.1145/3124680.3124732

on Amazon’s Virtual Private Cloud (VPC) [2] (which provides
strong security guarantees through network isolation) store
data on untrusted storage devices residing in the public cloud.
For example, Amazon VPC file systems, object stores, and
databases reside on virtual block devices in the Amazon
Elastic Block Storage (EBS).

This allows numerous attack vectors for a malicious cloud
provider/untrusted software running on the server. For in-
stance, to ensure SEC-mandated assurances of end-to-end
integrity, banks need to guarantee that the external cloud
storage service is unable to remove log entries documenting
financial transactions. Yet, without integrity of the storage
device, a malicious cloud storage service could remove logs
of a coordinated attack. By determining which blocks store
these sensitive logs, such as by monitoring concurrent write
patterns [24], a malicious cloud service can selectively replace
these blocks with old, innocuous values. Such an attack on
the logs can go unnoticed, potentially indefinitely.

At the root of these vulnerabilities is a lack of volume-
level, read/write integrity protection. Simply encrypting the
data using current block-level encryption solutions, such as
dm-crypt or Bitlocker, does not achieve the necessary se-
curity guarantees. Block device encryption cannot ensure
freshness of writes: an adversarial cloud storage volume may
discard writes during an attack. As with checksumming indi-
vidual blocks, when blocks are encrypted independently, old
ciphertexts can be replayed.

Currently-available block device integrity solutions either
ensure block-level integrity (dm-integrity [15]) and are prone
to replay attacks (described further), or can only support
read-only integrity verification (dm-verity [3]).

To address this need, we introduce dm-x—a new Linux
block device mapper that ensures volume-level, cryptograph-
ically-strong integrity of data both at rest and at runtime. dm-
x can detect a malicious remote storage server, normal data
corruption, and physical device tampering. dm-x is efficient,
with storage overheads that are constant in trusted space
and logarithmic in untrusted space. To provide robustness
against system crashes and power failures, dm-x integrates
metadata journaling with integrity.

When compared with existing integrity-preserving file sys-
tems (such as [16]), a particular advantage of integrity protec-
tion at the block device level is generality. Users (especially
on clouds) run a range of different file systems, as well as

1

https://doi.org/10.1145/3124680.3124732

databases or other software directly on the raw device [1].
Although some file systems, such as btrfs and zfs [6, 20, 28]
include some checksum support, this is only designed to
detect block corruption, not to resist a malicious volume.
Further, integrity file systems and filesystem centric solutions
[6, 20, 28], while very useful in specific applications, are often
designed with significant additional compute and network
resources in mind [14, 16–18]. For example, some distributed
storage systems ensure strong consistency protection, such
as fork consistency, in the presence of multiple clients [14, 16–
18]. Such properties come at a significant computational and
network cost, and are stronger than needed for a typical hy-
brid cloud, where one assumes that each volume is mounted
by a single client at a time.

Most importantly however filesystem techniques do not
work for securing boot devices, protecting volume snapshots,
and applications optimized to function on top of block devices.
Since cloud services expose only a raw block device (such as
an EBS volume) to the client VMs, using a filesystem for
integrity may introduce unnecessary performance penalties
for specific applications. For example, production MySQL
databases are routinely deployed on raw disks for increased
performance [1]. dm-x can be deployed transparently to a
legacy filesystem as well as a databases that runs directly on
a raw device [1].

The contributions of this paper are as follows:
∙ The design and implementation of an efficient, volume-

level integrity-preserving device mapper.
∙ A metadata journaling mechanism with integrity, which

endows dm-x with robustness against system crashes
and power failures.

∙ A host of optimizations for efficient, authenticated
reads and writes.

∙ A thorough evaluation on both cloud and local storage,
which shows read and write performance comparable
to ext4 with metadata-only journaling.

2 RELATED WORK
Block-Level Integrity on Local Storage. The dm-integrity device-
mapper [15] uses keyed hash-based message authentication
codes (HMACs) to provide transparent read-write block-level
cryptographic integrity protection for the underlying block
device. Block-granular integrity prevents tampering with indi-
vidual blocks, but does not prevent reordering blocks within
the device.

Hou et al. [13] use a Merkle tree variant, and place sub-
trees with data on disk to improve locality. However, this is
done under certain unrealistic assumptions (e.g., increasing
standard disk block size to 536 bytes) and with asynchronous
integrity checks, which allow applications to use unverified
data.

Heitzmann et al. [11] use authenticated skip list to provide
block-level integrity for untrusted storage servers. Although,
authenticated skip lists have better asymptotic performance
when compared to Merkle trees, [11] does not address the
possibility of crashes and inconsistencies. Oprea et al. [23]

achieve block-level integrity for cloud-hosted volumes using
tweakable block ciphers and an entropy-based mechanism to
detect randomness in the contents of a block. However, unlike
dm-x, their scheme requires storing hashes of all blocks that
have high entropy on the client.

File System Integrity. Both btrfs [20] and ZFS [6, 29] use
checksums to detect disk block corruption at rest. ZFS also
uses Merkle trees for efficiency. Neither are designed to detect
tampering by an attacker with physical access (as the hashes
are stored on the disk itself), and do not provide volume-level
protection.

jVPFS [28] uses Merkle trees and a chained journal to store
high-integrity data in a smaller file system within a larger,
untrusted file system. Unlike dm-x, a block device mapper
designed for bare metal, jVPFS is a nested file system that
integrates the Merkle tree with the file system metadata tree
and tailors updates to file system semantics.

PFS [27] is an extension of the LFFS log-structured file
system [26] to add collision-resistant, chained hashes to ensure
integrity of each logged write. This design is particularly
elegant in a log-structured file system, as it integrates the
hash chains with the log itself, but is inefficient for a typical,
tree-structured file system.

Oprea and Reiter describe a MAC-tree – similar to a
Merkle tree, but with MACs. They leverage MAC trees in a
cryptographic file system, using features such as compressibil-
ity to store integrity metadata inline, and thereby improving
locality [22].

Some distributed storage systems inherently provide in-
tegrity as a means to achieve strong consistency protec-
tion (such as fork consistency) in the presence of multiple
clients [14, 16–18]. Properties such as fork consistency come
at a significant computational and network cost, and are
stronger than needed for a typical single-client scenario, as
addressed here. Unlike dm-x, filesystem based integrity solu-
tions do not provide block-level integrity, which is needed for
certain databases [1].

3 OVERVIEW AND DESIGN
dm-x is a Linux device mapper that provides integrity protec-
tion in a filesystem-independent manner. The device mapper
layer sits between the file system and the disk, and can
transparently add features such as RAID, block caching, and
encryption. The device mapper layer is stackable, so features
such as encryption or RAID can be easily combined with in-
tegrity protection. Figure 1 summarizes the dm-x architecture
and on-disk layout.

dm-x is an extension of the dm-verity device mapper [3],
extended with additional guarantees and features, including
journaling and read-write capability. The dm-verity module
provides read-only integrity protection for a block device
using a Merkle tree [21] on a separate device; once a block
device is sealed, the block device cannot be modified again,
except by resealing the filesystem—an expensive operation
involving reading and rehashing all blocks, even those not in
use. The main goal of dm-verity is checking system software

Figure 1: dm-x deployment scenario. dm-x exports a virtual device
layer to the higher-level file system. The trusted storage (local disk
on client VM, TPM) provides a small amount of trusted storage (64
bytes). The underlying volume itself is untrusted. The on-disk layout
is illustrated, not to scale. A Merkle tree and a journal are transpar-
ently added to the front of the underlying device.

as part of boot; if system software is updated infrequently
and updates are already expensive, this design makes sense.
dm-x adds secure, efficient updates to an integrity-checking
mapper; increases flexibility in device selection, supports a
single device or multiple devices; adds journaling; and extends
this benefit to all user and application data.

At a high level, dm-x can efficiently record updates to the
Merkle tree by also creating an HMAC-protected journal.
In dm-x, the storage device is untrusted; we posit a small
amount of trusted storage, such as a trusted local disk for
cloud deployment, a TPM chip, a removable storage device
(e.g., a USB stick), or a trusted network service. Trusted
storage keeps a 32 byte root hash of the Merkle tree and a
32 byte secret key to generate HMACs of the journal.

The dm-x mapper checks disk block integrity on demand
– i.e., when a block is read from disk. If the block’s hash
doesn’t match the Merkle tree, the file system receives an
I/O error and logs a message to the kernel error log (dmesg).
A production system would include a tool to help the user
recover the file contents. If a block is not read, it will not be
checked; if a user desires a periodic integrity check to detect
sector corruption, similar to RAID scrubbing, she need only
schedule a cron job that reads the contents of disk.

The dm-x module is about 2.4 kLoC (compared to 700
for the original read-only version). The userspace formatting
utility is roughly 650 LoC.

3.1 Threat Model
The primary goal of dm-x is to detect tampering with data
at rest on untrusted volumes – deployable for both local
and cloud hosted storage. The dm-x adversarial model thus
includes both local and remote adversaries as we detail below.

Local Adversary. dm-x protects against a local adversary
that could have control of a laptop from a user temporarily,
such as at a customs checkpoint, and subsequently return
it to the user. The attacker does not know the user’s login

credentials and does not have access to the running sys-
tem software. An attacker might be able to recover a secret
key from the RAM of a running system using a cold boot
attack [10]. Fortunately, closing this attack vector is straight-
forward on SGX-enabled Intel chips [19] and thus are not
explicitly detailed in this paper.

Untrusted Remote Storage. dm-x protects against un-
trusted storage servers that can tamper with the stored data
(such as selective data removal) and/or mount replay attacks
by presenting stale data to the user (client VM) for cloud
hosted volumes. Note that in this case, the client VM is
trusted.

Small Trusted Storage. dm-x assumes small trusted storage
to store secrets (secret keys and Merkle tree root hash, as
described above) in the user’s possession. The type of storage
required depends on the deployment scenario. For example,
to protect against a local adversary, dm-x can store secrets
in a TPM. For a cloud deployment, since the client machine
(VM) is not compromised, it can securely store the secrets
locally.

At mount time, dm-x assures that disk contents are the
same as the last time the file system was mounted by a trusted
OS kernel. Thus, attacks that take control of the operating
system via exploitable software are beyond the scope of our
threat model, as dm-x cannot distinguish disk write requests
issued by a compromised application or kernel module from
uncompromised code. In our design, the hardware, BIOS,
bootloader, and OS kernel are trusted.

3.2 Storage Organization
The dm-x design transparently allocates a small, logarithmic
amount of disk space for its internal bookkeeping, illustrated
in Figure 1. To ensure crash consistency between the data
and the Merkle tree, the dm-x design includes metadata
journaling to record the original hash and the new hash on
every write; because the journal and tree are updated in
large, contiguous writes, we stored them contiguously at the
front. A portion of the Merkle tree itself, as well as the most-
recently-accessed data are cached in memory at runtime.

The space overhead of integrity protection is generally low—
a function of the size of the data being protected, the block
size, the hash function, and the branching factor. In dm-x we
use SHA256. Thus, each 4KB disk can hold up to 128 hashes
(32B x 128 = 4KB). The Merkle tree in dm-x has a branching
factor of 128 to ensure full utilization of the 4KB block size.
In a typical use case, say a 2TB commodity drive with a
4KB block size, this requires a few GB for the Merkle tree—
less than 0.8%. The journal size is also configurable; for our
experiments, a 32 MB journal was sufficient; for comparison,
the ext4 default journal size is 128 MB [4]. Moreover, the I/O
overhead in terms of extra bytes written to the disk is very
small — e.g., for every 1GB written to disk, on an average,
we write extra 18.2 MB (1.77%) for journal and Merkle tree
updates.

3.3 Efficient, Journaled Writes
The primary challenge in adding write support to dm-x is en-
suring crash consistency among data and Merkle tree nodes.
For example, in a simple Merkle tree implementation, if the
system crashes between updating an interior node and the
root, the Merkle tree on disk will fail validation, despite the
fact that all data on disk was actually written by trusted
software. To recover from crashes during a Merkle tree write,
dm-x includes a replay journal. The current journal design
went through many iterations. The current design stores
the old and new hash of the data present at a given disk
sector; dm-x ensures that journal entries are committed to
the device before the corresponding data and Merkle tree
nodes are written. Thus, after a crash, the data is checked to
match one hash value or the other and update the Merkle
tree accordingly. We note that dm-x only ensures a consistent
state of the Merkle tree and cannot roll back (or roll through)
transactions interrupted due to a crash. In fact, since the
main purpose of deploying dm-x is integrity protection for
filesystem data through the Merkle tree, the responsibily
of preventing data loss lies with the filesystem. Fortunately,
almost all commonly deployed filesystems, such as ext4 and
NTFS, support data journaling, which allows graceful re-
covery from crashes and prevents data loss. Nonetheless, we
consider a version of dm-x with full data journaling as future
work. This is to support deployment scenarios where dm-x is
deployed without an overlying filesystem, or the filesystem
does not support data journaling.

A journal entry is written to disk when a sync() is re-
quested, a journal buffer is full, after a maximum period (5
seconds by default), or the system needs to reclaim memory
from cached, dirty pages. To improve write performance, dm-
x groups dirty page writes, lowering the cost of journaling and
giving the I/O scheduler more flexibility in write-back. For
every read or write I/O request, the prefetch thread brings
into memory all the relevant hashes at different levels, so
that the I/O request serving threads are not blocked on I/O.

3.4 Verifying Reads
When the file system issues a block read request, the dm-
x module verifies that block’s contents hash to the same value
as the last write by trusted software.

Merkle tree integrity validation executes from the top-
down, as illustrated in Figure 2, with a simple tree with
branching factor 2 and depth 3 (dm-x actually uses a branch-
ing factor of 128). dm-x reads the root node from disk and
hashes its contents, comparing this to the root hash from
trusted storage. Each non-leaf tree node stores an array of
child node hashes. If a non-leaf node has the correct hash
value, the appropriate child hash is selected, and the process
iterates until a leaf node is hashed. If any node in the process
doesn’t hash to a trusted value, an I/O error is returned to
the file system and an integrity violation is logged. Because
multi-core CPUs are ubiquitous and often under-utilized on
modern systems, we use multiple threads to parallelize block
hashing, thereby increasing throughput and reducing latency.

Client - in memory

Untrusted storage

𝐴

𝐵 𝐶

𝐹 𝐺

Data4Data3

𝐷 𝐸

Data2Data1

Figure 2: Merkle tree traversal, with fanout of 2. Highlighted path
marks traversal to block 2. 𝐴 is the root hash.

Moreover, for every read request, we first check if the data
block is dirty and in memory, in which case, we return the
most recent dirty data. If the read request is for a large chunk
of data and only part of it is in cache, we break the large
request into multiple requests so that we only read the data
not present in the cache.

With a cold cache, checking a block requires reading and
hashing a logarithmic number of disk blocks. For instance,
on a 2 TB disk the Merkle tree would be 5 levels deep, so
the first read would read and hash 5 extra blocks.

In the common, warm-cache case, reading a block incurs
0–2 extra reads and hashes, depending on the locality of
access. dm-x includes a 64 MB cache of verified Merkle tree
nodes, organized in a radix tree. In our 2TB disk example,
the top 3 layers of the Merkle tree will almost always be in
cache, but only a recently used subset of the bottom 2 layers
will be cached — most of which are prefetched on the I/O
request.

4 INTEGRITY DESPITE CRASHES
Given that the journal is replayed to the Merkle tree after
a crash, the integrity of the journal itself must be assured.
The Merkle tree does not protect the journal contents; rather,
dm-x uses a secret key (stored in the TPM or on a trusted
remote storage) to compute a chained sequence of MACs of
the Merkle tree root hashes. In other words, as transactions
are applied to the journal, the end of a journal transaction
includes a MAC of the previous Merkle tree root hash, and
the new root hash.

This design resists journal tampering, as MACs are un-
forgeable. If any journaled writes are modified, the MAC
will not validate. When the journal is checkpointed (i.e., old
entries are garbage collected), the MAC of the last trans-
action is stored in the trusted storage. The adversary can
delete entries from the journal, but this is equivalent to the
threat of zeroing block contents on the main device or losing
power before the data is written to disk; the window of po-
tential data loss can be bounded by more frequent journal
checkpointing.

Because the journal entries are currently chained by root
hashes, if the file system is ever checkpointed in exactly the
same state (i.e., the root hashes match), this creates a cycle

 0

 20

 40

 60

 80

 100

 120

SeqRead SeqWrite

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

ext4 ordered
dmx

dm-integrity
dm-crypt

Local HDD

(a) Sequential Access on HDD

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

RRead RWrite

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

ext4 ordered
dmx

dm-integrity
dm-crypt

Local HDD

(b) Random Access on HDD

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

SeqRead SeqWrite

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

ext4 ordered
dmx

dm-integrity
dm-crypt

Local SSD

(c) Seqeuntial Access on SSD

 0

 5

 10

 15

 20

 25

RRead RWrite

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

ext4 ordered
dmx

dm-integrity
dm-crypt

Local SSD

(d) Random Access on SSD

 0

 20

 40

 60

 80

 100

SeqRead SeqWrite

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Amazon EBS

ext4 ordered
dm-integrity

dm-x
dm-crypt

(e) Sequential Access on EBS

 0

 5

 10

 15

 20

RRead RWrite

T
h

ro
u

g
h

p
u

t
(M

B
/s

e
c
)

Amazon EBS

ext4 ordered
dm-integrity

dm-x
dm-crypt

(f) Random Access on EBS

Figure 3: Throughput comparison of dm-x , dm-integrity, ext4 filesystem in ordered mode and dm-crypt on an HDD, SSD and Amazon EBS
volumes. Throughput is measured in MB/s (higher is better). dm-x shows comparable sequential throughput to ext4 and dm-integrity on the
HDD. Ext4 outperforms both dm-x and dm-integrity on the SSD although dm-x provides stronger volume-level integrity protection compared to
the block-level protection for dm-integrity. For EBS volumes, sequential and random access performances are comparable, as network performance
is the limiting factor.

that would allow an attacker to replay an old journal entry.
Although a repeated root hash is highly improbable with a
collision-resistant hash function, this can be fixed by chaining
journal entries by the MAC of the previous entry, and storing
the MAC of the last checkpointed transaction in trusted
storage. This change makes the probability of cycles in the
journal’s MAC chain negligible, even if the root hash value
repeats.

5 EVALUATION
We measure the performance of dm-x on both local and
cloud storage devices. For the local storage scenario, dm-
x was benchmarked using Ubuntu 14.04, Linux kernel 3.16.0.
All experimental results were collected on a machine with a
dual-core Intel i7-3520M CPU running at 2.90GHz and 6GB
RAM. For the cloud storage benchmark, we used Amazon
t2.medium EC2 instances with 4GB of memory running
Ubuntu 14.04, Linux kernel 3.16.0. The storage devices of
choice were a 500 GB, 7200 RPM ATA Hitachi HDD, 1 TB
SanDisk UltraII SSD, and a 20GB Amazon EBS “general
purpose SSD (gp2)” with a max throughput of 160MB/s per
volume.

Local Microbenchmarks. Local microbenchmarks were per-
formed with sequential reads and writes of a 10 GB file, and
random 1 GB of 4KB reads and writes spread across a 10GB
file. dm-x was compared with dm-integrity [15], dm-crypt,

and ext4 in ordered mode on the raw volume. dm-crypt is a
commonly deployed disk encryption tool for the Linux kernel.
Although, confidentiality is orthogonal to the goals of this
paper, the benchmarks demonstrate the costs of achieving
security at the block device-level.

Sequential reads are comparable in most cases (Figure 3(a)),
except for lower throughput on an SSD (Figure 3(c)). This
is largely due to the overhead introduced by hashing the
additional Merkle tree data. For example, to read or write
10 GB of data, with 4KB block size and 128 hash entries
in each block, 20480 Merkle tree leaves (around 84 MB of
data) and their parents needs to be read from the disk. Thus,
almost 170 MB of I/O requests are made in order to read
the corresponding Merkle tree nodes. Further, the Merkle
tree verification requires hashing all the nodes along a path
to the leaf. Thus, with depth of 5 (for a 1TB disk), almost
420 MB of Merkle tree nodes needs to be hashed. With low
access latencies on SSDs, the cost of hashing dominates the
cost for performing the additional I/O.

We believe that read performance can be improved on
an SSD case with better read-ahead and eliminating lock
contention with finer-grained synchronization.

dm-x performs comparably with dm-integrity on the HDD
although dm-x provides a stronger volume level protection
using the Merkle tree. In contrast, dm-integrity only uses
HMAC to provide block-level integrity. For the SSD, dm-
integrity outperforms dm-x as it needs to only verify the

 0

 10

 20

 30

 40

 50

HDD Combo SSD

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
)

Device Configuration

ext4 ordered
dm-x

(a) Varmail

 0

 200

 400

 600

 800

 1000

 1200

 1400

HDD Combo SSD

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d
s
 (

T
x
/s

e
c
)

Device Configuration

ext4 ordered
dm-x

(b) Pgbench

 0

 5

 10

 15

 20

 25

HDD Combo SSD

T
im

e
 (

s
e
c
)

Device Configuration

ext4 ordered
dm-x

(c) Untar Linux

Figure 4: Application benchmark comparisons of ext4 file system on an HDD, SSD, and combination of HDD+SSD (Combo),
using ordered journal mode and dm-x. Varmail and pgbench measure throughput (higher is better), and untar measures latency
(lower is better).

HMAC for each block but is still appreciably slower than
ext4 on the raw disk. In fact, the overhead of hashing is
evident also in this case.

Storing the Merkle tree on an SSD can significantly improve
overall write throughput, even when data is stored on an
HDD. This is especially exciting, since an SSD could be used
in combination with a RAID array of rotational disks to offer
even higher total bandwidth.

CPU utilization. To evaluate CPU overhead, we benchmark
the SSD, which keeps the CPU busier. For sequential read
and write, baseline ext4 uses 20% and 30% of one core,
respectively. When adding integrity, CPU utilization increases
to 60% of all four cores for reads and 40% of all cores for
writes. This increase can be straightforwardly attributed to
hashing Merkle tree nodes in parallel, using all the available
cores. Further, a higher read throughput for the SSD entails
higher CPU utilization for evaluating hashes of blocks read
from the disk, compared to lower CPU utilization for a lower
write throughput. In fact, sequential accesses on local SSDs
demonstrate the maximum CPU utilization for dm-x. For
random I/O on SSDs and both sequential and random I/O
on HDDs, the CPU overheads are significantly lower as dm-
x accesses are I/O bound. For CPU constrained systems, the
number of parallel threads can be optimized while trading
off throughput over resource utilization.

Cloud Benchmark. We measure sequential reads and writes
of a 8 GB file (for 4GB RAM size), and random 1 GB of 4KB
reads and writes spread across a 8GB file on the Amazon
t2.medium EBS volume. The network link bandwidth is
25MB/s, as measured by iperf [5]. This corresponds to typical
network deployment scenarios with medium to high network
latency. Figure 3(e) and 3(f) reports throughput in MB/s.

Ext4 with dm-x shows comparable performance to ext4
in ordered data mode in the medium to high network la-
tency environment, highlighting its practicality for ensuring
integrity of cloud hosted volumes. Further, as shown in the
local benchmarks above, dm-x performs reasonably in low
latency environments and is thus suitable for deployment

even in the case of low latency network storage scenarios
(such as a SAN setup).

5.1 Application Benchmarks
Untar linux. As a simple application benchmark, we measure
the time to untar the Linux 3.17.4 kernel (Figure 4). To
demonstrate a possible deployment scenario, we additionally
benchmark dm-x in “combo” mode – the Merkle tree is
stored on the SSD while the data is stored on the HDD.
The execution time is 24-26% slower than ordered journaling,
except on the combo case, where all data points are relatively
close.
Varmail. The varmail personality from Filebench [8] reads
big files and forces a sync between relatively small writes.
dm-x performs comparably with ext4 on an HDD but be-
comes worse for the SSD — which is not surprising given the
sequential read performance of dm-x on the SSD.
PostGreSQL. For PostGreSQL pgbench, we used scaling
factor 300, 4 connections, and 2 threads, which ran for 10
minutes each. This setup measures the disk performance
avoiding the effect of buffers and cache on the performance.
This case illustrates the benefits of group commit, as well as
buffering random writes, in the dm-x journal, yielding write
throughput better than ordered mode on the HDD or SSD.

Finally, in all cases, the combo out-performs the HDD
alone, in several cases by a considerable margin. This is
because we accelerate all synchronous writes on the SSD, and
all writes to the HDD are asynchronous. Thus, this model
could potentially yield very good performance on a dual
SSD/HDD setup.

6 CONCLUSION
Volume-level integrity protection is essential for devices and
(cloud) services that are not always under the user’s control.
In this paper we show that in-band, writable, cryptographically-
strong integrity protections are feasible when implemented
at the block device layer, and provide broad support and
compatibility with legacy file systems, as well as additional

features such as metadata journaling and crash recovery.
The open-source implementation of dm-x is available at
https://github.com/anrinch/dmx.

7 ACKNOWLEDGEMENT
The authors would like to acknowledge support from the Na-
tional Science Foundation (awards 1526707, 1526102, 1161541,
1318572, 1405641 and 1228839), Office of Naval Research and
VMware. We also thank our shepherd, Wenguang Chen and
the anonymous reviewers for their valuable suggestions on
improving the paper.

REFERENCES
[1] Using Raw Disk Partitions for the System Tablespace

in MySQL. http://dev.mysql.com/doc/refman/5.7/en/
innodb-raw-devices.html.

[2] 2017. Amazon Virtual Private Cloud. ""https://aws.amazon.com/
vpc/"". (2017).

[3] 2017. dm-verity. https://code.google.com/p/cryptsetup/wiki/
DMVerity. (2017).

[4] 2017. ext4 Disk Layout. https://ext4.wiki.kernel.org/index.php/
Ext4_Disk_Layout. (2017).

[5] 2017. iperf. "https://iperf.fr/". (2017).
[6] Jeff Bonwick and B. Moore. 2008. ZFS: The Last Word in File

Systems. http://opensolaris.org/os/community/zfs/docs/zfslast.
pdf. (2008).

[7] James Butler and Greg Hoglund. 2004. VICE–catch the hookers.
Black Hat USA 61 (2004), 17–35.

[8] filebench 2017. FileBench. http://sourceforge.net/projects/
filebench/. (2017).

[9] George Leopold, Enterprise Tech. 2015. Verizon Survey: Hybrid
Cloud Now Mainstream. http://www.enterprisetech.com/2015/
11/09/verizon-survey-hybrid-cloud-now-mainstream/. (2015).

[10] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William
Clarkson, William Paul, Joseph A. Calandrino, Ariel J. Feldman,
Jacob Appelbaum, and Edward W. Felten. 2009. Lest We Remem-
ber: Cold-boot Attacks on Encryption Keys. Commun. ACM 52,
5 (May 2009), 91–98. https://doi.org/10.1145/1506409.1506429

[11] Alexander Heitzmann, Bernardo Palazzi, Charalampos Papaman-
thou, and Roberto Tamassia. 2008. Efficient Integrity Check-
ing of Untrusted Network Storage. In Proceedings of the 4th
ACM International Workshop on Storage Security and Sur-
vivability (StorageSS ’08). ACM, New York, NY, USA, 43–54.
https://doi.org/10.1145/1456469.1456479

[12] Owen S. Hofmann, Alan M. Dunn, Sangman Kim, Indrajit Roy,
and Emmett Witchel. 2011. Ensuring operating system kernel
integrity with OSck. 279–290.

[13] Fangyong Hou, Dawu Gu, Nong Xiao, Fang Liu, and Hongjun He.
2009. Performance and Consistency Improvements of Hash Tree
Based Disk Storage Protection. In Networking, Architecture, and
Storage, 2009. NAS 2009. IEEE International Conference on.
51–56. https://doi.org/10.1109/NAS.2009.15

[14] Michael Kaminsky, George Savvides, David Mazieres, and
M. Frans Kaashoek. 2003. Decentralized user authentication
in a global file system. 60–73.

[15] Dmitry Kasatkin. 2013. dm-integrity: integrity protection device-
mapper target. http://lwn.net/Articles/533558/. (2013).

[16] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha.
2004. Secure untrusted data repository (SUNDR). 9–9.

[17] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement,
Lorenzo Alvisi, Mike Dahlin, and Michael Walfish. 2011. Depot:
Cloud Storage with Minimal Trust. 29, 4, Article 12 (Dec. 2011),
38 pages. https://doi.org/10.1145/2063509.2063512

[18] David Mazières, Michael Kaminsky, M. Frans Kaashoek, and
Emmett Witchel. 1999. Separating key management from file
system security. 124–139.

[19] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V.
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R. Sav-
agaonkar. 2013. Innovative Instructions and Software Model
for Isolated Execution. In Workshop on Hardware and Archi-
tectural Support for Security and Privacy. ACM, Article 10,
10:1–10:1 pages.

[20] Amanda McPherson. 2009. A Conversation with Chris Mason
on BTRfs: the next generation file system for Linux. http:
//www.linuxfoundation.org/news-media/blogs/browse/2009/06/
conversation-chris-mason-btrfs-next-generation-file-system-linux.
(2009).

[21] Ralph C. Merkle. 1988. A Digital Signature Based on a Con-
ventional Encryption Function. In A Conference on the Theory
and Applications of Cryptographic Techniques on Advances in
Cryptology (CRYPTO ’87). Springer-Verlag, London, UK, UK,
369–378. http://dl.acm.org/citation.cfm?id=646752.704751

[22] Alina Oprea and Michael K. Reiter. 2007. Integrity Checking in
Cryptographic File Systems with Constant Trusted Storage. In
Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium (SS’07). USENIX Association, Berkeley, CA,
USA, Article 13, 16 pages. http://dl.acm.org/citation.cfm?id=
1362903.1362916

[23] Alina Oprea, Michael K. Reiter, and Ke Yang. 2005. Space-
Efficient Block Storage Integrity. In In Proc. of NDSS ’05.

[24] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM Revis-
ited. In Proceedings of the 30th Annual Conference on Advances
in Cryptology (CRYPTO’10). Springer-Verlag, Berlin, Heidelberg,
502–519. http://dl.acm.org/citation.cfm?id=1881412.1881447

[25] PulserG2 anfd XDA. 2015. A Look at Marshmallow Root
& Verity Complications. http://www.xda-developers.com/
a-look-at-marshmallow-root-verity-complications/. (2015).

[26] Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A.
Smith, Craig A. N. Soules, and Christopher A. Stein. 2000. Jour-
naling Versus Soft Updates: Asynchronous Meta-data Protection
in File Systems. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference (ATEC ’00). USENIX
Association, Berkeley, CA, USA, 6–6. http://dl.acm.org/citation.
cfm?id=1267724.1267730

[27] Christopher A. Stein, John H. Howard, and Margo I. Seltzer. 2001.
Unifying File System Protection. In Proceedings of the General
Track: 2001 USENIX Annual Technical Conference, June 25-30,
2001, Boston, Massachusetts, USA. 79–90. http://www.usenix.
org/publications/library/proceedings/usenix01/stein.html

[28] Carsten Weinhold and Hermann Härtig. 2011. jVPFS: Adding
Robustness to a Secure Stacked File System with Untrusted Lo-
cal Storage Components. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Conference (USENIX-
ATC’11). USENIX Association, Berkeley, CA, USA, 32–32. http:
//dl.acm.org/citation.cfm?id=2002181.2002213

[29] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2010. End-to-end Data In-
tegrity for File Systems: A ZFS Case Study. In Proceedings of
the 8th USENIX Conference on File and Storage Technolo-
gies (FAST’10). USENIX Association, Berkeley, CA, USA, 3–3.
http://dl.acm.org/citation.cfm?id=1855511.1855514

http://dev.mysql.com/doc/refman/5.7/en/innodb-raw-devices.html
http://dev.mysql.com/doc/refman/5.7/en/innodb-raw-devices.html
""https://aws.amazon.com/vpc/""
""https://aws.amazon.com/vpc/""
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://code.google.com/p/cryptsetup/wiki/DMVerity
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
"https://iperf.fr/"
http://opensolaris.org/os/community/zfs/docs/zfs last.pdf
http://opensolaris.org/os/community/zfs/docs/zfs last.pdf
http://sourceforge.net/projects/filebench/
http://sourceforge.net/projects/filebench/
http://www.enterprisetech.com/2015/11/09/verizon-survey-hybrid-cloud-now-mainstream/
http://www.enterprisetech.com/2015/11/09/verizon-survey-hybrid-cloud-now-mainstream/
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/1456469.1456479
https://doi.org/10.1109/NAS.2009.15
http://lwn.net/Articles/533558/
https://doi.org/10.1145/2063509.2063512
http://www.linuxfoundation.org/news-media/blogs/browse/2009/06/conversation-chris-mason-btrfs-next-generation-file-system-linux
http://www.linuxfoundation.org/news-media/blogs/browse/2009/06/conversation-chris-mason-btrfs-next-generation-file-system-linux
http://www.linuxfoundation.org/news-media/blogs/browse/2009/06/conversation-chris-mason-btrfs-next-generation-file-system-linux
http://dl.acm.org/citation.cfm?id=646752.704751
http://dl.acm.org/citation.cfm?id=1362903.1362916
http://dl.acm.org/citation.cfm?id=1362903.1362916
http://dl.acm.org/citation.cfm?id=1881412.1881447
http://www.xda-developers.com/a-look-at-marshmallow-root-verity-complications/
http://www.xda-developers.com/a-look-at-marshmallow-root-verity-complications/
http://dl.acm.org/citation.cfm?id=1267724.1267730
http://dl.acm.org/citation.cfm?id=1267724.1267730
http://www.usenix.org/publications/library/proceedings/usenix01/stein.html
http://www.usenix.org/publications/library/proceedings/usenix01/stein.html
http://dl.acm.org/citation.cfm?id=2002181.2002213
http://dl.acm.org/citation.cfm?id=2002181.2002213
http://dl.acm.org/citation.cfm?id=1855511.1855514

	Abstract
	1 Introduction
	2 Related Work
	3 Overview and Design
	3.1 Threat Model
	3.2 Storage Organization
	3.3 Efficient, Journaled Writes
	3.4 Verifying Reads

	4 Integrity Despite Crashes
	5 Evaluation
	5.1 Application Benchmarks

	6 Conclusion
	7 Acknowledgement
	References

