
;login:
F A L L  2 0 1 6 V O L .  4 1 ,  N O .  3

Columns
Separating Protocol Implementations from 
Transport in Python
David Beazley

Shutting Down Go Servers with Manners
Kelsey Hightower

Using Consul for Distributed Key-Value Stores
David N. Blank-Edelman

Monitoring Paging Trauma
Dave Josephsen

Making Security into a Science
Dan Geer

Distributed Systems
Robert G. Ferrell 

&  POSIX: The Old, the New, and the 
Missing
Vaggelis Atlidakis, Jeremy Andrus, Roxana 
Geambasu, Dimitris Mitropoulos, and  
Jason Nieh

&  Runway: A Tool for Modeling, 
Viewing, and Checking Distributed 
Systems
Diego Ongaro

&  Create a Threat Model for Your 
Organization
Bruce Potter

& Eliminating Toil
Betsy Beyer, Brendan Gleason, Dave O’Connor, 
and Vivek Rau



U P C O M I N G  E V E N T S

OSDI ’16: 12th USENIX Symposium on Operating 
Systems Design and Implementation

Sponsored by USENIX in cooperation with ACM SIGOPS

November 2–4, 2016, Savannah, GA, USA
www.usenix.org/osdi16

Co-located with OSDI ’16
INFLOW ’16: 4th Workshop on Interactions of NVM/Flash 
with Operating Systems and Workloads
November 1, 2016
www.usenix.org/inflow16

LISA16
December 4–9, 2016, Boston, MA, USA
www.usenix.org/lisa16

Co-located with LISA16
SESA ’16: 2016 USENIX Summit for Educators in System 
Administration
December 6, 2016
Submissions due September 19, 2016
www.usenix.org/sesa16

USENIX Journal of Education in System Administration (JESA)
Published in conjunction with SESA
www.usenix.org/jesa

Enigma 2017
January 30–February 1, 2017, Oakland, CA, USA
enigma.usenix.org

FAST ’17: 15th USENIX Conference on File and 
Storage Technologies

Sponsored by USENIX in cooperation with ACM SIGOPS

February 27–March 2, 2017, Santa Clara, CA, USA
Submissions due September 27, 2016
www.usenix.org/fast17

SREcon17
March 13–14, 2017, San Francisco, CA, USA

NSDI ’17: 14th USENIX Symposium on Networked 
Systems Design and Implementation

March 27–29, 2017, Boston, MA, USA
Paper titles and abstracts due September 14, 2016
www.usenix.org/nsdi17

SREcon17 Asia
May 22–24, 2017, Singapore

Do you know about the
USENIX open access policy?

USENIX is the fi rst computing association to  off er free and open access to all of our conferences proceedings 

and videos. We stand by our mission to foster excellence and innovation while supporting research with a 

practical bias. Your membership fees play a major role in making this endeavor successful.

Please help us support open access. Renew your  USENIX membership and ask your colleagues to join or 

renew today!

www.usenix.org/membership

  
www.usenix.org/facebook

  
twitter.com/usenix

  
www.usenix.org/youtube

  
www.usenix.org/linkedin

  
www.usenix.org/gplus



E D I T O R
Rik Farrow 
rik@usenix.org

M A N A G I N G  E D I T O R
Michele Nelson 
michele@usenix.org

C O P Y  E D I T O R S
Steve Gilmartin
Amber Ankerholz

P R O D U C T I O N
Arnold Gatilao
Jasmine Murcia

T Y P E S E T T E R
Star Type 
startype@comcast.net

U S E N I X  A S S O C I AT I O N
2560 Ninth Street, Suite 215  
Berkeley, California 94710 
Phone: (510) 528-8649 
FAX: (510) 548-5738 

www.usenix.org

;login: is the official magazine of the USENIX 
Association. ;login: (ISSN 1044-6397) 
is published quarterly by the USENIX 
Association, 2560 Ninth Street, Suite 215, 
 Berkeley, CA 94710.

$90 of each member’s annual dues is for 
a subscription to ;login:. Subscriptions for 
non members are $90 per year. Periodicals 
postage paid at  Berkeley, CA, and additional 
mailing offices.

POSTMASTER: Send address changes to 
;login:, USENIX Association, 2560 Ninth Street, 
Suite 215, Berkeley, CA 94710.

©2016 USENIX Association 
USENIX is a registered trademark of the 
USENIX Association. Many of the designa-
tions used by manufacturers and sellers 
to distinguish their products are claimed 
as trademarks. USENIX acknowledges all 
trademarks herein. Where those desig-
nations appear in this publication and 
USENIX is aware of a trademark claim,  
the designations have been printed in caps  
or initial caps.

FA L L  2 0 1 6 V O L .  4 1 ,  N O .  3

E D I T O R I A L
2 Musings Rik Farrow

S Y S T E M S
6  POSIX Has Become Outdated  

Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu,  
Dimitris Mitropoulos, and Jason Nieh

13  What to Support When You’re Supporting:  
A Study of Linux API Usage and Compatibility 
Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul,  
and Donald E. Porter

20  NOVA: A Log-Structured File System for Hybrid  
Volatile/Non-Volatile Main Memories 
Jian Xu and Steven Swanson

28 Interview with Timothy Roscoe Rik Farrow

P R O G R A M M I N G
32  Runway: A New Tool for Distributed Systems Design 

Diego Ongaro

38  Design Guidelines for High Performance RDMA Systems 
Anuj Kalia, Michael Kaminsky, and David G. Andersen

S Y S A D M I N
44  Invent More, Toil Less 

Betsy Beyer, Brendan Gleason, Dave O’Connor, and Vivek Rau

49  Some Routes Are More Default than Others 
Jonathon Anderson

S E C U R I T Y
52  Bootstrapping Trust in Distributed Systems with Blockchains 

Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman

59 Practical Threat Modeling Bruce Potter

C O L U M N S
64 The Networks of Reinvention David Beazley
70 iVoyeur: Pager Trauma Statistics Daemon, PTSD Dave Josephsen
73 Practical Perl Tools: Seek Wise Consul David N. Blank-Edelman
77 Shutting Down Applications Cleanly Kelsey Hightower
80 For Good Measure: Paradigm Dan Geer
85 /dev/random: Distributed Illogic Robert G. Ferrell

B O O K S
88 Book Reviews Mark Lamourine

U S E N I X  N O T E S
90 Why USENIX? Carolyn Rowland



2   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

EDITORIALMusings
R I K  F A R R O W

Rik is the editor of ;login:.  
rik@usenix.org I just got back from attending the USENIX Annual Technical Conference 

in Denver. For those of you without gray hairs, USENIX ATC was, for 
many years, a twice yearly event that drew thousands of attendees for the 

summer and winter conferences. These were the only USENIX conferences, 
and the papers covered topics from systems to system administration.

Starting with LISA, new conferences were spun off USENIX ATC to cover specific topic 
areas: security, file systems, storage, networked systems, and even OSDI, a systems confer
ence. Today, USENIX ATC represents just a shadow of its past, and attendance has dropped 
from over 3000 to under 300. USENIX ATC is still an important conference for systems 
researchers.

That’s not what I want to write about. USENIX conferences were not considered good mate
rial for obtaining tenure, the process whereby an Assistant Professor gains the approval of 
his or her peers and obtains a lifetime appointment as a full Professor. Margo Seltzer, a past 
USENIX Board president, worked hard at changing this perception of USENIX conferences, 
and today USENIX conferences have been given equal weight for evaluation with conferences 
sponsored by the more traditional CS organizations like ACM and IEEE.

Margo’s success did not come without side effects. USENIX conferences were once known 
for the pragmatic nature of the research accepted and published in their proceedings. As the 
program committees shifted to a more academic focus, a lot of this pragmatism faded away, 
replaced by a new pragmatism, one focused instead on publishing papers.

As an outside observer—that is, one not interested in tenure—I was more aware of the change 
in the tenor of accepted papers. I witnessed a progression to more theoretical work and 
research that, while interesting, would never be implemented, as the improvements in per
formance were small, or were only useful in special cases, not for general use.

I also heard grumbling within the ranks. Before USENIX ATC even began this year, I heard 
people complaining about the quality of some paper reviews. One student suggested that 
paper submitters be allowed to rank reviewers, just as their own papers were being ranked.

Hakim Weatherspoon mentioned that even though the review process involves blinding, the 
obscuring of the identities of paper authors, when a group of program committee members 
tromps out of the PC meeting to avoid a conflict of interest, the remaining PC has very strong 
hints about the authors of that paper.

Turns out, I hadn’t heard anything yet.

The Emperor’s Clothes 
Bryan Cantrill, the inventor of DTrace and current CTO of Joyent, presented a keynote at 
USENIX ATC ’16 on Thursday morning. He titled his talk, “A Wardrobe for the Emperor: 
Stitching Practical Bias into Systems Software Research,” something that told me little 
about what was about to unfold. I suggest that you listen to his talk [1], but be aware that 
it contains some strong language. Much of it is provacative and felt to me like a roast that 
included a significant number of the senior audience.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 3

EDITORIAL
Musings

Bryan’s main point is that program committees for systems con
ferences have not just veered away from the pragmatic, they’ve 
become way too focused on tenuresecuring behaviors. 

Bryan wasn’t taking advantage of a speaking slot to complain 
about having his papers rejected. He was dramatic for a reason: 
to stimulate discussion about changing the way the computer 
science community accepts papers and the purposes for holding 
conferences. He scheduled a BirdsofaFeather (BoF) slot for 
later the same evening, and showed up to lead the discussion. 
There were about 30 people in attendance at the start of the BoF, 
and an hour later people were still talking.

At the BoF, Jon Howell (Google) pointed out that program com
mittees stamp a “quality indicator” on the accepted papers. 
Another person mentioned the fear of accepting a paper that 
would be trashed when it appeared at the conference, leading 
to PCs being less willing to take chances on novel or notfully
baked research. Bryan mentioned the low acceptance rates, 
which were once around 25%, but now are less than 20% and 
sometimes under 15%. Those rates are very low compared to 
other academic areas, such as microbiology.

Bryan suggested an arXiv (https://arxiv.org/) model, where all 
papers get “published” and people vote up research that they find 
the most useful or interesting. Mothy Roscoe thought that this 
would not work due to the volume of paper submissions, as it was 
difficult enough to review the smaller number of papers that 
were submitted to a conference like OSDI (that he cochairs 
with Kim Keeton in 2016). Mothy went on to describe how they 
had structured the OSDI ’16 PC, with a twotiered reviewing 
system designed to be fair to paper submitters and to reduce the 
paperreviewing load on reviewers.

I suggested accepting more papers than there are speaking 
slots, but only permitting those who could prove their ability to 
present through the use of a short video. Hakim Weatherspoon, 
USENIX ATC ’16 cochair, USENIX Board member, and the 
person who invited Bryan to deliver a keynote address, thought 
this was impractical. I, and others, pointed out that every person 
presenting at USENIX Security had to create a short video that 
appeared in the morning Lightning Talks, and using something 
like this would be a great way to choose those people best at 
making presentations.

I must confess that the ability to present is a personal sore point 
for me. I attend paper presentations so I can learn more, and I 
have learned a lot from the better presenters. The official line 
on presentations, something I had guessed, and then had con
firmed during this BoF, is presentations are not for the purpose 
of educating your audience. While the presenter certainly does 
share some information about the paper, the official purpose 
was to allow audience members to challenge the accepted paper 
in public during the presentation, putting both the presenter’s 

work, and the decision of the PC, on the line. In reality, this rarely 
happens, and usually consists of someone complaining that their 
own paper, with some related work, wasn’t cited.

Bryan had also shown a graph of how industry participation in 
OSDI PCs had dropped from a high of 100% in the late ’90s  to 
around 20% currently, resulting in an academically weighted 
committee. Bryan’s definition of a PC member with an “industry 
connection” was, he stated, very generous, and it would have to 
be to have reached 100% at any point.

A speech and a BoF about systems conferences and program 
committees cannot effect immediate change on its own. What 
Bryan has managed to do, I hope, is to draw attention to the 
current state of the process by which the systems program 
committees review and accept papers, and how conferences are 
organized. Whether we will ever have papers without presenta
tions, accept more papers than there are presentation slots in 
the program, or use an arXivlike system instead of the current 
system are things that steering committees and future program 
committees will have to decide.

The Lineup
After having written all of that, you might wonder if I’ve chosen 
any papers from USENIX ATC ’16 for conversion into articles for 
this issue of ;login:. Yes, I had picked out a couple of papers, but I 
also mined Eurosys 2016, as those papers had appeared earlier in 
the year, and I found some real gems there.

I asked the authors of two related papers if they could write 
articles about their research. You’ll notice that both have quite a 
practical bent to them. The first paper, by Atlidakis et al., exam
ines how the POSIX standard actually gets used in applications 
for Debian/Ubuntu, Android, and Mac OS X. What they reveal 
through their analysis of applications demonstrates the weak
nesses of a standard that was created to aid in porting applica
tions between systems over 25 years ago.

Tsai et al. take a different approach, studying how applications 
use the Linux API. Their work was motivated, in part, by a quest 
to learn just how much of the API was required to run the most 
commonly installed Linux system applications, and just how 
well Linux emulations succeeded at providing a complete Linux 
API. Some of the same issues, such as use of ioctl(), appear here 
that appeared in Atlidakis’ work.

If you’ve ever wondered about just how hard it might be to write 
a useful operating system, you might have come to a thought I’d 
had decades ago: that the success of an operating system can be 
measured in its support for the applications that people actually 
want to use. The operating system itself is secondary as long as 
the OS offers good performance and reliability. Together these 
articles, and the papers they are based upon, take a current look 
at just how hard it is to upset the systems that are currently 



4   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

EDITORIAL
Musings

enthroned. The Tsai paper also points out that people program 
using frameworks these days, yet operating systems expose very 
different interfaces.

I invited Jian Xu and Steven Swanson, the authors of a FAST ’16 
paper on a file system designed for nonvolatile memory, to write 
about their NOVA file system research. Getting another file sys
tem into Linux is almost impossible. Yet, nonvolatile memories, 
such as spin memory or Intel/Micron XPoint 3D, require new 
approaches so that these new persistent storage systems can 
obtain the maximum potential performance. These memories 
are not like disks or Flash devices.

Continuing along the theme of systems, I interview Mothy 
Roscoe again. I had interviewed Mothy six years ago, but wanted 
to ask about the Barrelfish project, a multikernel OS research 
project that is still going almost a decade after it first began.

I asked Diego Ongaro, one of the authors of the Raft Consensus 
Algorithm, presented at USENIX ATC ’14, to write more about 
Raft (https://raft.github.io/), an alternative to Paxos. Diego 
told me that he wanted to write about Runway, a tool for model 
checking, simulation, and visualizing the workings of distrib
uted systems. Runway is a workinprogress, and the Web page 
(https://runway.systems/) includes a visualization of the Raft 
Consensus Algorithm in action.

Kalia et al., winner of a Best Paper award at USENIX ATC ’16, 
write about getting the best performance when using RDMA 
(remote direct memory access). RDMA has long been used in 
HPC, and is starting to gain some traction in distributed applica
tions. The authors do a good job of explaining how to use RDMA 
operations for the best performance, something that turns out 
to be complex but when done well can result in a hundred times 
faster performance.

I asked Betsy Beyer, an editor of Site Reliability Engineering [2], 
if she would contact the coauthors of one of the SRE chapters 
that really called out to me, the one about the meaning of toil, 
and reprise it for ;login:. They did that and more, coming up with 
a great case study about eliminating toil.

Jonathon Anderson wrote a second part to his article in the 
summer 2016 issue about routing on Linux systems. The Linux 
kernel supports multiple default routes, and for multihomed 
servers, that’s exactly what you want to use.

The Bitcoin blockchain appeals not only to those interested in 
a nonfiat currency, but also to anyone who would like to take 
advantage of a system that publishes secure summaries of trans
actions. Ali et al. present their open source system, Blockstack 
(blockstack.org), which provides a programming framework for 
people interested in building systems for name registrations  
(à la DNS), as well as other uses that rely on a blockchain.

I asked Bruce Potter, one of the founders of SchmooCon 
(http://shmoocon.org/) and a longtime security expert, to  
write about how to create a threat model for your own organ
ization. Bruce tells us why a threat model is useful, as well as  
how you go about creating one and keeping it current.

Dave Beazley reveals one reason why he has been so focused on 
the Python 3.5 async feature. Dave has been writing a module 
called Curio, and in his column this month he argues for the 
separation of protocols, such at HTTP/2, and the underlying 
transport (such as sockets). Curio itself is a library for concur
rent I/O (https://curio.readthedocs.io/en/latest/).

Dave Josephsen writes about the emotional stress caused by 
being oncall. As someone who has spent way too much of his 
life doing this, Dave was motivated by talks at Monitorama 
(http://monitorama.com) and wrote a Go program for extracting 
data using the PagerDuty API. Dave used Go and describes how 
his program can be easily changed to use other input sources or 
sinks.

David N. BlankEdelman exposes us to Consul, an open source 
distributed keyvalue system from HashiCorp. The value of 
 Consul goes well beyond Perl users for anyone building distrib
uted services that need a way of finding and updating config
uration information on the fly.

Kelsey Hightower makes the case for cleanly shutting down 
services. Kelsey uses a simple Go program and the manners mod
ule, which makes it easy to keep a Web service alive until it has 
processed current requests.

Dan Geer argues for a science of security. He uses the work of  
T. S. Kuhn as the basis for his argument that paradigms are col
lections of knowledge representing the current understanding of 
a branch of science. I liked Dan’s discussion, although I wonder 
if we have even reached the level of engineering when it comes to 
security. If we built bridges like we build software, no one would 
dare drive across them.

Robert G. Ferrell maintains his position as commenterinchief, 
and discusses how to learn from distributed computing to make 
the electric grid truly distributed.

Mark Lamourine has written two reviews about books on Go, 
and one about Docker, including useful information about the 
new Docker tools for container orchestration.

Carolyn Rowland, the newly minted USENIX Board  President, 
writes about her experience volunteering for USENIX in 
 USENIX Notes.

Pragmatic Systems Research
USENIX has been known for the high level of pragmatism found 
in the research published in its conferences. If you read any of 



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 5

EDITORIAL
Musings

References
[1] Bryan Cantrill’s USENIX ATC ’16 Keynote: “A Wardrobe 
for the Emperor: Stitching Practical Bias into Systems Soft
ware Research”: https://www.usenix.org/conference/atc16/
technicalsessions/presentation/cantrill.

[2] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, eds., Site 
Reliability Engineering (O’Reilly Media, 2016).

the series of history articles found in ;login: issues from 2015, 
you would see early ;login: issues with patches for device drivers 
included. The UNIX operating system once ran on systems with 
32 kilobytes of RAM, and managed to be so useful as to spawn an 
entire industry. 

Today, we have operating systems like Linux, with its 312 system 
calls, over 700 ioctls and prctls, as well as pseudofile systems 
like /proc and /dev that expose kernel information as files. Yet 
programmers write using studio tools, which work on top of 
frameworks, suggesting that only the authors of frameworks 
need to understand an operating system’s interfaces.

I strongly believe that Bryan Cantrill raised some important 
points in his USENIX ATC ’16 keynote. I had heard rumblings 
about the failures of the current systems many times before. 
Program Committees are, after all, human institutions, and that 
means that bias is always an issue, not just a possibility.

Should systems research be published for the purpose of extend
ing tenure to deserving Assistant Professors, or should that be 
a byproduct of creating research that makes the systems we 
design more useful and secure? Ideally, we will be doing both.

Thanks to Our
USENIX Supporters

USENIX Patrons
Facebook Google Microsoft Research NetApp VMware

USENIX Benefactors
ADMIN magazine Hewlett-Packard Linux Pro Magazine Symantec

USENIX Partners
Booking.com CanStockPhoto

Open Access Publishing Partner
PeerJ



6   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMSPOSIX Has Become Outdated 
V A G G E L I S  A T L I D A K I S ,  J E R E M Y  A N D R U S ,  R O X A N A  G E A M B A S U ,  
D I M I T R I S  M I T R O P O U L O S ,  A N D  J A S O N  N I E H

Vaggelis Atlidakis is a PhD 
student in the Department of 
Computer Science at Columbia 
University. His research 
interests revolve around broad 

areas of computer systems, including operating 
systems, security and privacy, and applications 
of machine learning to systems.  
vatlidak@cs.columbia.edu

Jeremy Andrus holds a PhD in 
operating systems and mobile 
computing from Columbia 
University and currently 
works as a Kernel Engineering 

Manager at Apple. jeremy_andrus@apple.com

Roxana Geambasu is an 
Assistant Professor of 
Computer Science at Columbia 
University. Her research 
interests are wide-ranging 

and include distributed systems, security and 
privacy, operating systems, databases, and 
the application of cryptography and machine 
learning to systems. roxana@cs.columbia.edu

The POSIX standard for APIs was developed over 25 years ago. We 
explored how applications in Android, OS X, and Ubuntu Linux use 
these interfaces today and found that weaknesses or deficiencies in 

POSIX have led to divergence in how modern applications use the POSIX 
APIs. In this article, we present our analysis of over a million applications 
and show how developers have created workarounds to shortcut POSIX and 
implement functionality missing from POSIX.

The Portable Operating System Interface (POSIX) is the IEEE standard operating system 
(OS) service interface for UNIXbased systems. It describes a set of fundamental abstrac
tions needed for efficient construction of applications. Since its creation over 25 years ago, 
POSIX has evolved to some extent (e.g., the most recent update was published in 2013 [9]), 
but the changes have been small overall. Meanwhile, applications and the computing plat
forms they run on have changed dramatically: modern applications for today’s smartphones, 
desktop PCs, and tablets interact with multiple layers of software frameworks and libraries 
implemented atop the OS. 

Although POSIX continues to serve as the single standardized interface between these soft
ware frameworks and the OS, little has been done to measure whether POSIX abstractions 
are effective in supporting modern application workloads, or whether new, nonstandard 
abstractions are taking form, dethroning traditional ones.

We present the first study of POSIX usage in modern OSes, focusing on three of today’s most 
widely used mobile and desktop OSes—Android, OS X, and Ubuntu—and popular consumer 
applications characteristic to these OSes. We built a utility called libtrack, which supports 
both dynamic and static analyses of POSIX use from applications. We used libtrack to shed 
light on a number of important questions regarding the use of POSIX abstractions in modern 
OSes, including which abstractions work well, which appear to be used in ways for which 
they were never intended, which are being replaced by new and nonstandard abstractions, 
and whether the standard is missing any fundamental abstractions needed by modern work
loads. Our findings can be summarized as follows:

First, usage is driven by high-level frameworks, which impacts POSIX’s portability goals. 
The original goal of the POSIX standard was application source code portability. However, 
modern applications are no longer being written to standardized POSIX interfaces. Instead, 
they rely on platformspecific frameworks and libraries that leverage highlevel abstractions 
for interprocess communication (IPC), thread pool management, relational databases, and 
graphics support.

Modern OSes gravitate towards a more layered programming model with “taller’’ interfaces: 
applications directly link to highlevel frameworks, which invoke other frameworks and 
libraries that may eventually utilize POSIX. This new, layered programming model imposes 
challenges to application portability and has given rise to many different crossplatform 
SDKs that attempt to fill the gap left by a standard that has not evolved with the rest of the 
ecosystem.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 7

Dimitris Mitropoulos is a 
Postdoctoral Researcher in the 
Computer Science Department 
at Columbia University in the 
City of New York. He holds a 

PhD (‘14) in Cybersecurity with distinction 
from the Athens University of Economics 
and Business. His research interests include 
application security, systems security, and 
software engineering.  
dimitris.i.mitropoulos@gmail.com

Jason Nieh is a Professor 
of Computer Science and 
Co-Director of the Software 
Systems Laboratory at 
Columbia University. Professor 

Nieh has made research contributions in 
software systems across a broad range 
of areas, including operating systems, 
virtualization, thin-client computing, cloud 
computing, mobile computing, multimedia, 
Web technologies, and performance 
evaluation. nieh@cs.columbia.edu

Second, extension APIs, namely ioctl, dominate modern POSIX usage patterns as OS devel-
opers increasingly use them to build support for abstractions missing from the POSIX standard. 
Extension APIs have become the standard way for developers to circumvent POSIX limita
tions and facilitate hardwaresupported functionality for graphics, sound, and IPC.

Third, new abstractions are arising, driven by the same POSIX limitations across the three 
OSes, but the new abstractions are not converging. To deal with abstractions missing from the 
aging POSIX standard, modern OSes are implementing new abstractions to support higher
level application functionality. Although these interfaces and abstractions are driven by 
similar POSIX limitations and are conceptually similar across OSes, they are not converging 
on any new standard, increasing the fragmentation of POSIX across UNIXbased OSes.

We believe our findings have broad implications related to the future of POSIXcompliant OS 
portability, which the systems research community and standards bodies will likely need to 
address in the future. To support further studies across a richer set of UNIXbased OSes and 
workloads, we make libtrack’s source code, along with the application workloads and traces, 
publicly available at: https://columbia.github.io/libtrack/. The full version of our work was 
published in EuroSys 2016 [3].

Methodology
Our study involves two types of experiments with real, clientside applications on the three 
OSes: dynamic experiments and static analysis. In support of our study, we developed libtrack, 
a tool that traces the use of a given native C library from modern applications. libtrack imple
ments two modules: a dynamic module and a static module.

libtrack
Dynamic Module: libtrack’s dynamic module traces all invocations of native POSIX func
tions for every thread in the system. For each POSIX function implemented in the C stan
dard library of the OS, libtrack interposes a special “wrapper’’ function with the same name, 
and once a native POSIX function is called, libtrack logs the time of the invocation and a 
backtrace identifying the path by which the application invoked the POSIX function. It also 
measures the time spent executing the POSIX function. libtrack then analyzes these traces 
to construct a call graph and derive statistics and measurements of POSIX API usage.

Static Module: libtrack also contains a static module, which is a simple utility to help 
identify application linkage to POSIX functions of C standard libraries. Given a repository 
of Android APKs or of Ubuntu packages, libtrack’s static module first searches each APK or 
package for native libraries. Then it decompiles native libraries and scans the dynamic symbol 
tables for relocations to POSIX symbols. Dynamic links to POSIX APIs are indexed per appli
cation (or per package) and are finally merged to produce aggregate statistics of POSIX linkage.

Workloads
Using libtrack, we performed both dynamic and static experiments. We used different work
loads for each experiment type centered around consumeroriented applications; these do 
not reflect POSIX’s standing in other types of workloads, such as serverside or highperfor
mance computing workloads.

Dynamic Experiments: We performed dynamic experiments by interacting with popular 
Android, OS X, and Ubuntu applications (apps). We selected these apps from the official 
marketplaces for each OS: Google Play (45 apps), Apple AppStore (10 apps), and Ubuntu 
Software Center (45 apps). We chose popular apps based on the number of installs, selecting 
apps across nine categories, and interacted manually with these applications by performing 
typical operations, such as refreshing an inbox or sending an email with an email applica
tion, on commodity devices (laptops and tablets).

SYSTEMS
POSIX Has Become Outdated



8   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
POSIX Has Become Outdated

Static Experiments: We performed static experiments of 
POSIX usage at large scale by downloading over a million con
sumer applications and checking these applications, and associ
ated libraries, for linkage to POSIX functions of C standard 
libraries. For Android, we downloaded 1.1 million free Android 
apps from a Dec. 4, 2014 snapshot of Google Play [10]. For 
Ubuntu, we downloaded 71,199 packages available for Ubuntu 
12.04 on Dec. 4, 2014, using the Aptitude package manager.

Results
We organized the results from our study in a sequence of ques
tions regarding the use of POSIX in modern OS. We began by 
asking which POSIX functions and abstraction families were 
being used and which were not being used by modern workloads.

Which Abstractions Are Used and Which Are Not 
Used by Modern Workloads?
To answer this question, we first used our static analysis on 
Android and Ubuntu in order to examine which of the imple
mented abstractions were actually linked by applications or their 
libraries, giving us a more accurate view into what abstractions 
are not used by modern workloads. Afterwards, we used results 
from our dynamic experiments to examine what abstractions 
are effectively invoked by modern workloads, telling us what the 
popular POSIX abstractions are.

Linked Abstractions: Figure 1 shows the number of Android 
apps and Ubuntu packages that dynamically link to POSIX func
tions of the respective C standard libraries. The results come 
from our largescale static analyses of 1.1 million Android apps 
and 71,989 Ubuntu packages.

Overall, in Android, of the 821 POSIX functions implemented, 
114 of them are never dynamically linked from any native library, 
and approximately half (364 functions) are dynamically linked 
from 1% or fewer of the apps. Furthermore, our static analysis of 

Ubuntu packages shows that desktop Linux has a similar, albeit 
less definitive, trend with Android: phasing out traditional IPC 
and FS POSIX abstractions.

Dynamically Invoked Abstractions: Although linkage is a 
definite way to identify unused functions, it is only a speculative 
way to infer usage. Therefore, we next examine the actual usage 
of POSIX functions during our dynamic experiments with 45 
Android apps. POSIX functions are categorized in abstraction 
subsystems; the most popular in term of invocations, as well as 
the most expensive in terms of CPU time, are shown in Figure 2.

We observe that memory is the most heavily invoked subsystem. 
Typical representatives of this subsystem include userspace 
utilities for memory handling and system callbacked functions 
for (de)allocation of memory regions and protection properties 
setting. As shown in Figure 2, the memory subsystem is also 
the most expensive subsystem in terms of CPU consumption. 
The popularity and the cost of memory calls are driven by the 
proliferation of highlevel frameworks that are heavily depen
dent on memoryrelated OS functionality. The second most 
heavily invoked POSIX subsystem is threading. Its popularity is 
mainly due to Thread Local Storage (TLS) operations, which are 
very usual in Android to help map between highlevel frame
work threads and lowlevel native pthreads. These operations 
are relatively lightweight and therefore, contrary to memory, 
threading accounts for relatively little CPU time. Most of the 
remaining subsystems include popular or expensive functions, 
but their CPU time cost is usually proportional to the volume of 
invocations.

Crucially, there is one surprising exception: ioctl. This function 
alone accounts for more than 16% of the total CPU time, despite 
its relatively low volume of invocations (0.6%). The striking pop
ularity of ioctl—an extension API that lets applications bypass 
welldefined POSIX abstractions and directly interact with the 

POSIX Functions
0

20

40

60

80

100

Li
nk

ag
e

(%
of

37
4K

)

Histogram of POSIX Linkage

POSIX Functions
0

20

40

60

80

100

Li
nk

ag
e

(%
of

17
K

pa
ck

ag
es

) Histogram of POSIX Linkage

Figure 1: POSIX abstractions linkage



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 9

SYSTEMS
POSIX Has Become Outdated

kernel—proclaims that POSIX abstractions experience signifi
cant limitations in supporting modern application workloads. 
Therefore, developers increasingly resort to ioctl and implement 
custom support missing from POSIX. 

To gain a view on the type of functionality implemented using 
ioctl across the three OSes, we inspect stack traces leading to 
ioctl invocations and identify which libraries triggered them. 
Table 1 shows the top libraries across the three OSes. In Android, 
graphics libraries lead to the lion’s share of ioctl invocations, fol
lowed by Binder. In OS X, the majority of ioctl invocations come 
from network libraries. In Ubuntu, graphics libraries trigger 
approximately half of ioctl invocations, and the remaining part 
is mainly due to libraries providing network functionality. We 
next ask what are the abstractions missing from POSIX, if any, 
and why do framework libraries resort to unstructured, exten
sion APIs to implement their functionality?

Does POSIX Lack Abstractions Needed by Modern 
Workloads?
Taking hints from Table 1, we investigate graphics functional
ity in modern OSes, which significantly rely on ioctl signaling 
that such abstractions are missing in POSIX. In the following 
section, we additionally discuss new IPC abstractions, which are 
replacing older abstractions and are implemented atop ioctl.

Graphics: POSIX explicitly omits graphics as a point of stan
dardization. As a result, there is no standard OS interface to 
graphics cards, and different platforms have chosen different 
ways to optimize this critical resource. The explicit omission of 
a graphics standard could be due to the emergence of OpenGL, 
a popular crossplatform graphics API used in drawing and 
rendering. While OpenGL works well for applications, OS and 
graphics library designers have no welldefined interfaces to 
accomplish increasingly complicated operations.

The lack of a standard kernel interface to GPUs has led to lim
ited extensibility. To alleviate this fragmentation, modern GPU 
drivers and libraries are trending towards a general purpose 
computational resource, and POSIX is not in a position to stan
dardize the use of this new, powerful paradigm. These problems 
have been studied in detail the past four years. For example, the 
PTask API [8] defines a dataflowbased programming model that 
allows the application programmer to utilize GPU resources in a 
more intuitive way, matching API semantics with OS capabilities. 
This new OS abstraction results in massive performance gains.

The lack of a standard graphics OS abstraction also causes 
development and runtime problems. With no alternative, driver 
developers are forced to build their own structure around the 
only available system call: ioctl. Using opaque input and output 
tokens, the ioctl call can be general purpose, but it was never 
intended for the complicated, highbandwidth interface GPUs 
require. Graphics library writers must either use ioctl as a fun
nel into which all GPU command and control is sent via opaque 
data blobs, or they must design a vendorspecific demux inter
face akin to the syscall system call.

Interestingly, in OS X, graphics functionality does not account 
for any significant portion of ioctl invocations. The reason is 
that the driver model in OS X, IOKit, is more structured than 
in Android or Ubuntu, and it uses a welldefined Mach IPC 
interface that can effectively marshal parameters and graphics 
data across the userkernel boundary. This creates a reusable, 
vendoragnostic API. However, the current interface is designed 
around the same blackbox hardware that runs on other plat
forms. Therefore, a standardized OS interface to graphics pro
cessors would likely have the same benefits on OS X as it would 
on Ubuntu or Android.

Figure 2: POSIX invocations and CPU consumption for 45 Android apps

OS First library Second library Third library Invocations

Android Graphics (74%) (e.g., libnvrm) Binder (24%) (e.g., libbinder) Other (1%) 1.3M

OS X Network (99%) (e.g., net.dylib) Loader (0.6%) (e.g., dyld) — 682

Ubuntu Graphics (52%) (e.g., libgtk) Network (47%) (e.g., libQtNet) Other (1%) 0.4M

Table 1: Top libraries that invoke ioctl



10   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
POSIX Has Become Outdated

What POSIX Abstractions Are Being Replaced?
Continuing with hints from Table 1, we discuss abstractions that 
exist in POSIX but appear to be replaced by new abstractions.

Inter-Process Communication: A central IPC abstraction in 
POSIX is the message queue API (mq_*). On all platforms we 
studied, applications used some alternate form of IPC. In fact, 
Android is missing the mq_* APIs altogether. IPC on all of these 
platforms has divergently evolved beyond POSIX. 

◆◆ IPC in Android: Binder is the standard method of IPC in 
Android. It overcomes POSIX IPC limitations and serves as 
the backbone of Android inter and intraprocess communica
tion. Using a custom kernel module, Binder IPC supports file 
descriptors passing between processes, implements object 
reference counting, and uses a scalable multithreaded model 
that allows a process to consume many simultaneous requests. 
In addition, Binder leverages its access to processes’ address 
space and provides fast, singlecopy transactions. Binder 
exposes IPC abstractions to higher layers of software, and 
Android apps can focus on logical program flow and interact 
with Binder through standard Java objects and methods, 

without the need to manage lowlevel IPC details. Because no 
existing API supported all the necessary functionality, Binder 
was implemented using ioctl as the singular kernel interface. 
Binder IPC is used in every Android application and accounts 
for nearly 25% of the total measured POSIX CPU time that fun
nels through the ioctl call.

◆◆ IPC in Linux: The DBus protocol [5] provides apps with 
highlevel IPC abstractions in GNU/Linux. It describes an IPC 
messaging bus system that implements (1) a system daemon 
monitoring systemwide events and (2) a peruser login ses
sion daemon for communication between applications within 
the same session. The applications we inspect use mostly 
the libdbus implementation of DBus (38 out of 45 apps). An 
evolution of DBus, called the Linux Kernel DBus, or kdbus, 
is also gaining increasing popularity in GNU/Linux OSes. It is 
an inkernel implementation of DBus that uses Linux kernel 
features to overcome inherent limitations of userspace DBus 
implementations. Specifically, it supports zerocopy message 
passing between processes, and it is available at boot allowing 
Linux security to directly leverage it.

◆◆ IPC in OS X: IPC in OS X diverged from POSIX since its incep
tion. Apple’s XNU kernel uses an optimized descendant of CMU’s 
Mach IPC [2, 7] as the backbone for interprocess communica
tion. Mach comprises a flexible API that supports highlevel 
concepts such as: objectbased APIs abstracting communi
cation channels as ports, realtime communication, shared 
memory regions, RPC, synchronization, and secure resource 
management. Although flexible and extensible, the complexity 
of Mach has led Apple to develop a simpler higherlevel API 
called XPC. Most apps use XPC APIs that integrate with other 
highlevel APIs, such as Grand Central Dispatch.

To highlight key differences in POSIXstyle IPC and newer IPC 
mechanisms, we adapt a simple Android Binder benchmark 
from the Android code base to measure both pipes and UNIX 
domain sockets as well as Binder transactions. We also use the 
MPMMTest application from Apple’s open source XNU [1]. We 
measure the latency of a roundtrip message using several dif
ferent message sizes, ranging from 32 bytes to 100 (4096 byte) 
pages. We run our benchmarks using an ASUS Nexus7 tablet 
with Android 4.3 Jelly Bean, a MacBook Air laptop (4core Intel 
CPU @2.0 GHz, 4 GB RAM) with OS X Yosemite, and a Dell XPS 
laptop (4core Intel CPU @1.7 GHz, 8 GB RAM) with Ubuntu 
12.04 Precise Pangolin.

The results, averaged over 1000 iterations, are summarized in 
Table 2. Both Binder and Mach IPC leverage fast, singlecopy 
and zerocopy mechanisms, respectively. Large messages in 
both Binder and Mach IPC are sent in nearconstant time. In 
contrast, traditional POSIX mechanisms on all platforms suffer 
from large variation and scale linearly with message size.

Tx/Rx—Android Pipes  
avg (μs)

UNIX  
avg (μs)

Binder  
avg (μs)

32 bytes 40 54 115

128 bytes 44 56 114

1 page 62 73 93

10 pages 291 276 93

100 pages 2402 1898 94

Tx/Rx—OS X Pipes  
avg (μs)

UNIX  
avg (μs)

Mach  
avg (μs)

32 bytes 6 11 19

128 bytes 7 51 19

1 page 8 54 12

10 pages 18 175 15

100 pages 378 1461 12

Tx/Rx—Ubuntu Pipes  
avg (μs)

UNIX  
avg (μs)

32 bytes 18 18

128 bytes 20 10

1 page 21 20

10 pages 58 27

100 pages 923 186

Table 2: Latency comparison of different IPC mechanisms



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 11

SYSTEMS
POSIX Has Become Outdated

Asynchronous I/O: Our experiments with Android, OS X, and 
Ubuntu apps reveal another evolutionary trend: the replacement 
of POSIX APIs for asynchronous I/O with new abstractions 
built atop POSIX multithreading abstractions. The nature and 
purpose of threads has been a debate in OS research for a long 
time [4, 6], and POSIX makes no attempt to prioritize a thread
ing model over an eventbased model. 

Our study reveals that while POSIX locking primitives are still 
extremely popular, new trends in application abstractions are 
blurring the line between event and thread by combining high
level language semantics with pools of threads fed by event
based loops. This new programming paradigm is enforced by 
the nature of GUI applications that require lowlatency. While 
an eventbased model may seem the obvious solution, event 
processing in the input or GUI context leads to suboptimal user 
experience. Therefore, dispatching eventdriven work to a queue 
backed by a pool of preinitialized threads has become a de facto 
programming model in Android, OS X, and Ubuntu. Although 
this paradigm appears in all the OSes we studied, the implemen
tations are extremely divergent. 

Android defines several Java classes that abstract the concepts 
of creating, destroying, and managing threads (ThreadPool), 
looping on events (Looper), and asynchronous work dispatching 
(ThreadPoolExecutor). Ubuntu applications can choose from a 
variety of libraries providing similar functionality, but through 
vastly different interfaces. For example, the libglib, libQtCore, 
and libnspr all provide highlevel thread abstractions based on 
the GNOME desktop environment. In OS X the APIs are, yet 
again, different. The vast majority of eventdriven programming 
in OS X is done through Mach IPC. Apple has written highlevel 
APIs around event handling, thread pool management, and 
asynchronous task dispatch. Most of these APIs are enabled 
through Grand Central Dispatch (GCD). GCD manages a pool 
of threads and even defines POSIX alternatives to semaphores, 
memory barriers, and asynchronous I/O. The GCD functionality 
is exported to applications from classes such as NSOperation.

In summary, driven by the strong need for asynchrony and the 
eventbased nature of modern GUI applications, different OSes 
have created similar but not converging and nonstandard 
adherentthreading support mechanisms. 

Conclusion
Perfect application portability across UNIXbased OSes is 
clearly beyond the realm of possibility. However, maintaining a 
subset of harmonized abstractions is still a viable alternative for 
preserving some uniformity within the UNIXbased OSes. Our 
study shows that new abstractions, beyond POSIX, are taking 
form in three modern UNIXbased OSes (Android, OS X, and 
Ubuntu), and that changes are not converging to any new unified 
set of abstractions. We believe that a new revision of the POSIX 
standard is due, and we urge the research community to inves
tigate what that standard should be. Our study provides a few 
examples of abstractions—such as graphics, IPC, and thread
ing—as starting points for restandardization, and we recom
mend that changes should be informed by popular frameworks 
that have a principal role in modern OSes. 

Availability
The extended version of our work was published in EuroSys 2016 
[3]. To support further studies across a richer set of UNIXbased 
OSes and workloads, we open source our code along with the 
application workloads and traces available: https://columbia 
.github.io/libtrack/.

Acknowledgments
This work was supported in part by DARPA Contract FA8650
11C7190, NSF grants CNS1351089, CNS1162447, CNS
1422909, and CCF1162021, a Google Research Award, and a 
Microsoft Research Faculty Fellowship. 



12   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
POSIX Has Become Outdated

References
[1] Apple, Inc., OS X 10.11.2, Source: http://opensource.apple 
.com/tarballs/xnu/xnu3248.20.55.tar.gz, accessed 03/20/2016.

[2] Apple, Inc., Mach Overview: https://developer.apple.com 
/library/mac/documentation/Darwin/Conceptual/Kernel 
Programming/Mach/Mach.html, Aug. 2013, accessed 
03/22/2015.

[3] V. Atlidakis, J. Andrus, R. Geambasu, D. Mitropoulos, and  
J. Nieh, “A Measurement Study of POSIX Abstractions in Mod
ern Operating Systems: The Old, the New, and the Missing,” 
in Proceedings of the 11th European Conference on Computer 
Systems (EuroSys 2016), April 2016.

[4] R. V. Behren, J. Condit, and E. Brewer, “Why Events Are a 
Bad Idea (for HighConcurrency Servers),” in Proceedings of the 
9th Conference on Hot Topics in Operating Systems, vol. 9, May 
2003, pp. 19–24: https://www.usenix.org/legacy/events 
/hotos03/tech/full_papers/vonbehren/vonbehren.pdf.

[5] freedesktop.org., DBus: http://www.freedesktop.org/wiki 
/Software/dbus/, accessed 10/18/2015.

[6] J. K. Ousterhout, “Why Threads Are a Bad Idea (for Most 
Purposes),” presentation given at the 1996 USENIX Annual 
Technical Conference, Jan. 1996.

[7] R. Rashid, R. Baron, A. Forin, R. Forin, D. Golub, M. Jones, 
D. Julin, D. Orr, and R. Sanzi, “Mach: A Foundation for Open 
Systems,” in Proceedings of the 2nd Workshop on Workstation 
Operating Systems, IEEE, Sept. 1989, pp. 109–112.

[8] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. 
Witchel, “PTask: Operating System Abstractions to Manage 
GPUs as Compute Devices,” in Proceedings of the 23rd ACM 
Symposium on Operating Systems Principles (SOSP 2011), Oct. 
2011, pp. 233–248.

[9] The Open Group and IEEE, last POSIX revision: http://pubs 
.opengroup.org/onlinepubs/9699919799,  accessed 03/19/2015.

[10] N. Viennot, E. Garcia, and J. Nieh, “A Measurement Study 
of Google Play,” in Proceedings of the ACM International Con-
ference on Measurement and Modeling of Computer Systems 
(SIGMETRICS 2014), June 2014, pp. 221–233.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 13

SYSTEMS

What to Support When You’re Supporting
A Study of Linux API Usage and Compatibility

C H I A - C H E  T S A I ,  B H U S H A N  J A I N ,  N A F E E S  A H M E D  A B D U L ,  
A N D  D O N A L D  E .  P O R T E R

A pplication programming interfaces (APIs) specify how applica
tion developers interact with systems. As APIs evolve over the life 
of a system, the system developers have little in the way of empiri

cal techniques to guide decisions such as deprecating an API. We propose 
metrics for evaluating the importance of system APIs, as well as the relative 
maturity of a prototype system that claims partial compatibility with another 
system. Using these metrics, we study Linux APIs—such as system calls, ioctl 
opcodes, pseudofiles, and libc functions—yielding insights for developers and 
researchers.

System developers routinely make design choices based on what they believe to be the com
mon and uncommon behaviors of a system. Imagine a developer who is building a prototype 
system designed to run Linux applications. This developer will prioritize the implementation 
tasks based on what he or she believes to be important, which may be heavily skewed toward 
the developer’s preferred workloads.

In general, developers struggle to evaluate the impact of adding or removing APIs on back
wardcompatibility with existing applications, primarily because of a lack of metrics. The 
stateoftheart is bug-for-bug compatibility, which requires all behaviors (even undefined or 
undocumented behaviors) of a system to be identical to its predecessor. For instance, depre
cating or retiring an API in Linux requires a lengthy process of repeatedly warning applica
tion developers to adopt a replacement API and confirming that no applications are broken by 
the change—a process that can take many years.

In evaluating compatibility or completeness of a prototype system, a common metric is a 
simple count of supported system APIs. For instance, the Graphene library OS [1] offers sup
port for 143 out of 318 Linux x8664 system calls. Although system call counts are easy to 
measure, this metric fails to capture essential aspects of compatibility, such as the fraction of 
applications or users that could plausibly use the system. In order to indicate general useful
ness, a good compatibility metric should relate to the application usage patterns of end users, 
factoring in both common and uncommon cases.

At the root of these problems is a lack of data sets and analysis of how system APIs are used in 
practice. System APIs are simply not equally important: some APIs are used by popular librar
ies and, thus, by essentially every application. Other APIs may be used only by applications that 
are rarely installed. Evaluating compatibility is fundamentally a measurement problem.

This article summarizes a study of Linux APIs; a longer version is published in EuroSys 
2016 [2]. This study contributes a data set and analysis tool that can answer several practi
cal questions about API usage and compatibility. For instance, if a developer were to add 
one additional API to a given system prototype, which API would most increase the range 
of supported applications? Or if a given system API is optimized, what widely used applica
tions would likely benefit? Similarly, this data and toolset can help OS maintainers evaluate 
the impact of an API change on applications and can help users evaluate whether a prototype 
system is suitable for their needs.

Chia-Che Tsai is a PhD student 
at Stony Brook University. His 
research involves restructuring 
operating system designs for 
less vulnerability and higher 

performance. He is also the main contributor 
to the Graphene library OS.  
chitsai@cs.stonybrook.edu

Bhushan Jain is a PhD student 
at the University of North 
Carolina at Chapel Hill. His 
research interests include 
virtualization security, memory 

isolation, and system security.  
bhushan@cs.unc.edu

Nafees Ahmed Abdul is a 
Software Engineer at Symbolic 
IO. He earned his master’s 
degree from Stony Brook 
University. He is broadly 

interested in file systems and storage 
technologies. nabdul@cs.stonybrook.edu

Donald E. Porter is an Assistant 
Professor of Computer Science 
at the University of North 
Carolina at Chapel Hill and, 
by courtesy, at Stony Brook 

University. His research aims to improve 
computer system efficiency and security. In 
addition to recent work on write-optimization 
in file systems, recent projects have developed 
lightweight guest operating systems for virtual 
environments, system security abstractions, 
and efficient data structures for caching. 
porter@cs.unc.edu



14   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

Some APIs Are More Equal than Others
We started this study from a research perspective, in search of a 
better way to evaluate the completeness of system prototypes. In 
general, compatibility treated as a binary property (i.e., bugfor
bug compatibility) loses important information when evaluating 
a prototype that is almost certainly incomplete. Metrics such as 
the count of supported system APIs are noisy at best and give no 
guidance as to which APIs are the most important.

One way to understand the completeness of a system or the 
importance of an API is to measure the impact on end users. 
In other words, if a system supports a set of APIs, how many 
applications chosen by users can run on the system? Or if an API 
were not supported, how many users would notice its absence? 
To answer these questions, we must consider both the difference 
in API usage among applications, and application popularity 
among users. We measure the former by analyzing application 
binaries and determine the latter from the installation statistics 
collected by the Debian and Ubuntu Popularity Contests [3, 4].

We introduce two new metrics: one for each API and one for 
a whole system. For each API, we measure how disruptive its 
absence would be to applications and end users—a metric we call 
API importance. For a system, we compute a weighted percent
age we call weighted completeness. For simplicity, we define a 
system as a set of implemented or emulated APIs, and assume 
an application will work on a target system if the APIs used by 
the application (or API footprint) is implemented on the sys
tem (i.e., we assume implemented APIs work as expected). The 
popularity of applications is measured by installations, which 
are collections of applications installed by users on physical 
machines, virtual machines, containers, or partitions in multi
boot systems.

API Importance
For a given API, the probability that an installation includes 
at least one application requiring the API

API importance indicates how indispensable a given API is to 
at least one application on a randomly selected installation. 
Intuitively, if an API is used by no packages or installations, the 
API importance will be zero and its absence will cause no nega
tive effects. If an API is only used by packages A, B, and C, the 
API importance will be the probability that either A, B, or C is 
chosen in an installation, which can be determined from pack
age installation statistics. We consider an API to be important to 
an installation as long as one installed package requires the API. 
For instance, the reboot system call has almost 100% impor
tance, but on most systems, this API is used only by the /sbin 

/reboot binary.

Weighted Completeness
For a target system, the fraction of applications supported, 
weighted by the popularity of these applications

Weighted completeness indicates the fraction of installed 
applications that a prototype system can support on a randomly 
selected installation. Intuitively, a system with bugforbug com
patibility will be able to support all applications and have 100% 
weighted completeness. If a system only supports packages A, B, 
and C, the weighted completeness will be the weighted fraction 
of A, B, and C over the average number of installed packages.

Data Collection
This study focuses on Ubuntu/Debian Linux as a baseline for 
comparison. We use static analysis to identify the API footprint 
of all applications and use installation statistics to evaluate the 
popularity of each application.

The methodology for measuring API importance and weighted 
completeness is summarized as follows:

1. For each available package, collect the API footprint of the 
package by disassembling all the binaries. The API footprint 
includes the APIs called by an executable or called by a library 
through function calls from the executable.

2. Calculate the API importance of each API based on the packag
es that use the API as well as the popularity of these packages.

3. For a target system, identify a list of supported APIs of the 
target system either from the system’s source or as provided by 
the developers of the system.

4. Based on the API footprint of the packages, list the supported 
and unsupported packages for the target system.

5. Finally, weigh the list of supported packages based on their 
popularity and calculate the weighted completeness of the 
target system.

The Scope of This Study
Types of system APIs: We study various types of APIs defined 
in x8664 Linux 3.19:

◆◆ 318 defined system call numbers.

◆◆ Opcodes for vectored system calls (635 ioctl opcodes, 18 fcntl 
opcodes, and 44 prctl opcodes).

◆◆ Pseudofiles in proc, dev, and sys file systems. In our applica
tion sample, we found 5,846 unique, hardcoded paths.

◆◆ 1,274 global functions in GNU libc 2.21 (libc.so only).

Sample of applications: 30,976 packages downloaded through 
APT on Ubuntu Linux 15.04.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 15

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

Figure 1 shows the types of applications in these packages. We 
focused primarily on ELF binaries, which account for the largest 
fraction (60%) of Linux applications. For interpreted languages 
such as shell languages (21%) or Python (9%), we assume the API 
footprint of the applications is covered by the API footprint of 
the interpreter.

Package installation statistics: 2,935,744 installations col
lected in the Ubuntu and Debian Popularity Contests.

API Importance of Linux System Calls
We begin by looking at the API importance of each Linux system 
call, in order to answer the following questions:

◆◆ Which system calls are the most important to support in a new 
system or have highest costs to replace?

◆◆ Which system calls are candidates for deprecation?

◆◆ Which system calls are not supported by the OS but are still 
attempted by applications?

There are 318 system call numbers defined in x8664 Linux 3.19. 
Figure 2 shows the distribution of system calls by API impor
tance, ordered from the most important (near 100%) to the least 
important (0%)—similar to an inverted CDF.

Our study shows that over twothirds (224 of 318) of Linux sys
tem calls have nearly 100% API importance. These system calls 
are indispensable for users—required by at least one application 
on every installation. Therefore, changing or removing these 
system calls would be highly disruptive.

On the other hand, we found 44 system calls with API importance 
above zero but less than 10%. In some cases, there are more pop
ular alternatives with overlapping functionality. For instance, 
API importance for the System V message queue system calls 
(e.g., 100% for msgget) is higher than for POSIX message queue 
system calls (e.g., 5% for mq_open), although Linux supports both. 
This is attributable to System V message queues being more por
table to other UNIX systems. Sometimes comparable function
ality is provided by pseudofiles. For instance, the information 
returned by the system call query_module is also available by 
reading the pseudofiles /proc/modules and /proc/kallsyms.

We also found five system calls—uselib, nfsservctl, afs_syscall, 
vserver, and security—that are officially retired but still have a 
nonzero API importance. These system calls are used because 
some applications still attempt the old calls for backwardcom
patibility with older kernels and, if these calls are unsupported, 
attempt newer API variants.

In total, 18 of 318 system calls defined in Linux 3.19 are not 
explicitly used by any application we studied. Eleven of these 
system calls are defined but retired and thus do not have an 
entry point in the kernel. Six system calls (rt_tgsigqueueinfo, 
get_robust_list, remap_file_pages, mq_notify, lookup_

dcookie, and move_pages) are available but not used by any 
applications. These system calls are potential candidates for 
deprecation.

From “Hello World” to Every Application
For prototype systems or emulation layers, API importance 
and weighted completeness are useful for determining which 
APIs to implement first and for evaluating the progress of the 
prototypes. Our study shows an optimal path for adding sys
tem calls to a prototype system using a simple, greedy strategy 
of implementing the most important APIs first, which in turn 
maximizes weighted completeness.

Table 1 and Figure 3 demonstrate the optimal path of imple
menting Linux system calls, split into five stages, and the 
upper bound of weighted completeness that can be achieved. 
Essentially, one cannot run even the most simple application in 
Ubuntu/Debian Linux without at least 40 system calls. After 
this, the number of additional applications one can support by 
adding another system call increases steadily up to an inflection 
point at 125 system calls, or supporting extended attributes on 
files, where weighted completeness jumps to 25%. To support 
roughly half of Ubuntu/Debian Linux applications, one must 
have 145 system calls, and the curve plateaus around 202 system 

Figure 1: Types of applications and ELF binaries studied

Figure 2: API importance of 318 Linux system calls in x86-64 Linux 3.19, 
ordered from the most to the least important



16   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

calls. We do not provide a complete ordered list here in the interest 
of brevity, but this list is available as part of our released data set.

One of the uses of weighted completeness is to help guide the 
process of developing new prototype systems. Because 224 out 
of 318 system calls on Ubuntu/Debian Linux have 100% API 
importance, if one of these 224 calls is missing, at least one 
application on a typical system will not work. Weighted com
pleteness, however, is more forgiving, as it tries to capture the 
fraction of a typical installation that could work. Only 40 
 system calls are needed to support at least one application and 
have weighted completeness of more than 1%.

For simplicity, the optimal path we recommend only includes 
system calls, but one can construct a similar path including 
other types of APIs, such as vectored system calls, pseudofiles, 
and library functions.

Weighted Completeness of Linux Systems
We evaluate the weighted completeness of four systems or emu
lation layers: UserModeLinux [5], L4Linux [6], the FreeBSD’s 
Linux emulation layer [7], and the Graphene library OS [1]. For 
each system, we identify the supported system calls by examin
ing the defined system call tables in the source code. Figure 4 
shows the weighted completeness of these systems based on the 
supported system calls. UserModeLinux (UML) and L4Linux 
both have over 90% weighted completeness, with more than 280 
system calls implemented. FreeBSD’s weighted completeness 
is 62.3% due to missing some less important system calls (e.g., 
inotify_init). Graphene’s weighted completeness is only 0.42% 
due to missing scheduling control,  but this is improved to 21.1% 
by adding two scheduling system calls.

For prototype developers, the proposed optimal path can maxi
mize weighted completeness on a limited development budget, 

especially for systems that implement a smaller fraction of 
APIs, such as Graphene or FreeBSD’s Linux emulation layer. 
For existing prototypes, our study can identify the most impor
tant APIs that are missing, but can boost the weighted complete
ness most, witness the dramatic improvement (0.42% to 21.1%) 
on Graphene.

Vectored System Call Opcodes
Some system calls, such as ioctl, fcntl, and prctl, essentially 
export a secondary system call table using the first argument 
as an operation code (Opcode). These vectored system calls 
significantly expand the system API, which we also consider in 
evaluating compatibility.

Among all the vectored system calls, ioctl represents the larg
est expansion of the Linux system APIs. There are 635 ioctl 
opcodes defined in the Linux 3.19 kernel source alone, and other 
kernel modules and drivers developed by third parties can define 
additional opcodes. Figure 5 shows the API importance of ioctl 
system call opcodes defined in Linux 3.19, ordered from the most 
important to the least important.

Stage System call examples No. of system 
calls to support 

Weighted 
completeness

I mmap, vfork , exit, read, 
fcntl , kill , dup2 40 1.12%

II mremap, ioctl , access, 
socket, poll , recvmsg  +41  (81) 10.68%

III shutdown, symlink , alarm, 
listen, shmget, pread64 +64 (145) 50.09%

IV
flock , semget, ppoll , 
mount, brk , pause, 
clock_gettime

+57 (202) 90.61%

V All remaining  +70 (272) 100%

Table 1: The optimal path of adding system calls in prototype systems, 
based on the order of API importance, to optimize the accumulated 
weighted  completeness

Figure 3: Accumulated weighted completeness when N-most important 
system calls are supported in the prototype system

Figure 4: Weighted completeness of four systems or emulation layers 
with partial compatibility to Linux



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 17

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

We observe a different trend for the API importance of ioctl 
opcodes from the system calls. Among the 635 ioctl opcodes 
defined in the Linux kernel source, fewer than onetenth (52 
opcodes) are indispensable on every installation, whereas more 
than twothirds (447 opcodes) are never used by any applica
tion in Ubuntu/Debian Linux. In other words, when system 
developers implement ioctl opcodes in their prototype systems, 
it is more productive to focus on the opcodes that have higher 
API importance and implement the rest as needed for specific 
applications.

For the opcodes of other two vectored system calls, fcntl and 
prctl, we observe that the fraction of their opcodes being indis
pensable on every installations is higher than the ioctl opcodes. 
In Linux 3.19, 18 fcntl opcodes and 44 prctl opcodes are defined. 
Among them, 11 fcntl opcodes and nine prctl opcodes have 100% 
API importance.

Pseudo-Files and Devices
In addition to the main system call table, Linux exports many 
additional APIs through pseudofile systems, often mounted 
at /proc, /dev, and /sys. These are called pseudofiles because 
they are not backed by any physical storage but instead export 
the contents of kernel data structures to applications or admin
istrators. Although many of these pseudofiles are used on the 
command line or in scripts input by an administrator, there is 
also routine use of pseudofiles in applications.

We use static analysis to find hardcoded pseudofile paths in 
application binaries. Our approach does not capture the cases 
where paths of pseudofiles are passed in as input to the applica
tions, such as dd if=/dev/zero. However, we observe that when 
pseudofiles are widely used as alternative system APIs, their 
paths tend to be hardcoded in the binary as a string or string 
pattern, such as /proc/%d/cmdline, where %d can be any process 
ID. Our analysis captures hardcoded paths and string patterns.

Easy extensibility is an appeal of using pseudofiles as system 
APIs; as a result, their count can be an orderofmagnitude larger 

than the number of system calls or opcodes. We found 12,039 
binaries that access pseudofiles and devices. Of these, 5846 
unique paths were found hardcoded in these binaries. Figure 6 
shows the API importance of several common paths for pseudo
files and devices.

We find that several files, such as /dev/null, are widely used 
through hardcoded paths in applications, even though there 
might be simpler alternatives. For instance, among 12,039 bina
ries that use a hardcoded path, 3324 are hardcoded to access  
/dev/null. Although /dev/null is convenient for use on the com
mand line and in scripts, it is surprising that such a significant 
number of applications write to this pseudofile rather than elid
ing the write system call.

Because many pseudofiles are accessed from the command line, 
it is hard to conclude that any should be deprecated. Nonethe
less, these files represent large and complex APIs that create an 
important attack surface to defend. As noted in other studies, the 
permissions on pseudofiles and devices tend to be set liberally 
enough to leak a significant amount of information [8]. For files 
used by a single application, an abstraction like a finegrained 
capability [9] might better capture the security requirement.

Standard System Library Functions
Functions defined in standard system libraries, such as libc, are 
also system APIs. It is a common practice that developers tend to 
use library functions as more portable, userfriendly wrappers 
of the kernel APIs instead of directly calling these kernel APIs. 
For instance, GNU libc [10] exports functions for using locks and 
condition variables, which internally use the more subtle futex 
system call.

We study 1274 global function symbols exported by GNU libc 
2.21 (libc.so only; other libraries, such as libm.so and libp-

thread.so are not included). Among these functions, 42.8% have 
an API importance of 100%, 50.6% have a API importance of 
less than 50%, and 39.7% have an API importance of less than 
1%, including ones that are never used. This result implies that 

Figure 5: API importance of 635 ioctl opcodes defined in Linux 3.19 
source, ordered from the most to the least important

Figure 6: API importance of selected pseudo-files and devices under  
/proc and /dev



18   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

processes load a significant amount of unnecessary code into 
their address space. By splitting libc into sublibraries based on 
API importance and common linking patterns, systems could 
realize a nontrivial space savings and reduce the attack surface 
for code reuse attacks.

We analyzed the space savings of a GNU libc 2.21 which 
removed any APIs with API importance lower than 90%. In 
total, libc would retain 889 APIs and the size would be reduced 
to 63% of its original size. The probability that an application 
would need a missing function and load it from another library 
is less than 9.3% (equivalent to 90.7% weighted completeness for 
the stripped libc). Further decomposition is also possible, such as 
placing APIs that are commonly accessed by the same applica
tion into the same sublibrary.

Unweighted API Usage in Applications
Weighing metrics based on installations is important for under
standing the impact of API changes on end users. By removing 
this weight, however, we can also observe trends in how APIs are 
used by application developers.

Unweighted API Importance
For a given API, the probability an application (package) uses 
that API, regardless of its installation probability

Unweighted API importance shows the preference of application 
developers for an API over its variants and the effort to com
municate with all relevant application developers if an API is 
changed.

One common reason for system developers to design API vari
ants is to replace APIs that are prone to security problems. For 
instance, many of the set*id system calls (e.g., setuid) have 
subtle semantic differences across UNIX platforms. Chen et al. 
[11] conclude that setresuid is the most secure choice for having 
the clearest semantics across all UNIX flavors. Another example 
is that fileaccessing system calls (e.g., access) can be exploited 
through timeofchecktotimeofuse (TOCTTOU) attacks, 
and their variants (e.g., faccessat) can be used to resist these 
attacks.

Table 2 shows the difference in unweighted API importance 
among the secure and insecure API variants. In some cases, like 
set*id system calls, the secure API variants (e.g., setresuid) 
are welladopted and have higher unweighted API importance 
than the insecure ones. However, in more cases, like get*id and 
access, the insecure API variants are more commonly used by 
application developers.

Besides securityrelated reasons, system developers may create 
API variants by retaining old APIs for backwardcompatibility. 
For instance, the wait4 system call is considered obsolete and 

will soon be replaced by waitid [12], but wait4 still remains 
available in Linux. In some other cases, multiple API variants 
are retained because one variant is specific to a particular OS 
like Linux, and the other is more generic and portable. Table 
3 shows the difference in unweighted API importance among 
these variants. In general, API variants designed to be portable 
(e.g., writev) are more commonly used by the application devel
opers than Linuxspecific ones (e.g., pwritev). However, older 
APIs (e.g., wait4) may still be widely used in applications, even 
though the new APIs are introduced to improve the application 
portability.

Insecure API Usage Secure API Usage

setuid 15.67% 
setresuid 99.68%

setreuid 1.88% 

getuid 99.81%
getresuid 36.19%

geteuid 55.15% 

access 74.24% faccessat 0.63%

rename 43.18% renameat 0.30%

chmod 39.80% fchmodat 0.13%

Table 2: Usage (unweighted API importance) of secure and insecure API 
variants in applications

Old (Obsolete) APIs vs. New APIs

Old API Usage New API Usage

getdents 99.80% getdents64  0.08%

tkill  0.51% tgkill 99.80%

wait4 60.56% waitid  0.24%

Linux-Specific APIs vs. Portable APIs

Linux-specific API Usage Portable API Usage

preadv 0.15% readv 62.23%

pwritev 0.16% writev 99.80%

accept4 0.93% accept 29.35%

recvmmsg 0.11% recvmsg 68.82%

sendmmsg 5.17% sendmsg 42.49%

Table 3: Usage (unweighted API importance) of similar API variants in 
applications



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 19

SYSTEMS
What to Support When You’re Supporting: A Study of Linux API Usage and Compatibility

Conclusion
In this study, we define new metrics for evaluating API usage 
and compatibility, and, based on these results, we draw several 
conclusions about the nature of Linux APIs. First, for any OS 
installation in our data set, the required API size is several 
times larger than the allsystem calls defined in Linux, once 
one considers vectored system call opcodes and pseudofiles. 
We also show that a substantial range of system calls and other 
APIs are rarely used. Finally, we provide a method to evaluate 
partial support of APIs in prototype systems, and plot an optimal 
path for adding system calls. We expect that the data set will be 
of use to researchers and developers for further study, and the 
methodology can be applied to future releases and other operat
ing systems.

The data set and analysis tool are available at:  
http://oscar.cs.stonybrook.edu/apicompatstudy.

Acknowledgments
We thank Bianca Schroeder and William Jannen for their 
insightful comments on this work. This research was sup
ported in part by NSF grants CNS1149229, CNS1161541, 
CNS1228839, CNS1405641, CNS1408695, CNS1526707, and 
VMware. Bhushan Jain is supported by an IBM PhD Fellowship.

References
[1] C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John,  
H. A. Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, 
“Cooperation and Security Isolation of Library OSes for 
MultiProcess Applications,” in Proceedings of the ACM Euro-
pean Conference on Computer Systems (EuroSys), 2014.

[2] C. Tsai, B. Jain, N. Ahmed Abdul, and D. E. Porter, “A Study 
of Modern Linux API Usage and Compatibility: What to 
Support When You’re Supporting,” in Proceedings of the ACM 
European Conference on Computer Systems (EuroSys), 2016.

[3] Ubuntu popularity contest: http://popcon.ubuntu.com.

[4] Debian popularity contest: http://popcon.debian.org.

[5] J. Dike, User Mode Linux (Prentice Hall, 2006).

[6] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schon
berg, “The Performance of μKernelBased Systems,” SIGOPS 
Operating System Review, vol. 31, no. 5 (Dec. 1997), pp. 66–77. 

[7] R. Divacky, “Linux Emulation in FreeBSD,” master’s thesis: 
http://www.freebsd.org/doc/en/articles/linuxemulation.

[8] S. Jana and V. Shmatikov, “Memento: Learning Secrets 
from Process Footprints,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2012.

[9] J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: A Fast 
Capability System,” in Proceedings of the ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP), 1999.

[10] The GNU C library: http://www.gnu.org/software/libc.

[11] H. Chen, D. Wagner, and D. Dean, “Setuid Demystified,” in 
Proceedings of the 11th USENIX Security Symposium, 2002.

[12] wait4(2) Linux man page: http://linux.die.net/man/2/wait4.



20   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS

NOVA
A Log-Structured File System for Hybrid Volatile/Non-Volatile  
Main Memories

J I A N  X U  A N D  S T E V E N  S W A N S O N

NOVA is a new kind of logstructured file system designed for emerg
ing nonvolatile main memory (NVMM) technologies, like Intel’s 
3D XPoint memory. NOVA provides better performance and stron

ger consistency guarantees than either conventional blockbased file systems 
or other, recently proposed NVMM file systems. NOVA’s focus on NVMMs 
leads to three key design decisions: NOVA maintains a separate metadata log 
for each file and directory, uses copyonwrite to provide write atomicity, and 
applies lightweight journaling to make complex operations atomic. These 
techniques allow NOVA to improve performance by a factor of between 3.1 
and 13.5 without jeopardizing crash consistency.

Emerging nonvolatile memory (NVM) technologies such as spintorque transfer, phase 
change, resistive memories [2, 8], and Intel and Micron’s 3D Xpoint [1] technology promise to 
revolutionize I/O performance. Researchers have proposed placing NVMs on the processor’s 
memory bus alongside conventional DRAM, leading to hybrid volatile/nonvolatile main 
memory systems [12]. Combining faster, volatile DRAM with slightly slower, denser non
volatile main memories (NVMMs) offers the possibility of storage systems that combine the 
best characteristics of both technologies.

Hybrid DRAM/NVMM storage systems present a host of opportunities and challenges for 
system designers. These systems should improve conventional file access performance and 
allow applications to abandon slow read/write file interfaces in favor of faster memory
mapped, load/store access interfaces. They will also allow for increased concurrency and 
efficiently support more flexible access patterns. File systems must realize these advan
tages while still providing the strong consistency guarantees that applications require and 
respecting the limitations of emerging memories (e.g., limited program cycles). 

Diskbased file systems are not suitable for hybrid memory systems because NVMM has 
different characteristics from disks in both performance and consistency guarantees. As a 
result, naively running diskbased file systems on NVMM cannot fully exploit NVMM’s high 
performance, and performance optimizations compromise consistency on system failure.

Existing NVMM file systems such as BPFS [3], PMFS [4], and ext4DAX [10] also fail to 
provide the combination of performance and consistency NVMM should deliver. They use 
shadow paging and journaling to provide metadata atomicity, but these mechanisms incur 
high overheads that limit performance. PMFS and ext4DAX avoid some of these costs by 
sacrificing data atomicity.

To provide consistency and high performance in an NVMM file system, we have created the 
NOn-Volatile memory Accelerated (NOVA) file system. NOVA rethinks conventional log
structured file system techniques to exploit the fast random access that hybrid memory sys
tems provide. The result is that NOVA supports massive concurrency, keeps log sizes small, 
and minimizes garbage collection costs while providing strong consistency guarantees and 
very high performance.

Jian Xu is a PhD candidate in 
the Department of Computer 
Science and Engineering at 
the University of California, 
San Diego. His research 

interests include operating system and system 
software design for next-generation storage 
technologies. He is working together with 
Professor Steven Swanson in the Non-Volatile 
Systems Laboratory. jix024@cs.ucsd.edu

Steven Swanson is a Full 
Professor in the Department 
of Computer Science and 
Engineering at the University 
of California, San Diego and 

the Director of the Non-Volatile Systems 
Laboratory. His research interests include 
systems, architecture, security, and reliability 
issues surrounding non-volatile, solid-state 
memories. He has also co-led projects to 
develop low-power co-processors for irregular 
applications and to devise software techniques 
for using multiple processors to speed up 
single-threaded computations. In previous 
lives he has worked on scalable dataflow 
architectures, ubiquitous computing, and 
simultaneous multithreading. He received his 
PhD from the University of Washington in 
2006. swanson@cs.ucsd.edu



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 21

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

Several aspects of NOVA set it apart from previous logstruc
tured file systems. NOVA assigns each inode a separate log to 
maximize concurrency. NOVA stores the logs as linked lists, so 
they do not need to be contiguous in memory, and it uses atomic 
updates to a log’s tail pointer to provide atomic log append. For 
operations that span multiple inodes, NOVA uses lightweight 
journaling. 

NOVA uses copyonwrite for file data instead of storing it in the 
log. The resulting logs are compact, so the recovery process only 
needs to scan a small fraction of the NVMM. This also signifi
cantly reduces garbage collection overhead, allowing NOVA to 
sustain good performance even when the file system is nearly 
full. Finally, NOVA provides an atomic mmap interface that sim
plifies the tasks of writing programs that directly access NVMM 
via load and store instructions.

Our experiments show that NOVA is significantly faster than 
existing file systems in a wide range of applications and out
performs file systems that provide the same data consistency 
guarantees by 3.1x–13.5x. And when measuring garbage collec
tion and recovery overheads, we find that NOVA provides stable 
performance under high NVMM utilization levels and fast 
recovery in case of system failure. 

More details and results are available in our FAST ’16 paper [11]. 
NOVA is open source and available at https://github.com/NVSL 
/NOVA.

NOVA Design Overview 
NOVA is a logstructured POSIX file system. However, since it 
targets a different storage technology, NOVA looks very different 
from conventional logstructured file systems [9] that are built 
to maximize disk bandwidth.

We designed NOVA based on three observations. First, since 
NVMMs support fast, highly concurrent random accesses, using 
multiple logs does not negatively impact performance. Second, 
logs do not need to be contiguous, because random access is 
cheap. Third, data structures that support fast search (e.g., tree 
structures) are more difficult to implement correctly and effi
ciently in NVMM than in DRAM. Based on these observations, 
we made the following design decisions in NOVA.

Give each inode its own log: Unlike conventional logstruc
tured file systems, each inode in NOVA has its own log, allowing 
concurrent updates across files without synchronization. It also 
means recovery is very fast, since NOVA can replay many logs 
simultaneously. 

Keep logs in NVMM and indexes in DRAM: NOVA keeps log 
and file data in NVMM and builds highly optimized radix trees 
in DRAM to quickly locate file data. This means that searching 

the inNVMM data structures is not usually necessary, so they 
can remain simple, easy to verify, and compact. 

Implement the log as a singly linked list: The locality benefits 
of sequential logs are less important in NVMMbased storage, 
so NOVA uses a linked list of 4 KB NVMM pages to hold the log 
and stores the next page pointer in the end of each log page. As a 
result, NOVA can perform log cleaning at finegrained, pagesize 
granularity, and reclaiming log pages that contain only stale 
entries requires just a few pointer assignments. 

Use logging to provide atomicity for simple, common-case 
operations: NOVA is logstructured because this provides 
cheaper atomicity for simple updates than journaling or shadow 
paging. To atomically write data to a log, NOVA first appends 
data to the log and then atomically updates the log tail to commit 
the updates, thus avoiding both the duplicate writes of journal
ing and the cascading updates of shadow paging.

Use lightweight journaling for more complex operations: 
Some directory operations, such as a move between directories, 
span multiple inodes. For these, NOVA uses journaling to atomi
cally update multiple logs: NOVA first writes data at the end of 
each inode’s log, and then journals the log tail updates to update 
them atomically. NOVA journaling is lightweight since it only 
involves log tails (as opposed to file data or metadata). The jour
nals are very small—less than 64 bytes—since the most complex 
POSIX operation (rename()) involves up to four inodes, and each 
journal entry consists of eight bytes for the address of the log tail 
pointer and eight bytes for the updated value.

Use shadow paging for file data: NOVA uses copyonwrite for 
modified file data and appends metadata for the write to the log. 
The metadata describe the update and point to the data pages. 

Using copyonwrite for file data results in shorter logs, acceler
ating the recovery process. It also makes garbage collection sim
pler and more efficient, since NOVA never has to copy file data 
out of the log to reclaim a log page. Finally, since it can reclaim 
stale data pages immediately, NOVA can sustain performance 
even under heavy write loads and high NVMM utilization levels.

Implementing NOVA
NOVA’s core data structures focus on making file and directory 
operations fast and efficient. They also provide support for an 
mmap interface that makes using raw NVMM easier for pro
grammers, while providing for efficient garbage collection and 
fast recovery in the case of a system failure. 

NVMM Data Structures and Space Management 
Figure 1 shows the highlevel layout of NOVA data structures in 
a region of NVMM that it manages. NOVA divides the NVMM 
into four parts: the superblock and recovery inode, the inode 



22   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

tables, the journals, and log/data pages. The superblock contains 
global file system information, the recovery inode stores recov
ery information that accelerates NOVA remount after a clean 
shutdown, the inode tables contain inodes, the journals provide 
atomicity to directory operations, and the remaining area con
tains NVMM log and data pages.

To ensure high scalability, NOVA maintains an inode table, 
journal, and NVMM free page list at each CPU to avoid global 
locking and scalability bottlenecks: partitioning the inode table 
across CPUs avoids inode allocation contention and allows for 
parallel scanning in failure recovery. PerCPU journals allow for 
concurrent transactions, and perCPU NVMM free list provides 
concurrent NVMM allocation and deallocation. NOVA puts the 
free lists in DRAM to reduce consistency overheads.

Figure 2 shows the structure of a NOVA file. A NOVA inode 
contains pointers to the head and tail of its log. The log is a 
linked list of 4 KB pages, and the tail always points to the latest 
committed log entry. A file inode’s log contains two kinds of log 
entries: inode update entries for metadata modifications and file 
write entries for writes. Each open file has a radix tree in DRAM 
to locate data in the file by the file offset. NOVA scans the log 
from head to tail to rebuild the DRAM data structures when the 
system accesses the inode for the first time.

NOVA provides fast atomicity for metadata, data, and mmap 
updates using a technique that combines log structuring and 
journaling. This technique uses three mechanisms:

64-bit atomic updates:  NOVA uses 64bit inplace writes to 
directly modify metadata for some operations (e.g., the file’s 
atime for reads) and uses them to commit updates to the log by 
updating the inode’s log tail pointer. 

Logging: NOVA uses the inode’s log to record operations that 
modify a single inode. These include operations such as write, 
msync, and chmod. The logs are independent of one another.

Lightweight journaling: For directory operations that require 
changes to multiple inodes (e.g., create, unlink, and rename), 
NOVA uses lightweight journaling to provide atomicity.

File Operations
NOVA uses copyonwrite for file data. On each write, NOVA 
writes the new version of the modified pages to newly allocated 
NVMM. Then it appends a write entry to the inode’s log that 
describes the write and points to those pages.

Figure 2 illustrates a write operation. The notation <file page 
offset, number of pages> denotes the page offset and number of 
pages a write affects. The first two entries in the log describe 
two writes, <0, 1> and <1, 2>, of 4 KB and 8 KB (i.e., one and two 
pages), respectively. A third, 8 KB write, <2, 2>, is in flight.

To perform the <2, 2> write, NOVA fills data pages and then 
appends the <2, 2> entry to the file’s inode log. Then NOVA 
atomically updates the log tail to commit the write, and updates 
the radix tree in DRAM, so that offset “2’’ points to the new 
entry. The NVMM page that holds the old contents of page 2 
returns to the free list immediately. During the operation, a per
inode lock protects the log and the radix tree from concurrent 
updates. When the write system call returns, all the updates are 
persistent in NVMM.

Figure 2: NOVA file structure. An 8 KB (i.e., two-page) write to page 2 
(<2, 2>) of a file requires five steps. NOVA first writes a copy of the data 
to new pages (step 1) and appends the file write entry (step 2). Then it 
updates the log tail (step 3) and the radix tree (step 4). Finally, NOVA 
returns the old version of the data to the allocator (step 5).

Figure 1: NOVA data structure layout. NOVA has per-CPU free lists, 
journals, and inode tables to ensure good scalability. Each inode has a 
separate log consisting of a singly linked list of 4 KB log pages; the tail 
pointer in the inode points to the latest committed entry in the log.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 23

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

If NOVA cannot find a contiguous region of NVMM big enough 
for the write, it will require multiple log entries. In this case 
NOVA breaks the write into multiple write entries and appends 
them all to the log to satisfy the request. To maintain atomicity, 
NOVA commits all the entries with a single update to the log tail 
pointer.

Directory Operations
Each directory inode’s log holds two kinds of entries: directory 
entries (dentry) and inode update entries. Dentries include the 
name of the child file/directory, its inode number, and time
stamp. NOVA uses the timestamp to atomically update the direc
tory inode’s mtime and ctime with the operation. NOVA appends 
a dentry to the log when it creates, deletes, or renames a file or 
subdirectory under that directory. 

NOVA adds inode update entries to the directory’s log to record 
updates to the directory’s inode (e.g., for chmod and chown). 
These operations modify multiple fields of the inode, and the 
inode update entry provides atomicity.

Figure 3 illustrates the creation of file zoo in a directory that 
already contains file bar. The directory has recently undergone 
a chmod operation and used to contain another file, foo. The log 
entries for those operations are visible in the figure. NOVA first 
selects and initializes an unused inode in the inode table for zoo 
and appends a create dentry of zoo to the directory’s log. Then 
NOVA uses the current CPU’s journal to atomically update the 
directory’s log tail and set the valid bit of the new inode. Finally, 
NOVA adds the file to the directory’s radix tree in DRAM.

Atomic-mmap
NOVA includes a novel direct NVMM access model with 
stronger consistency called atomic-mmap. When an application 
uses atomic-mmap to map a file into its address space, NOVA 
allocates replica pages from NVMM, copies the file data to the 

replica pages, and then maps the replicas into the address space. 
When the application calls msync on the replica pages, NOVA 
handles it as a write request described in the previous section, 
uses movntq operation to copy the data from replica pages to data 
pages directly, and commits the changes atomically. Compar
ing to PMFS and ext4DAX that map the NVMM file data pages 
directly into the application’s address space, atomic-mmap has 
higher overhead but provides stronger consistency guarantee.

Garbage Collection 
NOVA uses two complementary techniques to reclaim dead log 
entries: fast GC and thorough GC. Both use the same criteria to 
determine whether a log entry is dead: namely, if it is not the last 
entry in the log and any of the following conditions are met: 

◆◆ A file write entry is dead if it does not refer to valid data pages. 

◆◆ An inode update that modifies metadata (e.g., mode or mtime) is 
dead if a later inode update modifies the same piece of metadata. 

◆◆ A create dentry is dead if a corresponding delete dentry is ap
pended to the log. Both dentries become invalid in this case.

Fast GC applies these rules to reclaim log pages that do not 
contain any live entries by deleting the page from the log’s linked 
list. Figure 4a illustrates this: originally, the log has four pages 
and all the entries in page 2 are dead. NOVA atomically updates 
the next page pointer of page 1 to point to page 3, freeing page 2.

Thorough GC compacts log pages by copying live data from 
several pages into a new page. Figure 4b illustrates thorough 
GC after fast GC is complete. NOVA allocates a new log page 5 
and copies valid log entries in pages 1 and 3 into it. Then NOVA 
links page 5 to page 4 to create a new log and replace the old one. 
NOVA does not copy the live entries in page 4 to avoid updating 
the log tail, so that NOVA can atomically replace the old log by 
updating the log head pointer.

Figure 3: NOVA directory structure. Dentry is shown in <name, inode_
number> format. To create a file, NOVA first appends the dentry to the 
directory’s log (step 1), updates the log tail as part of a transaction (step 
2), and updates the radix tree (step 3).

Figure 4: NOVA log cleaning. The linked list structure of log provides 
simple and efficient garbage collection. Fast GC reclaims invalid log pages 
by deleting them from the linked list (a), while thorough GC copies live log 
entries to a new version of the log (b). 



24   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

Mounting, Unmounting, and Recovery
NOVA’s design allows for fast mounting and unmounting as well 
as efficient recovery after a system failure. When NOVA mounts 
a file system, it must construct two kinds of data structure in 
DRAM: the perinode radix trees and the NVMM allocator.

After either a clean unmount or system failure, NOVA rebuilds 
the radix trees on demand when any application opens a file or 
directory.

Reconstructing the NVMM allocator state, however, cannot 
wait. During a normal unmount, NOVA writes the NVMM page 
allocator state in the recovery inode’s log. Then it can quickly 
rebuild the allocator on remount. 

After a system failure, NOVA rebuilds the NVMM allocator by 
scanning all the inode logs. Fortunately, NOVA can use multiple 
threads to perform the scan in parallel, and the logs are small 
since they only contain metadata. 

Evaluation
NOVA aims to provide strong consistency, high performance, and 
fast recovery, and our results show that it achieves these goals. 

We have implemented NOVA in the Linux kernel version 4.0 
using the existing NVMM hooks that the kernel provides. It cur
rently passes the Linux POSIX file system test suite [7]. 

We measure NOVA’s performance using Intel’s Persistent 
Memory Emulation Platform (PMEP) [4], a dualsocket Xeon 
platform with special CPU microcode and firmware that allows 
it to emulate some aspects of NVMM performance with DRAM. 
PMEP supports configurable latencies and bandwidth for the 
emulated NVMM, allowing us to explore NOVA’s performance 
on a variety of future memory technologies. PMEP emulates 
clflushopt (efficient cache line flush), clwb (cache line write 
back), and PCOMMIT (persistent commit) instructions with pro
cessor microcode.

In our tests we configure the PMEP with 32 GB of DRAM and 
64 GB of NVMM. We choose two configurations for PMEP to 
emulate different NVMM technologies: for STTRAM we use 
the same read latency and bandwidth as DRAM, and configure 
PCOMMIT to take 200 ns (to match projections for STTRAM 
write times); for PCM we use 300 ns for the read latency and 

reduce the write bandwidth to 1/8 of DRAM while increasing 
PCOMMIT time to 500 ns. clwb takes 40 ns in both configurations.

We compare NOVA to seven other file systems: Two NVMM file 
systems, PMFS and ext4DAX, are journaling file systems. Two 
others, NILFS2 and F2FS, are logstructured file systems. We 
also compare to ext4 in default mode (ext4) and in data journal 
mode (ext4data), which provides data atomicity. Finally, we 
compare to btrfs, a copyonwrite Linux file system. PMFS, 
ext4DAX, and NOVA are Direct Access (DAX) file systems that 
bypass the operating system page cache and access NVMM 
directly. Btrfs and ext4data are the only two file systems in the 
group that provide the same strong consistency guarantees as 
NOVA. Ext4DAX does not currently provide a data journaling 
option. We add clwb and PCOMMIT instructions to flush data where 
necessary in each file system, and use Intel persistent memory 
driver [6] to emulate an NVMMbased RAMDisklike device.

Macrobenchmarks
We select four Filebench [5] workloads to evaluate the  application 
level performance of NOVA (Table 1). For each workload we test 
two data set sizes by changing the number of files. The small 
data set will fit entirely in DRAM, allowing file systems that use 
the DRAM page cache to cache the entire data set. The large data 
set is too large to fit in DRAM, so the page cache is less useful. 

Figure 5 shows the Filebench throughput. In the fileserver 
workload, NOVA outperforms other file systems by 1.8x–16.6x 
on STTRAM, and between 22% and 9.1x on PCM for the larg
est data set. NOVA outperforms ext4data by 11.4x and btrfs 
by 13.5x on STTRAM, while providing equivalent consistency 
guarantees. NOVA on STTRAM delivers twice the throughput 
compared to PCM, because of PCM’s lower write bandwidth. 

Web proxy is a readintensive workload, and it puts all the test 
files in one large directory. For the small data set, NOVA per
forms similarly to ext4 and ext4DAX, and 2.1x faster than ext4
data. For the large workload, NOVA performs 36%–53% better 
than F2FS and ext4DAX. PMFS and NILFS2 perform poorly in 
this test because their directory designs are not scalable. 

Web server is a readdominated workload and does not involve 
any directory operations. As a result, nonDAX file systems ben
efit significantly from the DRAM page cache, and the workload 

Workload Average file size I/O size (r/w) Threads R/W ratio  Number of files (Small/Large)

Fileserver 128 KB 16 KB/16 KB 50 1:2 100K:400K

Webproxy 32 KB 1 MB/16 KB 50 5:1 100K:1M

Webserver 64 KB 1 MB/8 KB 50 10:1 100K:500K

Varmail 32 KB 1 MB/16 KB 50 1:1 100K:1M

Table 1: Filebench workload characteristics. The selected four workloads have different read/write ratios and access patterns.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 25

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

size has a large impact on performance. On STTRAM, with 
the large data set, NOVA performs 63% better on average than 
nonDAX file systems. On PCM, for the small data set, nonDAX 
file systems are 33% faster on average due to DRAM caching. 
However, for the large data set, NOVA’s performance remains 
stable while nonDAX performance drops by 60%. 

Varmail emulates an email server with a large number of small 
files and involves both read and write operations. NOVA out
performs btrfs by 11.1x and ext4data by 3.1x on average, and 
outperforms the other file systems by 2.2x–216x. NILFS2 and 
PMFS still suffer from poor directory operation performance.

Overall, NOVA achieves the best performance in almost all cases 
and provides data consistency guarantees that are as strong or 
stronger than the other file systems. The performance advan
tages of NOVA are largest on writeintensive workloads with 
large number of files. 

Garbage Collection Efficiency
We designed NOVA to perform garbage collection efficiently 
and maintain stable performance under heavy write loads, even 
when the file system is nearly full. To verify these character
istics, we ran a 30 GB writeintensive fileserver workload and 
adjusted the amount of NVMM available to bring utilization to 
95%. Then we compared NOVA’s behavior with the other log
structured file systems, NILFS2 and F2FS. We ran the test with 
PMEP configured to emulate STTRAM. 

Figure 6 shows the result. NILFS2 failed after less than 10 seconds 
since it ran out of space due to garbage collection inefficiencies. 
F2FS failed after running for 158 seconds after suffering a 60% 
drop in throughput due to log cleaning overhead. NOVA outper
formed F2FS by 12x, and the throughput remained stable over time. 

We found that the longer NOVA runs, the more efficient fast GC 
becomes, eventually accounting for the majority of reclaimed pages. 

Recovery Overhead
NOVA provides fast recovery from both normal dismounts and 
power failures. To measure the recovery overhead, we used the 
three workloads in Table 2. Each workload represents a different 
use case for the file systems: Videoserver contains a few large 
files accessed with largesize requests; mailserver includes a 
large number of small files and the request size is small; file
server is inbetween. For each workload, we measure the cost of 
mounting after a normal shutdown and after a power failure.

Table 3 summarizes the results. With a normal shutdown, NOVA 
recovers the file system in 1.2 ms, since NOVA can restore the 
allocator state from the a checkpoint. After a power failure, 
NOVA recovery time increases with the number of inodes and as 
the I/O operations that created the files become smaller (since 
small I/O operations result in more log entries). Recovery runs 
faster on STTRAM than on PCM because PCM has higher read 
latency. On both PCM and STTRAM, NOVA is able to recover 50 

Figure 5: Filebench throughput with different file system patterns and dataset sizes on STT-RAM and PCM. Each workload has two data-set sizes so that 
the small one can fit in DRAM entirely while the large one cannot. 



26   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

GB data in 116 ms, achieving failure recovery bandwidth higher 
than 400 GB/s. 

Conclusion
We have implemented and described NOVA, a logstructured file 
system designed for hybrid volatile/nonvolatile main memo
ries. NOVA extends ideas of LFS to leverage NVMM, yielding 
a simpler, highperformance file system that supports fast and 
efficient garbage collection and quick recovery from system 
failures. Our measurements show that NOVA outperforms exist
ing NVMM file systems by a wide margin on a wide range of 
applications while providing stronger consistency and atomicity 
guarantees. 

Acknowledgments
This work was supported by STARnet, a Semiconductor 
Research Corporation program, sponsored by MARCO and 
DARPA. We would like to thank John Ousterhout, Niraj Tolia, 
Isabella Furth, Rik Farrow, and the anonymous FAST review
ers for their insightful comments and suggestions. We are also 
thankful to Subramanya R. Dulloor from Intel for his support 
and hardware access.

Figure 6: Performance of a full file system. The test runs a 30 GB file-
server workload under 95% NVMM utilization with different durations.

Table 2: Recovery workload characteristics. The number of files and 
 typical I/O size both affect NOVA’s recovery performance.

Table 3: NOVA recovery time on different scenarios. NOVA is able to 
recover 50 GB data in 116 ms in case of power failure.

Data set File size Number 
of files Data-set size I/O size

Videoserver 128 MB 400 50 GB 1 MB

Fileserver 1 MB 50,000 50 GB 64 KB

Mailserver 128 KB 400,000 50 GB 16 KB

Data set Videoserver Fileserver Mailserver

STTRAMnormal 156 μs 313 μs 918 μs

PCMnormal 311 μs 660 μs 1197 μs

STTRAMfailure 37 ms 39 ms 72 ms

PCMfailure 43 ms 50 ms 116 ms



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 27

SYSTEMS
NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories

References
[1] Intel and Micron produce breakthrough memory tech nology:  
http://newsroom.intel.com/community/intel_newsroom 
/blog/2015/07/28/intelandmicronproducebreakthrough 
memorytechnology.

[2] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. 
Swanson, “Onyx: A Prototype Phase Change Memory Storage 
Array,” in Proceedings of the 3rd USENIX Conference on Hot 
Topics in Storage and File Systems (HotStorage ’11).

[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. 
Burger, and D. Coetzee, “Better I/O through ByteAddressable, 
Persistent Memory,” in Proceedings of the ACM SIGOPS 22nd 
Symposium on Operating Systems Principles (SOSP ’09),  
pp. 133–146.

[4] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. 
Reddy, R. Sankaran, and J. Jackson, “System Software for Per
sistent Memory,” in Proceedings of the 9th European Conference 
on Computer Systems (EuroSys ’14), ACM, pp. 15:1–15:15.

[5] Filebench file system benchmark: http://sourceforge.net 
/projects/filebench.

[6] PMEM: the persistent memory driver + ext4 direct access 
(DAX): https://github.com/01org/prd.

[7] Linux POSIX file system test suite: https://lwn.net/Articles 
/276617/.

[8] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. 
Shelby, M. Salinga, D. Krebs, S.H. Chen, H. L. Lung, and C. 
Lam, “PhaseChange Random Access Memory: A Scalable 
Technology,” IBM Journal of Research and Development, vol. 52, 
no. 4.5, July 2008, pp. 465–479.

[9] M. Rosenblum and J. K. Ousterhout, “The Design and Imple
mentation of a LogStructured File System,” ACM Transactions 
on Computer Systems (TOCS), vol. 10, no. 1, 1992, pp. 26–52.

[10] M. Wilcox, “Add Support for NVDIMMs to ext4: https://
lwn.net/Articles/613384/.

[11] J. Xu and S. Swanson, “NOVA: A LogStructured File 
System for Hybrid Volatile/NonVolatile Main Memories,” in 
Proceedings of the 14th USENIX Conference on File and Storage 
Technologies (FAST ’16), pp. 323–338.

[12] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A Durable and 
Energy Efficient Main Memory Using Phase Change Memory 
Technology,” in Proceedings of the 36th Annual International 
Symposium on Computer Architecture (ISCA ’09), ACM, 
 pp. 14–23.



28   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS

Interview with Timothy Roscoe
R I K  F A R R O W

I interviewed Mothy Roscoe over six years ago, after I became aware of 
the Barrelfish operating system [1]. Barrelfish was designed specifically 
for the new generation of manycore CPU chips, and Mothy was one of 

the people on the team who built the OS [2].

Since that time, Intel released the Singlechip Cloud Computer [3], and the Barrelfish team 
created a port for this unusual chip. The SCC was designed as a research microprocessor 
with 48 cores and a message passing system. Today, Intel has moved toward the Xeon Phi, a 
chip that sits on the PCI express bus, exposes many processing cores, and provides a Linux
based stack for communicating with the Phi. The Phi has 68 cores and is designed for HPC.

A number of sophisticated 64bit ARM multicore server chips are appearing that look like a 
great fit for Barrelfish. Mothy told me that Barrelfish does support some of these, but actu
ally getting documentation from vendors can prove difficult in some cases.

I’d had the opportunity to chat with Mothy during many systems conference luncheons, and I 
wanted to follow up on some of those conversations and share them.

Mothy is cochair of OSDI ’16, along with Kim Keeton of HP Labs and HP Enterprise. The 
discussion of systems conference program committees that I mention in “Musings” (page 2) 
occurred after we had conducted this interview.

Rik: Please update us on what has been happening with Barrelfish since we last talked  
(April 2010).

Mothy: Quite a lot—it’s been an interesting journey! To some extent the focus of the project 
has changed, but it’s remarkable how many of our original goals, and our conjectures about 
the challenges of future hardware, turned out to be on the mark.

When we started in 2007, we thought that the hard problems in OS design were scaling, 
hetero geneity, and diversity. Those challenges led us to the multikernel model: by structuring 
the OS as a distributed set of cores communicating with messages, we handle  heterogeneity, 
lack of cache coherence and/or shared memory, dynamic cores, etc. in a single elegant 
framework.

The one challenge the multikernel model does not solve directly is scalability. However, we 
find it a lot easier to think about scaling in the context of message passing rather than shared 
memory—and you also see this trend in other areas like HPC and largescale “Big Data” 
applications as well.

We’ve learned a lot about modern hardware so far in building Barrelfish and a lot about how 
to write a modern OS for that hardware. There is a huge difference between building a real 
OS from scratch with a different design versus tweaking existing Linux or Windows kernels. 
We were lucky to have the opportunity to pull off a sufficiently large engineering project 
over a long period of time. For us, the big payoff happened after six years on when companies 
started to get very interested in Barrelfish—that’s a long time by the standards of most uni
versity research projects.

Timothy Roscoe (aka Mothy) is 
a full Professor in the Systems 
Group of the Computer Science 
Department at ETH Zurich. 
He received a PhD from the 

Computer Laboratory of the University of 
Cambridge, where he was a principal designer 
and builder of the Nemesis operating system, 
as well as working on the Wanda microkernel 
and Pandora multimedia system. After three 
years working on Web-based collaboration 
systems at a startup company in North 
Carolina, Mothy joined Sprint’s Advanced 
Technology Lab in Burlingame, California, 
working on cloud computing and network 
monitoring. He then joined Intel Research at 
the University of California, Berkeley in April 
2002, as a principal architect of PlanetLab, 
an open, shared platform for developing 
and deploying planetary-scale services. In 
September 2006, he spent four months as a 
visiting researcher in the Embedded and Real-
Time Operating Systems group at National 
ICT Australia in Sydney before joining ETH 
Zurich in January 2007. His current research 
interests include network architecture and the 
Barrelfish multicore research operating system. 
He was recently elected Fellow of the ACM 
for contributions to operating systems and 
networking research.

Rik is the editor of ;login:.  
rik@usenix.org



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 29

SYSTEMS
Interview with Timothy Roscoe

Along the way, we’ve published a lot of papers and graduated a 
bunch of PhD students. Academically, it’s been a huge success 
so far. A common criticism of big projects like this is that they 
don’t generate enough papers in the modern academic climate—
several colleagues (not at ETH) have suggested that it’s better 
to focus on smaller projects and higher paper counts so that 
students find it easier to get academic jobs.

I want the students to publish, but I feel strongly that paper mills 
are not the only way to run a university research group, and 
paperdriven research isn’t a good way to have longterm impact 
(it’s also not ETH’s mission). Simon Peter, the PhD student who 
wrote the first line of code of Barrelfish, is now a professor at 
University of Texas, Austin. He also won Best Paper at OSDI 
2014 with Arrakis [5], a variant of Barrelfish, so we seem to be 
doing OK nine years on.

In building Barrelfish, we also made a bunch of decisions that 
were somewhat arbitrary at the time—we really felt they were a 
good way to build an OS, but we didn’t view them as essential to 
the research. In retrospect, however, many of these choices were 
highly fortuitous.

For example, we adopted a capability model (which we extended 
from seL4) for managing all memory resources, and this turned 
out to have profound consequences much later. It’s only now that 
we’re finding this is a great match for very large main memories, 
like HP’s “The Machine” project.

The big change came in about 2012. Barrelfish had become a 
useful vehicle for OS research and teaching at ETH, despite 
the sometimes uphill struggle to convince people that “it’s not 
Linux” was not a showstopper for a realistic OS, even in the 
research community.

At this point, we started being contacted by companies (hard
ware vendors and others) who had become interested in Barrel
fish. They were building hardware that didn’t look like a 1980s 
VAX, and it was dawning on them that Linux wasn’t a good fit for 
these new hardware designs.

It was this interest that convinced us to keep going with the 
project rather than move on to new things. It was great to feel 
that the ideas that Paul Barham, Rebecca Isaacs, Simon Peter, 
Andrew Baumann, myself, and others had started with back in 
2007 had finally been vindicated.

We’ve now got a great core development group at ETH (includ
ing one fulltime software engineer and, hopefully, more in the 
future), we accept external contributions (both patches and pull 
requests on GitHub), and we’re looking to support more hard
ware as we work with more vendors.

We’ve also got a ton of ideas, thoughts, war stories, etc. that we’d 
really like to talk about, but which are a bit of a challenge to 

fit into traditional computer science conference publishing or 
system documentation—we’re starting a blog of these to see what 
interest there is out there.

Rik: What’s the main research direction of the project now?

Mothy: One of the biggest driving challenges right now is 
hardware complexity. Modern computer hardware is incredibly 
complex in terms of peripheral devices, interconnects, memory 
hierarchies, etc.

To take one example: most people think they know what a physical 
address is; every memory cell or device register sits at a unique 
physical address, which is what you can use to access that loca
tion by having the MMU put out that address on the memory 
interconnect. Unfortunately, this just isn’t true any more.

Instead, within a single machine (even a single SoC), different 
cores will see the same memory location appear at different 
physical addresses. Each core will only be able to address a sub
set of all the memory locations (storage cells or device registers), 
and these subsets are different, but not necessarily disjoint: they 
intersect in interesting ways. The access latency and bandwidth 
to a given location also varies, of course. For any pair of cores in 
the machine, the same location might be at the same address, or 
different addresses, or only addressable from one core, and might 
or might not be coherent in cache.

This happens on modern PCs, phone SoCs, and pretty much any 
other piece of “mainstream” hardware. We also see analogous 
complexity and diversity across systems in DMA engines, inter
rupt routing, network interfaces, and so on.

So what do we do? Nobody has a really good, crisp, formal 
description of what, say, a physical address is these days. The 
closest you find in traditional OS designs is a device tree  
(http://www.devicetree.org/), but device trees are really a file 
format—it doesn’t capture semantics in a way you can make 
strong statements about.

We’d like to be able to put the hardware/software interface that 
OSes must use on a much more sound formal footing. What we’re 
doing is writing semiformal descriptions of all the memory sys
tems, interrupt routing models, interconnect topologies that we 
can find, and then devising representations of these in subsets of 
firstorder logic.

The shortterm benefit of this is that Barrelfish can easily adapt 
to new hardware online—we’ve always programmed PCIe buses 
using Constraint Logic Programming in Barrelfish at boot time, 
and we’re doing a lot more in this line. It’s just a much easier 
way to engineer a more portable, general purpose OS for modern 
hardware. And in the medium term, of course, we can use these 
models and representations to provide a basis for formal verifi
cation of system software.



30   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSTEMS
Interview with Timothy Roscoe

The ultimate goal, however, is a “softwarecentric” description 
of hardware that allows us as OS designers to talk about what 
kinds of hardware designs are “tasteful” as far as the OS is con
cerned, and what hardware design patterns are not. OS people 
are pretty good at critiquing bad hardware designs (and there are 
many!), but hardware designers pretty much ignore OS folks, and 
one reason for this is that we’re not nearly as good at saying up 
front what the rules and patterns are for good hardware inter
face design.

This sounds philosophical, but there’s very little academic work 
on this, and it’s amazing how much traction we’ve got for these 
longterm ideas from industry partners. It’s fundamental work 
that also has direct shortterm applicability in industry.

Rik: Any plans on porting Barrelfish to more ARMbased server 
SoCs? It sounds like some of them might be vaguely similar to 
the Intel cloudonachip.

Mothy: We’re always interested in future hardware platforms, 
if we can find out anything about them :). If you’re writing an 
operating system for new hardware in an academic environ
ment, a constant headache is getting documentation. Pretty 
much any hardware vendor assumes you want to run Linux on 
their chip, and that’s it, so why would you want documentation?

We sign NDAs, and sometimes this really helps, and sometimes 
it doesn’t. But even finding someone to talk to about getting 
documentation is often the challenge.

Sometimes it works out great—Intel actually approached us 
before the Singlechip Cloud Computer was announced some 
years back, and my student did a port to the SCC that was ready 
when they launched. ARM, Intel, and some vendors (such as 
TI) released extremely detailed documentation. AMD usually 
does as well, but we’ve found nothing about the Seattle [A1100] 
processors, for example, and haven’t found anyone to ask about it 
either.

There is a flurry of really interesting ARMv8based server chips 
appearing, however, and we’re excited about supporting them. 
We currently support AppliedMicro’s XGene 1 SoC and ARM’s 
FAST models for emulated hardware, but we’ll talk to anyone 
who is prepared to share documentation with us.

Rik: In conversations we’ve had during USENIX conferences, 
you mentioned that Barrelfish will only support certain pro
gramming languages. Can you explain the thinking behind that 
decision?

Mothy: Actually, we’re happy if Barrelfish supports any pro
gramming language that people would like. As a small team, 
there’s a limit to the number that we can support ourselves, but 
we’re happy to accept contributions!

We’ve had various student projects porting language runtimes 
to Barrelfish, and it’s usually not too much of a problem. The key 
challenge is generally that languages often implicitly assume a 
POSIXlike system, and Barrelfish deliberately isn’t like POSIX. 
This makes a fast Java runtime, for example, more work than 
Rust, which was extremely easy to bring up.

What you’re probably referring to is the group decision about 
which languages we could use in the OS itself. Remember this 
was back in 2008, so this is before Go, D, Rust, Swift, and Dart 
had traction. The discussion was remarkably short and pretty 
much unanimous: we decided on C, assembly, Haskell, and 
Python for tools. We also felt happy with OCaml and Ruby, but 
in the event we didn’t use them. We unanimously banned Java, 
C#, C++, and Perl. Nothing has happened to make us regret this 
decision.

Rik: Functional programming languages are becoming increas
ing popular. We now have a unikernel OS, MirageOS, but it 
relies on OCaml programming. When I mentioned just how hard 
I found it to write functional programs, you suggested that it 
might take someone six months to switch over to a functional 
programming style. Could you elaborate?

Mothy: We don’t have any studies to back this up, and it depends 
ultimately on the programmer. However, OS kernels have always 
employed a variety of programming paradigms expressed in 
assembly or C, and good OS kernel hackers are generally com
fortable with a variety of different ways of expressing com
putations inside the OS. You see a lot of snippets of functional 
programming in the Linux kernel, for example.

Choice of languages are a different matter. It’s useful to contrast 
unikernels from operating systems: they’re very different, and 
ultimately complementary.

We like to use a “functional” (in a different sense) definition of 
an OS—it is “that which manages, multiplexes, and protects the 
hardware resources of the machine.” In this sense, it could be a 
hypervisor like Xen, or a traditional OS like Linux or Windows, 
or a multikernel like Barrelfish.

A unikernel like MirageOS is essentially a runtime for a single 
application that executes in a resource container. Some people 
call this a LibraryOS—a term which goes back to exokernel sys
tems like Aegis and Nemesis. 

For an OS, a garbagecollected language is problematic because 
you are interested in providing performance isolation between 
competing, untrusted applications (such as containers). Hence, 
implementations using a language with more predictable perfor
mance like C, Rust, or even C++ make a lot of sense.

For a unikernel, you’re not worried about scheduling, resource 
sharing, or crosstalk since you’re already isolated in a container. 
What you really want here is something which works well from a 



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 31

SYSTEMS
Interview with Timothy Roscoe

software development and correctness perspective, and lan
guages like OCaml are great for this kind of environment.

As an aside, if you move to a world where all your applica
tions are running in containers over unikernels, the question 
naturally arises as to what the “ideal” underlying OS is. It’s not 
Linux or Windows, and it’s not Barrelfish either yet, but we are 
evolving Barrelfish that way—the Arrakis work is a step in that 
direction, for example.

References
[1] R. Farrow, “The Barrelfish Multikernel: Interview with 
Timothy Roscoe.” ;login:, vol. 35, no. 2 (April 2010):  
bit.ly/29lczBY.

[2] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, 
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania, “The 
Multikernel: A New OS Architecture for Scalable Multicore 
Systems,” in Proceedings of the 22nd ACM Symposium on OS  
Principles, October 2009: http://www.sigops.org/sosp/sosp09 
/papers/baumannsosp09.pdf.

[3] “Intel Singlechip Cloud Computer,” 2003: intel.ly/29oPSNx.

[4] Intel Xeon Phi: http://www.intel.com/content/www/us/en 
/processors/xeon/xeonphidetail.html.

[5] S. Peter and T. Anderson, “Arrakis: The Operating System 
as Control Plane.” ;login:, vol. 38, no. 4 (August 2013):  
bit.ly/29gu97f.

XKCD

xkcd.com

http://bit.ly/29lczBY
http://intel.ly/29oPSNx
http://bit.ly/29gu97f


32   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

PROGRAMMINGRunway
A New Tool for Distributed Systems Design

D I E G O  O N G A R O

Diego Ongaro is the creator 
of Runway and is a Lead 
Software Engineer on the 
Compute Infrastructure team 
at Salesforce. He is interested 

in improving the way people build distributed 
systems. He received his PhD in 2014 from 
Stanford University, where he worked on 
Raft, a consensus algorithm designed for 
understandability, and RAMCloud, a  
low-latency storage system.  
dongaro@salesforce.com

We strive to build correct systems that are always on and always 
fast. They must be distributed, yet the complexity inherent in dis
tributed systems poses a major design challenge. Runway is a new 

tool for distributed systems design, enabling interactive visualizations to 
help people learn about designs, and simulation and model checking to help 
evaluate their key properties. This article introduces Runway and discusses 
key issues in modeling distributed systems.

More than ever, companies are building and deploying distributed systems. They are forced 
to distribute computation and data across servers to improve the availability, performance, 
and scale of their services. Unfortunately, this comes at a steep cost of complexity:

◆◆ In a distributed system, multiple servers can operate concurrently. Their events can end up 
happening in orders that are hard to anticipate.

◆◆ Due to network latency, by the time a server receives a message, its contents may already  
be stale.

◆◆ Failures such as server crashes and network partitions are common at scale, and they can 
happen at any time, even while the system is trying to recover from another failure.

◆◆ Because servers are separated by a network, visibility into running systems is reduced,  
and debugging environments are limited.

The best way to manage this complexity is to focus more efforts on system design. In the 
design phase, we should communicate clearly about a design and also evaluate that design’s 
key  properties, such as its understandability and simplicity, correctness, availability, perfor
mance, and scalability. Exploring and resolving design issues early, before investing heavily 
in implementation, should help lower the cost of developing distributed systems and improve 
their quality.

Many existing tools aim to help with specifying, checking, or simulating distributed system 
models (some are listed on the Runway wiki [1]). However, none of these seems to be widely 
used for designing distributed systems in industry. Instead, industry engineers still rely on 
primitive tools like whiteboards, backoftheenvelope calculations, and design documents. 
These are valuable, but they fall short of communicating clearly about a design or evaluating 
its important properties. Why don’t industry engineers use more sophisticated design tools? 
We can only assume that they are unwilling, existing tools are impractical, or the engineers 
haven’t found the right tools. If it’s the former, there is little hope. But if it’s the latter two, 
Runway might have a chance.

Runway is a new design tool for distributed systems. It’s not technically superior to existing 
tools, but it may be better optimized for a chance at widespread adoption in industry. There 
are three primary reasons for this:



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 33

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

1. Integration: Runway combines specification, model check
ing, simulation, and visualization in the same tool. Integrating 
many components might tip the costbenefit calculation in 
Runway’s favor: you can write one system model and get a lot 
of value from it. Compared to using separate tools, Runway has 
only a single learning curve. Plus, you can start by specifying 
and visualizing a model, then decide how to evaluate it later 
(using model checking, simulation, or both).

2. Usability: Runway aims to be approachable, with only a small 
learning curve. The interactive visualizations allow people with 
no special knowledge of Runway to learn about a design. For 
modeling, Runway’s specification language is designed to be 
familiar to most engineers and encourages simple code without 
many abstractions.

3. Social: Runway visualizations run in a Web browser, enabling 
people to share their models easily. We’re currently designing 
a registry to help people discover other models, as well as a 
component system to enable using one model within another. 
We hope a community will grow around modeling systems in 
Runway and learning about them.

Although Runway is still early in its development, it can already 
provide significant value. A public instance of Runway is avail
able at https://runway.systems/, and its source code [2] is freely 
available under the MIT license.

Overview of Runway
A Runway model consists of a specification and a view. The 
specification describes the model’s state and how that state may 
change over time. Specifications are written in code using a new 
domainspecific language. This language aims to be familiar 
to programmers and have simple semantics, while expressing 
concurrency in a way suited for formal and informal reasoning. 
A specification describes a labeled transition system, which is 
like a state machine, for how state changes. It can also include 
invariants, properties that must hold for every correct state. The 
view draws a model’s state visually. For example, the view for the 
Runway model of the Raft consensus algorithm [3] is shown in 
Figure 1.

Runway includes a compiler for its specification language, and 
it can execute the specification using a randomized simulator. 
This produces an execution, an ordered history or schedule of 
events that captures a sequence of state changes. Runway can 
then visualize or animate these state changes over time. Runway 
employs the model’s view for the main component of the visual
ization and also adds several generic widgets, including a time
line, an editable table of the model’s entire state, and a toolbar of 
transition rules that can be applied to the state. The visualiza
tion is interactive, allowing users to manipulate the state of a 
model and see how it reacts. It also serves as a great debugger 
when developing specifications.

The simulator can do more than power a visualization: it can 
also collect data. A single execution can include many interest
ing data points, and as a planned feature, data could be aggre
gated across a family of executions. The data can be presented 
in the form of graphs, and by selecting a point on a graph, the 
visualization can load and replay the exact event of interest.

The final major component of Runway is the model checker, 
which can verify that a model will never break an invariant, up 
to some limit in model size. The model checker begins at the 
model’s starting state and tries to explore all reachable states, 
evaluating the invariants at each step. It never expands the same 
state twice, using a hash table to track the states it’s already 
visited. Runway’s model checker today is quite slow; we plan to 
either implement optimizations from the literature or to have 
Runway invoke an efficient model checker behindthescenes. If 
the model checker finds a bug, it can produce an execution show
ing how the model reaches a bad state. As a planned feature, this 
execution could be loaded into the visualization so that a user 
could easily understand what went wrong.

Runway’s Specification Language
Although Runway’s specification language is still a work in prog
ress, several basic principles are shaping its design:

◆◆ It aims to be easy for industry developers to read and write, 
with only a small learning curve. Although a functional ap
proach is possible, an imperative, procedural approach is likely 
to be more familiar.

◆◆ It intentionally includes a limited set of language features, 
favoring specifications with straightforward code, even at the 
cost of larger specification sizes.

Figure 1: The view of the Raft model. The ring on the left is optimized for 
understanding leader election. Each server has a randomized election 
timer, drawn as an arc around the server. Heartbeat messages from the 
leader reset that timer, and a server begins an election when its timer 
expires. The servers’ logs on the right are optimized for understanding 
log replication; they are lined up in tidy rows for easy comparisons. This 
interactive visualization is available at https://runway.systems/.



34   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

◆◆ Its strong type system is intended to help developers avoid silly 
errors like typos and misused variables.

◆◆ It permits modeling concurrency without writing concurrent 
code. Transition rules are applied atomically, one at a time. To 
model concurrency, one rule can model the start of a longlived, 
concurrent operation, and another can model its completion.

◆◆ It keeps all state explicitly in global variables, which simpli
fies reasoning about the current state. This is in contrast with 
generalpurpose languages, which use the instruction pointer 
to track information, without giving it a name.

◆◆ Although Runway does not yet include an efficient imple
mentation, it must be possible to evaluate Runway models 
efficiently, and, especially for model checking, their state must 
be efficient to copy and hash. We hope to store the global state 
variables contiguously in memory even as the language evolves, 
although this may need to be relaxed in favor of more flexible 
models (every variable has a static upper bound on its size 
today).

The Too Many Bananas problem serves as a good example to 
illustrate Runway’s specification language. It is a simple concur
rency problem similar to those taught in introductory systems 
classes. You live in a house with roommates, and everyone likes 
to eat bananas. When you run out of bananas, you go to the store 
to buy more and bring those home. Due to a race condition, it’s 
possible for your roommate to leave for the store while you’re 
already out buying more bananas. When you both return home, 
you might end up with too many bananas, a critical problem 
since bananas spoil over time.

This specification models the Too Many Bananas problem:

    01 var bananas : 0..100;

    02 type Person : either {

    03   Happy,

    04   Hungry,

    05   GoingToStore,

    06   ReturningFromStore {

    07     carrying: 0..8

    08   }

    09 };

    10 var roommates: Array<Person>[1..5];

    11 rule step for person in roommates {

    12   match person {

    13     Happy {

    14       person = Hungry;

    15     }

    16     Hungry {

    17       if bananas == 0 {

    18         person = GoingToStore;

    19       } else {

    20         bananas -= 1;

    21         person = Happy;

    22       }

    23     }

    24     GoingToStore {

    25       person = ReturningFromStore {

    26         carrying: urandomRange(0, 8)

    27       };

    28     }

    29     ReturningFromStore(bag) {

    30       bananas += bag.carrying;

    31       person = Hungry;

    32     }

    33   }

    34 }

    35 invariant BananaLimit {

    36   assert bananas <= 8;

    37 }

For the purpose of this model, it’s never OK to have more than 
eight bananas at home. This is checked by the invariant on lines 
35–37. More sophisticated models could factor in a rate of decay 
and rate of consumption, but let’s start simple.

Lines 1–10 declare two variables: “bananas” is the number of 
bananas at home, and “roommates” represents the five people 
who live there, each of whom is in one of various possible states 
at any given time. By default, Runway initializes variables to 
the upperleft possible value, so “bananas” starts at 0 and each 
person starts out “Happy.”

Lines 11–34 declare a state transition rule named “step,” which 
applies to one roommate at a time. If that person is “Happy,” they 
can become “Hungry” (lines 13–15). If they are “Hungry” and a 
banana is available, they can eat a banana and become “Happy”; 
if no banana is available, they can go to the store (lines 16–23). 
If they’re going to the store, they can return from the store with 
a random number of bananas between 0 and 8 (bunches vary in 
size, and sometimes the store has run out; lines 24–28). And if 
they are coming back from the store, they can leave the bananas 
they’ve purchased at home and return to being “Hungry,” where 
they are likely to eat a banana soon (lines 29–32).

Note that specifications define which state transitions may 
happen, but they do not say when they should happen or in what 
order: that’s up to the simulator or the model checker. If the 
specification permits multiple roommates to take a step from a 
given state, Runway’s simulator will pick one at random. Alter
natively, Runway’s model checker will explore all possibilities, 
looking for any state that violates the invariant. To use the model 
checker with this specification, replace the random number on 
line 26 with a constant.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 35

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

Inside Runway Views
Runway relies on a model’s view to draw the main component 
of the visualization. Views are built using offtheshelf Web 
technologies, so that Runway visualizations can run in a Web 
browser (the ubiquitous graphical toolkit). Although views are 
not necessarily constrained to these technologies, we’re cur
rently using JavaScript, SVG, and D3.js [4]:

◆◆ JavaScript is the scripting language running in every Web 
browser.

◆◆ SVG, Scalable Vector Graphics, is analogous to HTML but used 
for images instead of text and layout. Just like HTML, SVG is 
styled with CSS to assign properties like colors and borders.

◆◆ D3.js is a JavaScript library that assists with drawing SVG.

At a first approximation, specification and views tend to be similar 
in size. However, they are very different in nature. A view serves 
the necessary function of drawing the model’s state, and its imple
mentation tends to be uninteresting. You might study a specifica
tion to learn about the precise workings of a design, but the only 
thing you can learn from a view’s code is how it draws the state.

Modeling Distributed Systems
Beyond simple banana problems, Runway can be used to model 
concurrent and distributed systems. Modeling distributed 
systems, in particular, introduces a new set of challenges. This 
section describes Runway’s approach to modeling failures, net
works, and clocks in distributed systems, as well as using invari
ants and assertions effectively to check properties of distributed 
system models.

Failures
In most distributed systems, servers can fail, and, down to 
some limit, the system should remain available. Messages can 
be delayed and perhaps dropped and reordered. These failures 
can be extremely important to understanding and evaluating 
designs, but different systems make different assumptions about 
their environments and have different requirements. In Runway, 
failures are encoded the same way as normal events, permitting 
specifications to model their own assumptions. A server crash
ing is modeled the same as a client submitting a request.

However, transition rules representing failures and client 
requests are different from normal transition rules in one regard: 
typically, they should not be applied all the time. For example, 
not every message should be dropped, and client requests should 
arrive at a limited rate. Currently, the specification can limit the 
rates of these events by imposing additional conditions on them, 
using random values. For example, when a message is sent, the 
specification can compute whether or when it will be dropped 
based on a coin toss. However, this need is recurring and fun
damental to modeling, so we’re exploring ways to express these 
event rates intuitively and conveniently in Runway.

Networks
Modeling a distributed system also requires modeling a network. 
This, too, can be done in Runway using normal state variables 
and transition rules. For example, the basic Raft model has a flat 
network modeled as a set. When a server sends a message, the 
message is added to the set. When a server receives a message, it 
is removed from the set.

Visualizing a network introduces its own challenge. For 
example, the Raft view draws each message as it moves from the 
sender to the recipient. To calculate the position of a message, it 
needs to know when the message will be received, but that infor
mation isn’t normally available ahead of time. The Raft model 
currently takes a simple approach: the specification assigns each 
message a randomized delay when it is sent and will not deliver 
the message before then. An alternative, more complex approach 
would be to delay the visualization until the message’s future 
delivery time had been determined by the simulator; we will 
implement this in Runway only if the simpler approach is found 
to be insufficient for common use cases.

In principle, more complex networks with links, switches/rout
ers, and propagation and queueing delays can be modeled the 
same as simple networks, using variables and rules. However, as 
the network’s wiring complexity increases, it would be tedious 
to express the wiring in Runway today, and we may explore addi
tional language features to make this more convenient.

Runway also needs a way to import reusable components. This 
would be useful at various levels of scale, including:

◆◆ Choosing from several network models to load into a distrib
uted system model,

◆◆ Loading a model of, for example, a coordination service into a 
model of a larger system, and

◆◆ Loading larger system models together into a model of an entire 
cluster’s workload.

We are currently designing the language features to enable this.

Time and Clocks
Runway supports two modes of operation: synchronous, which 
generates events over time, and asynchronous, which generates 
only an ordered sequence of events. These two modes of opera
tion have been useful for different models. For example, the basic 
Too Many Bananas model is asynchronous, while the model of 
a building’s elevator system is primarily interesting to measure 
delays in synchronous mode.

The two modes can also be useful for the same model. Many 
algorithms are designed to maintain safety properties under 
asynchronous assumptions, making them robust to errone
ous clocks and unexpected delays (typically, even a “small” 
race condition is not acceptable). With Runway, it’s possible to 



36   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

check these properties asynchronously with the model checker 
and still run timingbased simulations on the same model. For 
example, we can check that Raft always keeps committed log 
entries no matter how long communication steps take, then use 
the same model in synchronous mode to estimate leader election 
times on a datacenter network.

In Runway, a timer is typically modeled by storing the time when 
an action should be taken, then guarding a transition rule for the 
action with an ifstatement:

    rule fireTimer {

      if past(timeoutAt) {

        /* take action, reset timeoutAt */

      }

    }

This is another example of making all state explicit in Runway. 
There is no question of whether or not a timer has been set.

When running in synchronous mode, Runway keeps a global 
clock for the simulation, and “past()” evaluates to true if the 
given timestamp is earlier than the simulation’s clock. In asyn
chronous mode, however, “past()” always returns true. This has 
the effect of making all timers fireable immediately after they 
are scheduled, allowing unlikely schedules to be explored.

We have only tried Runway’s current approach to clocks on a 
handful of models, and it may need further enhancements. Spe
cifically, it may be burdensome to model clock drift across serv
ers using one global clock, as Runway provides today. We plan to 
revisit this issue based on actual use cases.

Access Restrictions and Distributed Invariants
Runway expects you to follow two ground rules in modeling dis
tributed systems, but to keep the specification language simple, 
it does not enforce these rules. First, one server should not 
access another server’s internal state. Second, the only shared 
state should be the network, which should only be accessed 
in limited ways (such as following send/receive semantics). It 
would be impossible to implement a real distributed system that 
violated these rules.

However, accessing unshared state is OK for assertions and 
invariants. In fact, it’s a key advantage to modeling an entire 
distributed system in a single process. For example, in Raft there 
should be at most one leader per term. This is easy to check in an 
invariant by directly accessing and comparing all the servers’ 
states. The alternative, to check this property by exchanging 
messages as in a truly distributed system, would be much more 
complex, would be less effective due to message delays, and could 
interfere with the normal operation of the model.

Defining history variables as shared global state is also OK. His
tory variables record information about the past. These variables 
should not affect the normal execution of the model, but they 
may be read by assertions and invariants. For example, Raft’s 
property that there is at most one leader per term should actually 
hold across time. If one server was leader in a particular term, 
no other server should ever become leader in that term. The Raft 
model tracks past leaders using a history variable, and when a 
server becomes leader in some term, it asserts that that term has 
not yet had a leader:

    var electionsWon : Array<Boolean>[Term];

    rule becomeLeader for server in servers {

      if (/* this candidate has a majority of votes */) {

        assert !electionsWon[server.term];

        electionsWon[server.term] = True;

        /* update local state to become leader */

      }

    }

Conclusion
Distributed systems are challenging, and their complexity 
justifies careful design. Using the proper tools, we could be 
communicating clearly and evaluating our designs thoroughly, 
even before investing in their implementation. However, existing 
design tools have not been adopted widely in industry.

Runway hopes to change that. It combines specification, model 
checking, simulation, and interactive visualization into one tool. 
This improves Runway’s potential benefit without significantly 
increasing the cost of developing a model. Runway aims to be 
easy to learn by using a specification language based on impera
tive, procedural code that discourages unnecessary abstractions. 
Runway models are also easily shareable on the Web, so others 
can learn about designs through interactive visualization, even if 
they have not learned how to read Runway specifications.

At Salesforce, we are redesigning our infrastructure for the next 
order of scale, and we’ve already been applying Runway to a few 
design challenges internally. We found Runway to be effective 
for concurrent problems as well as distributed ones, and, encour
agingly, engineers seem to find value early in specifying their 
designs more formally and in watching them run.

Runway is open source [2] and still in the early stages of its devel
opment. We have made it available early to find out whether other 
engineers will adopt it, and if not, to learn what is stopping them. 
We hope you will join us in forming a community around Runway.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 37

PROGRAMMING
Runway: A New Tool for Distributed Systems Design

References
[1] Runway Wiki, Related Work: https://github.com/salesforce 
/runwaybrowser/wiki/RelatedWork. 

[2] Runway source code: https://github.com/salesforce 
/runwaybrowser.

[3] Raft Consensus Algorithm: https://raft.github.io.

[4] D3: Data Driven Documents, JavaScript library: https://
d3js.org.

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide Association 
information to students, and encourage student involvement in USENIX. This is a volunteer program, for which USENIX 
is always looking for academics to participate. The  program is designed for faculty or staff who directly interact with stu-
dents. We fund one representative from a campus at a time.

A campus rep’s responsibilities include:

■  Maintaining a library (online and in print) of  USENIX 
publications at your university for student use

■  Distributing calls for papers and upcoming event 
 brochures, and re-distributing informational emails 
from  USENIX

■  Encouraging students to apply for travel grants to 
conferences

In return for being our “eyes and ears” on campus, the Campus Representative receives access to the members-only areas 
of the USENIX Web site, free conference registration once a year (after one full year of service as a  Campus Representative), 
and electronic conference proceedings for downloading onto your campus server so that all students, staff, and faculty 
have access.

To qualify as a campus representative, you must:

■ Be full-time faculty or staff at a four-year accredited university

■  Have been a dues-paying member of USENIX for at least one full year in the past

■  Providing students who wish to join USENIX with 
 information and applications

■  Helping students to submit research papers to  relevant 
USENIX conferences

■  Providing USENIX with feedback and suggestions on 
how the organization can better serve students

For more information about our Student Programs, please contact office@usenix.org

Do you have a  USENIX Representative
on your university or college campus?

If not, USENIX is  interested in having one!

Acknowledgments
Thanks to Rik Farrow, Pat Helland, Jennifer Wolochow, and Nat 
Wyatt (Runway’s first user) for their helpful comments on ear
lier versions of this article, and to David Leon Gil, Steve Sandke, 
and many others for helping design Runway itself.



38   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

PROGRAMMING

Design Guidelines for High Performance 
RDMA Systems
A N U J  K A L I A ,  M I C H A E L  K A M I N S K Y ,  A N D  D A V I D  G .  A N D E R S E N

Modern RDMA hardware offers the potential for exceptional per
formance, but achieving this performance is challenging. Directly 
mapping an application’s lowlevel reads and writes to RDMA 

primitives is often suboptimal, and design choices, including which RDMA 
operations to use and how to use them, significantly affect observed perfor
mance. We lay out guidelines that can be used by system designers to navi
gate the RDMA design space. Our guidelines emphasize paying attention to 
lowlevel details such as individual RDMA packets, PCIe transactions, and 
NIC architecture. We present two case studies—a keyvalue store and a net
worked sequencer—demonstrating the effectiveness of these guidelines.

In recent years, new entrants into the datacenter and cluster networking space have started 
to provide hardware capabilities formerly available only in expensive High Performance 
Computing (HPC) interconnects. The NICs (network interface cards) from manufacturers 
such as Mellanox now support RDMA (remote direct memory access) features out of the box, 
at a price comparable to nonRDMAcapable NICs.

The “RDMA Background” section describes RDMA in more detail, but at a high level RDMA 
is a networking approach consisting of two basic concepts:

1. Operating system “stack bypass”: In many applications, the overhead of going through the 
kernel networking layers is the bottleneck to processing speed. This is particularly the case 
with applications that send and receive relatively small amounts of data per packet ex
change, but do so at high rates.

2. Full CPU bypass: For certain, morespecialized applications, RDMA hardware can allow 
one computer to read and write directly to/from the memory of another node in the cluster, 
without the remote node’s CPU or OS being involved at all.

RDMA has been a key ingredient of HPC and supercomputing environments for years, but it 
is also intriguing to datacenter application developers. RDMA hardware presents program
mers with numerous choices, so using it efficiently requires care. For example, should applica
tions provide reliability, or should the NIC’s reliability protocol be used? In the rest of this 
article, we help readers navigate this space to understand what RDMA capabilities might be 
the best match for their application. Our opensource rdma_bench toolkit (https://github.com 
/efficient/rdma_bench) can be used for evaluating and optimizing the most important sys
tem factors that affect endtoend throughput when using RDMA.

RDMA Background
RDMA is a general approach to networking for which several different models exist. The 
most popular model is the Virtual Interface Architecture (VIA) [3]. Other models include 
opensource specifications such as Portals from Sandia Labs, and proprietary HPC archi
tectures such as Fujitsu’s Tofu interconnect. For a given model, there can be more than one 
implementation. For example, VIA has three wellknown implementations: InfiniBand, 
RoCE (RDMA over Converged Ethernet), and iWARP (Internet Wider Area RDMA Proto

Anuj Kalia is a PhD student 
in the Computer Science 
Department at Carnegie Mellon 
University. He is interested in 
networked systems, especially 

using high-speed networks to build distributed 
systems. akalia@cs.cmu.edu

Michael Kaminsky is a Senior 
Research Scientist at Intel 
Labs and an adjunct faculty 
member of the Computer 
Science Department at 

Carnegie Mellon University. He is part of the 
Intel Science and Technology Center for Cloud 
Computing (ISTC-CC), based in Pittsburgh, 
PA. His research interests include distributed 
systems, operating systems, and networking. 
michael.e.kaminsky@intel.com

David G. Andersen is 
an Associate Professor 
of Computer Science at 
Carnegie Mellon University. 
He completed his SM and 

PhD degrees at MIT, and holds BS degrees 
in biology and computer science from the 
University of Utah. In 1995, he co-founded 
ArosNet, an ISP in Salt Lake City, Utah.  
dga@cs.cmu.edu



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 39

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

col). Our work focuses on VIAbased NICs, which are the only 
commodity NICs currently available. Several observations 
are applicable to other architectures as well. Table 1 shows an 
abstract RDMA API for VIA NICs.

Compared to conventional Ethernetbased TCP/IP network
ing, RDMA networks remove several sources of CPU overhead. 
They support userlevel NIC access, removing the overhead of 
the kernel’s heavyweight networking stack. At the remote host, 
RDMA reads and writes bypass the CPU. RDMA NICs typi
cally implement a reliable transport layer, freeing up host CPU 
cycles used for implementing a reliable protocol such as TCP/IP. 
RDMAcapable networks with 100 Gbps of perport bandwidth, 
and 2 μs roundtrip latency are commercially available.

Figure 1 shows the relevant hardware components of a machine 
in a modern RDMA cluster. A NIC with one or more ports con
nects to the PCIe controller of a multicore CPU, and provides 
direct access to the memory of remote nodes.

Verb types: One-sided verbs (RDMA operations) operate 
directly on a remote node’s memory, bypassing its CPU, and 
include RDMA reads, writes, and atomic operations. Two-sided 
verbs include the send and receive verbs; their functionality 
resembles send() and recv() functions in traditional sockets 
programming. These verbs involve the responder’s CPU: the 
send’s payload is written to an address specified by a receive that 
was posted previously by the responder’s CPU.

The choice of verbs is a key determinant of application perfor
mance, but it is not the only factor. The choice of transport and the 
verb initiation method (discussed below) require equal attention.

Queue pairs: RDMA hosts communicate by posting verbs 
to interfaces called queue pairs (QPs). On completing a verb, 
the requester’s NIC optionally signals completion by writing 
a completion queue entry to host memory via direct memory 
access (DMA).

RDMA transports are either reliable or unreliable and are 
either connected or unconnected (also called datagram). With 
reliable transports, the NIC uses acknowledgments to guarantee 
inorder delivery of messages. Unreliable transports do not pro
vide this guarantee. However, modern highspeed networks such 
as InfiniBand and RoCE use a reliable link layer, so unreliable 
transports do not lose packets due to congestion or bit errors. 
Connected transports require onetoone connections between 
QPs, whereas a datagram QP can communicate with multiple 
QPs. Datagram transport is more scalable, but it only supports 
twosided verbs.

Current RDMA transports include Reliable Connected (RC), 
Unreliable Connected (UC), and Unreliable Datagram (UD). 
Note that although these transports resemble nonRDMA trans
port layers to some extent (e.g., RC and UD are analogous to TCP 
and UDP, respectively), the underlying protocol and message 
formats are different.

Verb initiation: To initiate RDMA operations, the usermode 
NIC driver at the requester creates work queue elements 
(WQEs) in host memory. These WQEs are transferred to the 
NIC over the PCIe bus in one of two ways. In the “WQEby
MMIO” method, the CPU directly writes the WQEs to device 
memory using memorymapped I/O (MMIO). In the “Doorbell” 
method, the CPU writes a short Doorbell message to the NIC, 
indicating the new WQEs. This action is called “ringing the 
Doorbell.” On receiving the Doorbell, the NIC reads the WQEs 
from the CPU via a DMA read. Both methods bypass the host’s 
OS kernel. Figure 2 summarizes the two methods. The Doorbell 
method reduces CPU use: it requires one MMIO for a batch of 
WQEs, whereas WQEbyMMIO requires separate MMIOs for 
each WQE.

Factors Affecting RDMA System Performance
In datacenters, RDMA is being proposed for use in keyvalue 
stores, graph processing systems, and online transaction pro
cessing systems [1, 2]. These applications access irregular data 
structures (e.g., hash tables and trees) and use small packet sizes 
on the order of tens of bytes. Three main factors are important 
for high performance with these workloads: the extent to which 
remote CPU bypass is used, lowlevel optimizations for verbs, 
and the NIC architecture.

Figure 2: The WQE-by-MMIO and Doorbell methods for transferring two 
WQEs. Arrows represent PCIe transactions. Solid arrows are PCIe MMIO 
writes; the dashed arrow is a PCIe DMA read. Arrow width represents 
transaction size.Verb Abstract API function call

WRITE 
READ

write(qp, local_buf, size, remote_addr) 
  read(qp, local_buf, size, remote_addr)

SEND 
RECV

  send(qp, local_buf, size) 
  recv (qp, local_buf, size)

Table 1: Abstract RDMA API showing one-sided (WRITE, READ) and 
two-sided (SEND, RECV) verbs

Figure 1: Hardware components of a node in an RDMA cluster



40   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

Remote CPU Bypass
In an RDMAbased datastore, data is stored in the memory of 
a server machine and is accessed by client machines. To take 
advantage of RDMA’s ability to bypass the remote CPU, several 
projects use onesided READs and WRITEs to accomplish 
this. For datastore GET operations, they do so by traversing the 
remote data structure using READs. This typically requires 
multiple round trips. For example, Pilaf [6] is an RDMAbased 
keyvalue store that handles keyvalue GET operations in 2.6 
READs on average. It uses 1.6 READs to access its hash table–
based index to locate the value’s address, and one READ to fetch 
the value. FaRM’s keyvalue store [1] reduces the number of 
READs required for the index from 1.6 to 1.

In contrast, the design of our HERD system [4] is focused on reduc
ing the number of round trips to one. To accomplish this, HERD 
does not entirely bypass the remote CPU. Instead of traversing the 
remote data structure, HERD clients send their requests to the 
server using an RPC request. The HERD server traverses the data 
structure for the client, but it does so in local memory.

Local memory accesses are 10x–100x faster than remote 
accesses in latency, bandwidth, and the amount of host CPU they 
consume. Then the server sends a response to the client. Several 
combinations of verbs and transports can be used to implement 
fast RPCs; HERD uses a combination of onesided and twosided 
verbs over unreliable transport, which is optimized for high per
formance and numberofclients scalability. Figure 3 shows the 
difference in HERD and READbased keyvalue stores.

HERD’s RPC mechanism is very fast: its throughput and latency 
is similar to RDMA reads. As a result, HERD delivers higher 
throughput and lower latency than Pilaf or FaRM’s keyvalue 
store. Key to achieving high RPC throughput is the use of the 
lowlevel optimizations discussed below. An important lesson 
from HERD is that onesided RDMA is not always the best solu
tion; using an RDMA network simply for fast, OS kernel–bypass 
RPCs is an equally important design to consider.

Low-Level Verb Optimizations
RDMA verbs allow for a variety of lowlevel optimizations. 
Effectively using these optimizations requires a good under
standing of how different verbs use the CPU, the PCIe bus, and 
the RDMA network, and how this varies when different optimi
zations are enabled. Our USENIX ATC paper [5] addresses this 
topic thoroughly. We discuss the most important optimizations 
briefly here.

Unreliable transports reduce NIC overhead by not requiring 
RDMA acknowledgment packets, and provide higher perfor
mance than reliable transports. Unreliable transports do not 
provide reliable packet delivery. However, modern RDMA imple
mentations such as InfiniBand use a reliable link layer, so even 
unreliable transports drop packets extremely rarely.

Payload inlining reduces NIC processing and PCIe bandwidth 
use by eliminating the DMA read for the payload. By default, 
WRITEs and SEND work queue elements contain a pointer to 
the payload; the NIC reads it via a DMA read. Small payloads up 
to a few hundred bytes can be encapsulated inside the WQE and 
written to the NIC using MMIO.

Selective signaling also reduces NIC processing and PCIe 
bandwidth use by eliminating the completion DMA. By default, 
the NIC writes a completion queue entry to host memory on 
completing a verb. If an application can detect completion using 
alternate methods (e.g., using a future response from a remote 
node), it can mark the verb as “unsignaled,” instructing the NIC 
to not issue the completion DMA.

Doorbell batching reduces CPU use and PCIe bandwidth use by 
allowing applications to issue a batch of RDMA operations using 
one Doorbell. This reduces CPU use by requiring only one MMIO 
per batch. The default approach of transferring WQEs one by one 
using WQEbyMMIO requires separate MMIOs for each WQE.

Figure 4a and Figure 4b show the PCIe and RDMA network 
messages for one WRITE without optimizations, and two 
WRITEs with the above optimizations, respectively.

NIC Architecture
Modern highspeed NICs are composed of multiple process
ing units (PUs), such as packet processing engines and DMA 
engines. Exploiting parallelism among the NIC’s PUs is nec
essary for high performance but requires explicit attention. 
Further, RDMA verbs and workloads that introduce contention 
between the PUs should be avoided.

Engage multiple NIC PUs: A common RDMA programming 
decision is to use as few queue pairs as possible, but doing so 
limits NIC parallelism to the number of QPs. This is because 
operations on the same QP have ordering dependencies and are 
ideally handled by the same NIC processing unit to avoid cross

Figure 3: Messages for a GET operation in (a) a READ-based key-value 
store and (b) HERD



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 41

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

PU synchronization. For example, in datagrambased RDMA 
communication, one QP per CPU core is sufficient for commu
nication with all remote cores. However, it “binds” a CPU core 
to a PU and may limit core throughput to PU throughput. This 
is likely to happen when permessage application processing is 
small and a highspeed CPU core overwhelms a less powerful 
PU. In such cases, using multiple QPs per core increases CPU 
efficiency; we call this the multi-queue optimization.

Avoid contention among NIC PUs: RDMA operations that 
require crossQP synchronization introduce contention among 
PUs, and can perform over an order of magnitude worse than 
uncontended operations. For example, RDMA provides atomic 
operations such as compareandswap and fetchandadd on 
remote memory. To our knowledge, all commodity NICs avail
able at the time of writing use internal concurrency control for 
atomics: PUs acquire an internal lock for the target address and 
issue readmodifywrite over PCIe. Therefore, the NIC’s internal 
locking mechanism, such as the number of locks and the map
ping of atomic addresses to these locks, is important. Note that 
due to the limited SRAM in NICs, the number of available locks 
is small, which amplifies contention in the workload.

Case Studies
We now describe the design of two highperformance RDMA
based systems: the HERD keyvalue store and the XSeq 
sequencer. XSeq is named SpecS0 in our USENIX ATC paper [5].

RPC Overview
For both systems, we use an RPC protocol for communication 
between clients and the keyvalue/sequencer server. In HERD, 
clients use unreliable WRITEs to write requests to a request 
memory region at the server. A server thread (a worker) checks 
for new requests from every client by polling on the request 
memory region, and collects a batch of requests. It computes a 
batch of responses, and sends them to clients using the SEND 

verb over datagram transport. The worker uses a batched Door
bell for the batch of response SENDs. To use the multiqueue 
optimization, each worker alternates among a configurable 
number (1–3) of datagram QPs across batches of response SENDs. 
In addition to unreliable transport, Doorbell batching, and 
multiqueue, the server also uses payload inlining and selective 
signaling.

Key-Value Stores
Figure 5 shows the throughput of a HERD keyvalue store server 
with an increasing number of server CPU cores. We use a cluster 
with Mellanox ConnectIB InfiniBand NICs, and 14core Intel 
CPUs. The keyvalue store maps 16byte keys to 32byte values; 
the workload consists of keys chosen uniformly at random and 
5% PUT operations. HERD’s singlecore throughput is 12.3 mil
lion operations/s (Mops), and its peak throughput is 98.3 Mops. 
At its peak, HERD is bottlenecked by PCIe bandwidth.

Figure 5 also compares HERD to a READbased keyvalue store 
that requires two RDMA reads per GET operation. The Connect
IB NIC supports up to 120 million READs/s, so such a READbased 
keyvalue store is limited to 60 Mops. HERD delivers up to 64% 

(a) RDMA and PCIe messages for one RDMA write (b) RDMA and PCIe messages for two WRITEs with optimizations 

Figure 4: Effect of optimizations on RDMA and PCIe messages. The optimized WRITEs are unreliable, inlined, unsignaled, and are issued using a batched 
Doorbell. The dashed messages are removed in the optimized version; the dotted messages are repurposed.

Figure 5: Throughput of HERD and READ-based key-value stores



42   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

PROGRAMMING
Design Guidelines for High Performance RDMA Systems

higher throughput, while using a single round trip per operation. 
HERD uses significant server CPU resources: it requires at least 
seven CPU cores to outperform a READbased design. However, 
HERD uses less client CPU than a READbased store because it 
requires fewer clientinitiated data transmissions.

Networked Sequencers
Centralized sequencers are useful building blocks for a variety of 
network applications, such as ordering operations in distributed 
systems via logical or real timestamps. A centralized sequencer 
can be the bottleneck in highperformance distributed systems, 
so building a fast sequencer is an important step to improving 
wholesystem performance.

Our XSeq sequence server runs on a single machine and 
provides an increasing eightbyte integer to client processes 
running on remote machines. The worker threads at the server 
share an eightbyte counter. After collecting a batch of N client 
requests, a worker thread atomically increments the shared 
counter by N, thereby claiming ownership of a sequence of N 
consecutive integers. It then sends these N integers to the clients 
using a batched Doorbell (one integer per client).

Directly adapting HERD’s RPC protocol to a sequencer provides 
good performance. However, even higher throughput and scal
ability can be achieved by optimizing the RPCs specifically for 
the sequencer. The key insight is that the request and response 
packets in the sequencer are small, with up to eight bytes of 
data. This allows RPC optimizations that reduce the number of 
cache lines used by WQEs, and DMAs issued, by 50%. We also 
use a speculation technique where the clients speculate the most 
significant bytes of the current sequencer number.

Figure 6 shows the throughput of XSeq with increasing server 
CPU cores. Its singlecore throughput is 16.5 Mops, and its peak 
throughput is 122 Mops. Figure 6 also shows the throughput of 
a sequencer where clients use the atomic fetchandadd verb to 
increment an eightbyte counter in the server’s memory. This 
sequencer achieves only 2.24 Mops.

The poor performance of the atomicsbased sequencer is 
because of lock contention among the NIC’s processing units. 
The effects of contention are exacerbated by the duration for 
which locks are held—several hundred nanoseconds for PCIe 
round trips. Our RPCbased sequencers have lower contention 
and shorter lock duration: the programmability of general
purpose CPUs allows us to batch updates to the counter, which 
reduces cache line contention, and proximity to the counter’s 
storage (i.e., core caches) makes these updates fast. 

Code release: The code for our lowlevel RDMA benchmarks, 
HERD, and XSeq is available at https://github.com/efficient 
/rdma_bench. 

References
[1] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, 
“FaRM: Fast Remote Memory,” in Proceedings of the 11th 
USENIX Symposium on Networked Systems Design and 
 Implementation (NSDI ’14), 2014.

[2] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Ren
zelmann, A. Shamis, A. Badam, and M. Castro, “No Com
promises: Distributed Transactions with Consistency, 
Availability, and Performance,” in Proceedings of the 25th 
ACM Symposium on Operating Systems Principles (SOSP ’15), 
2015.

[3] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. 
Shubert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd, “The 
Virtual Interface Architecture,” IEEE Micro, 1998, pp. 66–76.

[4] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA 
Efficiently for KeyValue Services,” in Proceedings of ACM 
SIGCOMM, 2014, pp. 295–306.

[5] A. Kalia, M. Kaminsky, and D. G. Andersen,  “Design Guide
lines for HighPerformance RDMA Systems,” in Proceedings 
of the 2016 USENIX Annual Technical Conference (ATC ’16).

[6] C. Mitchell, Y. Geng, and J. Li, “Using OneSided RDMA 
Reads to Build a Fast, CPUEfficient KeyValue Store,” in 
Proceedings of the 2013 USENIX Annual Technical Conference 
(ATC ’13).

Figure 6: Throughput of X-Seq and atomics-based sequencers



It’s time for the security community to take a step back and get a fresh perspective on threat 

assessment and attacks. This is why in 2016 the USENIX Association launched Enigma, 

a new security conference geared towards those working in both industry and research. 

Enigma will return in 2017 to keep pushing the community forward.

Expect three full days of high-quality speakers, content, and engagement 

for which USENIX events  are known.  

JAN 30–FEB 1 2017
OA K L A ND,  C A LIF OR NI A ,  USA

enigma.usenix.org
The full program and registration will be available in October.

MORE TO DECIPHER



44   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSADMINInvent More, Toil Less
B E T S Y  B E Y E R ,  B R E N D A N  G L E A S O N ,  D A V E  O ’ C O N N O R ,  A N D  V I V E K  R A U

Betsy Beyer is a Technical 
Writer for Google Site 
Reliability Engineering in NYC. 
She has previously written 
documentation for Google 

Datacenters and Hardware Operations teams. 
Before moving to New York, Betsy was a 
lecturer on technical writing at Stanford 
University. She holds degrees from Stanford 
and Tulane.  
bbeyer@google.com

Brendan Gleason is a Site 
Reliability Engineer in Google’s 
NYC office. He has worked on 
several Google storage systems 
and is currently bringing 

Bigtable to the cloud. Brendan has a BA from 
Columbia University. bfg@google.com

Dave O’Connor is an SRE 
Manager at Google Dublin, 
responsible for Google’s shared 
storage and the Production 
Network. He previously worked 

for Netscape and AOL in Ireland, as well as for 
several smallish startups in Dublin. He holds a 
BSc in Computer Applications from Dublin City 
University. daveoc@google.com

Vivek Rau is an SRE Manager at 
Google and a founding member 
of the Launch Coordination 
Engineering sub-team of SRE. 
His current focus is improving 

the reliability of Google’s cloud platform. Vivek 
has a BS degree in computer science from IIT-
Madras. vivekr@google.com

This article builds upon Vivek Rau’s chapter “Eliminating Toil” in Site 
Reliability Engineering: How Google Runs Production Systems [1]. We 
begin by recapping Vivek’s definition of toil and Google’s approach to 

balancing operational work with engineering project work. The Bigtable SRE 
case study then presents a concrete example of how one team at Google went 
about reducing toil. Finally, we leave readers with a series of best practices 
that should be helpful in reducing toil no matter the size or makeup of the 
organization.

SRE’s Approach to Toil
As discussed in depth in the recently published Site Reliability Engineering, Google SRE 
seeks to cap the time engineers spend on operational work at 50%. Because the term opera-
tional work might be interpreted in a variety of ways, we use a specific word to describe the 
type of work we seek to minimize: toil.

Toil Defined
To define toil, let’s start by enumerating what toil is not. Toil is not simply equivalent to:

◆◆ “Work I don’t like to do”

◆◆ Administrative overhead such as team meetings, setting and grading goals, and HR 
 paperwork 

◆◆ Grungy work, such as cleaning up the entire alerting configuration for your service  
and to remove clutter

Instead, toil is the kind of work tied to running a production service that tends to be:

◆◆ Manual

◆◆ Repetitive

◆◆ Automatable and not requiring human judgment

◆◆ Interruptdriven and reactive

◆◆ Of no enduring value

Work with enduring value leaves a service permanently better, whereas toil is “running fast 
to stay in the same place.” Toil scales linearly with a service’s size, traffic volume, or user 
base. Therefore, as a service grows, unchecked toil can quickly spiral to fill 100% of every
one’s time.

As reported by SREs at Google, our top three sources of toil (in descending order) are: 

◆◆ Interrupts (nonurgent servicerelated messages and emails)

◆◆ Oncall (urgent) responses

◆◆ Releases and pushes

Toil isn’t always and invariably bad; all SREs (and other types of engineers, for that matter) 
necessarily have to deal with some amount of toil. But toil becomes toxic when experienced 



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 45

SYSADMIN
Invent More, Toil Less

in large quantities. Among the many reasons why too much 
toil is bad, it tends to lead to career stagnation and low morale. 
Spending too much time on toil at the expense of time spent 
engineering hurts the SRE organization by undermining our 
engineeringfocused mission, slowing progress and feature 
velocity, setting bad precedents, promoting attrition, and causing 
breach of faith with new hires who were promised interesting 
engineering work.

Addressing Toil through Engineering
Project work undertaken by SREs is key in keeping toil at man
ageable levels. Capping operational work at 50% frees up the rest 
of SRE time for longterm engineering project work that aims 
to either reduce toil or add service features. These new features 
typically focus on improving reliability, performance, or utiliza
tion—efforts which often reduce toil as a secondorder effect. 

SRE engineering work tends to fall into two categories:

◆◆ Software engineering: Involves writing or modifying code, 
in addition to any associated design and documentation work. 
Examples include writing automation scripts, creating tools or 
frameworks, adding service features for scalability and reliabil
ity, or modifying infrastructure code to make it more robust.

◆◆ Systems engineering: Involves configuring production 
systems, modifying configurations, or documenting systems 
in a way that produces lasting improvements from a onetime 
effort. Examples include monitoring setup and updates, load
balancing configuration, server configuration, tuning of OS 
parameters, and loadbalancer setup. Systems engineering also 
includes consulting on architecture, design, and productioniza
tion for developer teams.

Engineering work enables the SRE organization to scale up 
sublinearly with service size and to manage services more effi
ciently than either a pure Dev team or a pure Ops team. 

Case Study: Bigtable SRE
It’s important to understand exactly what toil is, and why it 
should be minimized, before engaging boots on the ground to 
address it. Here’s how one SRE group at Google actively worked 
to reduce toil once they realized that it was overburdening the 
team.

Toil in 2012
In 2012, the SRE team responsible for operating Bigtable, a 
Google high performance data storage system, and Colossus,  
the distributed file system upon which Bigtable was built, was 
suffering from a high rate of operational load. 

Early in the year, pages had reached an unsustainable level 
(five incidents per standard 12hour shift; Google purposefully 
designs many of its SRE teams to be split across two sites/time 

zones to provide optimal coverage without overtaxing oncall 
engineers with 24hour shifts), and the team began an effort 
to eliminate unnecessary alerts and address true root causes 
of pages. With concentrated effort, the team brought the pager 
load down to a more sustainable level (around two incidents 
per shift). However, incident response was only one component 
of the team’s true operational load. User requests for quota 
changes, configuration changes, performance debugging, and 
other operational tasks were accumulating at an everincreasing 
rate. What began as a sustainable support model when Bigtable 
SRE was responsible for just a few cells and a handful of cus
tomers had snowballed into an unpleasant amount of unreward
ing toil.

The team wasn’t performing all of its daily operations “by hand,” 
as SREs had created partial automation to assist with a number 
of tasks. However, this automation stagnated while both the 
size of Google’s fleet and the number of services that depend on 
Bigtable grew significantly. On any given day, multiple engineers 
were involved in handling the toildriven work that resulted 
from oncall incidents and customer requests, which meant 
that these SREs couldn’t focus on engineering and project work. 
In fact, an entire subteam was dedicated to the repetitive but 
obligatory task of handling requests for increases and decreases 
in Bigtable capacity. To make matters worse, the team was so 
overburdened with operational load that they didn’t have time to 
adequately root cause many of the incidents that triggered pages. 
The inability to resolve these foundational problems created a 
vicious cycle of everincreasing operational load.

Turning Point
Acknowledging that its operational trajectory was unsustain
able, the entire Bigtable and Colossus SRE team assembled 
to discuss its roadmap and future. While team members were 
nearly universally unhappy with the level of operational load, 
they also felt a strong responsibility to both support their users 
and to make Google’s storage system easy to use. They needed a 
solution that would benefit all parties involved in the long run, 
even if this solution meant making some difficult decisions 
about how to proceed in the short term. 

After much discussion, Bigtable SRE agreed that continuing 
to sacrifice themselves to achieve the shortterm goals of their 
customers was actually counterproductive, not only the team, 
but also to their customers. While fulfilling customer requests 
on an asneeded basis might have been temporarily gratifying, it 
was not a sustainable strategy. In the long run, customers value 
a reliable, predictable interface offered by a healthy team more 
than they value a request queue that processes any and every 
request, be it standard or an unconventional oneoff, in an inde
terminate amount of time.



46   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSADMIN
Invent More, Toil Less

Tactics
The team realized that in order to get their operational work 
under control and improve the Bigtable service for their users, 
they would have to say “no” to some portion of customer requests 
for a period of time. The team, supported by management, 
decided that it was important (and ultimately better for Bigtable 
users) to respect their colleagues and themselves by pushing 
back on complex customer requests, performance investiga
tions for customers who were within Bigtable’s promised SLO, 
and other routine work that yielded nominal value. The team’s 
management understood that the longterm health of both the 
team and the service could be substantially improved by making 
carefully considered shortterm sacrifices in service quality. 

Additionally, they decided to split the team into two shards: one 
focused on Bigtable, and one focused on Colossus. This split had 
two advantages: it allowed engineers to specialize technically on 
a single product, and it allowed the leads of each shard to focus 
on improving the operational state of a single service.

In addition to temporarily impacting how, and how quickly, they 
processed user requests, the team recognized that their new 
focus on reducing operational load would also impact their work 
in a couple of other key areas: their ability to complete project 
work and their relationship with partner developer teams. For 
the time being, SREs would have less bandwidth to collaborate 
with the core Bigtable development team in designing, qualify
ing, and deploying new features. Fortunately, the Bigtable devel
opers anticipated that reducing operational load would result 
in a better, more stable product, and went so far as to allocate 
some of their engineers to this effort. Assisting the SRE team 
in improving service automation would ultimately benefit both 
teams if developers could shorten the window of slowed feature 
velocity.

The Turnaround Begins: Incremental Progress
Equipped with a narrowed scope and a clear mandate to focus 
on reducing toil, the Bigtable SRE Team began making progress 
in clearing their operational backlog. They first turned an eye to 
routine user requests. The overwhelming majority of requests 
fell into three buckets:

◆◆ Increases and decreases in quota

◆◆ Turnups and turndowns of Bigtable footprints

◆◆ Turnups and turndowns of datacenters

Rather than trying to engineer an allencompassing bigbang 
solution, the team made an important decision: to deliver incre
mental progress.

Bigtable SRE first focused on fully automating the various 
footprint and quotarelated requests. While this step didn’t 
eliminate tickets, it greatly simplified the ticket queue and 

reduced the amount of time it took to complete requests. The 
team could now fulfill each request by simply starting automa
tion to complete the task, eliminating the several manual steps 
previously necessary. 

Next, the team focused on wrapping automation into selfservice 
tools. Initially, they simply added quota to an existing footprint, 
which was both the most common request and the easiest 
request to transition to selfservice. SREs then began adding 
selfservice coverage for more operations, prioritizing accord
ing to complexity and frequency. They tackled common and less 
complex tasks first, moving from quota reductions, to footprint 
turnups, to footprint turndowns. 

Bigtable SRE’s iterative approach was twofold: in addition to 
tackling lowerhanging fruit first, they approached each self
service task starting from the basics. Rather than trying to 
create fully robust solutions from the getgo, they launched basic 
functionality, upon which they incrementally improved. For 
example, the initial version of the selfservice software for quota 
reductions and footprint turndowns couldn’t handle all possible 
configurations. Once users were equipped with this basic func
tionality, the engineers incrementally expanded the selfservice 
coverage to a growing fraction of the request catalog.

End Game
By breaking up the toil problem into smaller surmountable 
pieces that could deliver incremental value, Bigtable SRE was 
able to create a snowball of work reduction: each incremental 
reduction of toil created more engineering time to work on future 
toil reduction. As shown in Figure 1, by 2014, the team was in a 
much improved place operationally—they reduced user requests 
from a peak of more than 2200 requests per quarter in early 2013 
to fewer than 400 requests per quarter.

Figure 1: Bigtable SRE customer requests per quarter



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 47

SYSADMIN
Invent More, Toil Less

Looking Forward
While Bigtable SRE significantly improved its handle on toil, the 
war against toil is never over. As Bigtable continues to add new 
features, and its number of customers and datacenters continues 
to grow, Bigtable SRE is constantly on the offensive in combat
ting creeping levels of toil. Perhaps the most significant change 
Bigtable SRE underwent in this process was a shift in culture. 
Before the turnaround, the team viewed operational work as an 
unpleasant but necessary task that they didn’t have the power 
to refuse or delay. Since the turnaround, the team is extremely 
skeptical of any feature or process that will add operational 
work. As team members challenge and hold each other account
able for the level of operational load on the team, they aim to 
never regress to similarly undesirable levels of toil.

Best Practices for Reducing Toil
Now that we’ve seen how one particular SRE team at Google 
tackled toil, what lessons and best practices can you glean from 
a massivescale operation like Google that apply to your own 
company or organization?

As they’re tasked with running the entire gamut of services that 
make up Google production, SRE teams at Google are necessar
ily varied, as are their approaches to toil reduction. While some 
of the particular approaches taken by a team like Bigtable SRE 
might not be relevant across the board, we’ve boiled down SRE’s 
diverse approaches to reducing toil into some essential best 
practices. These recommendations hold regardless of whether 
you’re approaching service management from scratch or looking 
to help a team already burdened by excessive toil.

Buy-in Is Key
As demonstrated by the Bigtable SRE case study, you can’t tackle 
toil in a meaningful way without managerial support behind the 
idea that toil reduction is a worthwhile goal. Sometimes long
term wins come with the tradeoff of shortterm compromises, 
and securing managerial buyin for temporarily pushing back on 
routine but important work is likely easier said than done. The 
key here is for management to consider what measures will enable 
a team to be significantly more effective in the long run. For 
example, Bigtable SRE was only able to rein in the toil overwhelm
ing their team by deprioritizing feature development and manual 
and timeconsuming customer requests in the short term.

Bigtable SRE also found that breaking down toil reduction 
efforts into a series of small projects was key for a few reasons. 
Perhaps most obviously, this incremental approach gives the 
team a sense of momentum early on as it meets goals. It also 
enables managers to evaluate a project’s direction and provide 
course corrections. Finally, it makes progress easily visible, 
increasing buyin from external stakeholders and leadership.

Minimize Unique Requirements
Using the “pets vs. cattle” analogy discussed in a 2013 UK 
Register article [2], your systems should be automated, easily 
interchangeable, replaceable, and lowmaintenance (cattle); they 
should not have unique requirements for human care and atten
tion (pets). Should disaster strike, you’ll be in a much better posi
tion if you’ve created systems that can be recreated easily from 
scratch. Tempting as it might be to manually cater to individual 
users or customers, such a model is not scalable.

Similarly, understand the difference between parts of the system 
that require individual care and attention from a human versus 
parts that are unremarkable and just need to selfheal or be 
replaced automatically. Depending on your scale, these com
ponents might be hosts, racks of hosts, network links, or even 
entire clusters.

Be thoughtful about how you handle configuration manage
ment. By using a centrally controlled tool like Puppet, you gain 
scalability, consistency, reliability, reproducibility, and change 
management control over your entire system, allowing you to 
spin up new instances on demand or push changes en masse.

While many people and teams recognize that building oneoff 
solutions is suboptimal, it’s still often tempting to build such 
systems. Actually steering away from creating special cases for 
shortterm efficacy and insisting on standardized, homogeneous 
solutions requires focus and periodic review by team leads and 
managers.

Invest in Build/Test/Release Infrastructure Early
Instituting standardization and automation might be a hard sell 
early on in a service’s life cycle, but it will pay off many times 
over down the road. Implementing this infrastructure is much 
harder later on, both technically and organizationally.

That said, there’s a balance between insisting on this approach 
wholesale, thus hurting velocity, versus postponing infrastructure 
development until suboptimally late in the development cycle. Try 
to plan accordingly—once you’re beyond the rapid launchand
iterate phase and relatively certain that the system will have the 
longevity to warrant this kind of investment, put sufficient time 
and effort into developing build, test, and release infrastructure.

Audit Your Monitoring Regularly
Establish a regular feedback loop to evaluate signal versus noise 
in your monitoring setup. Be thorough and ruthless in eliminat
ing noisy and nonactionable alerts. Otherwise, important alerts 
that you should be paying attention to are drowned out in the 
noise. For each realtime alert, repeat the mantra, “What does a 
human being need to do, right this second?” The Site Reli-
ability Engineering chapter “Monitoring Distributed Systems” 
covers this topic in depth.



48   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSADMIN
Invent More, Toil Less

Conduct Postmortems
The need for postmortems may not surface in the course of 
everyday work, but consistently undertaking them massively 
contributes to the stability of a system or service. Instead of just 
scrambling to get the system back up and running every time 
an incident occurs, take the time to identify and triage the root 
cause after the immediate crisis is resolved. As detailed in the 
SRE chapter “Postmortem Culture: Learning from Failure,” 
these collaborative postmortem documents should be both 
blameless and actionable. Avoid onesizefitsall approaches: 
this exercise should be lightweight for small and simple inci
dents but much more indepth for large and complex outages.

No Haunted Graveyards
Even when it comes to companies and teams that consider 
themselves fastmoving and open to risk, parts of produc
tion or the codebase are sometimes considered “too risky” to 
change—either very few people understand these components 
or they were designed in such a way that there’s a risk assigned 
to changing or touching them. Our goal is to control trouble, not 
to avoid it at all costs. In such cases of perceived risk, smoke out 
risk rather than leaving it to fester.

Conclusion
Any team tasked with operational work will necessarily be 
burdened with some degree of toil. While toil can never be com
pletely eliminated, it can and should be thoughtfully mitigated in 
order to ensure the longterm health of the team responsible for 
this work. When operational work is left unchecked, it naturally 
grows over time to consume 100% of a team’s resources. Engi
neers and teams performing an SRE or DevOps role owe it to 
themselves to focus relentlessly on reducing toil—not as a luxury, 
but as a necessity for survival.

The type of engineering work generated by toil reduction proj
ects is much more interesting and fulfilling than operational 
work, and it leads to career growth and healthier team dynam
ics. Google SRE teams have found that working from the set of 
best practices above, in addition to constantly reassessing our 
workload and strategies, has equipped us to continually scale up 
the creative challenges, business impact, and technical sophisti
cation of the SRE job.

Acknowledgments
Special thanks to the following for helping with background for 
this article: Olivier Ansaldi, Brent Chapman, Neil Crellin, Sandy 
Jensen, Jeremy Katz, Thomas Labatte, Lisa Lund, and Nir Tarcic.

References
[1] B. Beyer, C. Jones, J. Petoff, and N. Murphy, eds., Site Reli-
ability Engineering (O’Reilly Media, 2016).

[2] S. Sharwood, “Are Your Servers Cattle or Pets?” The Regis-
ter, March 18, 2013: http://www.theregister.co.uk/2013/03/18 
/servers_pets_or_cattle_cern/.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 49

SYSADMIN

Some Routes Are More Default than Others
J O N A T H O N  A N D E R S O N

Typical IPnetworked hosts are configured with a single default route. 
For singlehomed hosts the default route defines the first destination 
for packets addressed outside of the local subnet; but for multihomed 

hosts the default route also implicitly defines a default interface to be used 
for all outbound traffic. Specific subnets may be accessed using nondefault 
interfaces by defining static routes; but the single default route remains a 
“single point of failure” for general access to other and Internet subnets. The 
Linux kernel, together with the iproute2 suite [1], supports the definition of 
multiple default routes distinguished by a preference metric. This allows 
alternate networks to serve as failover for the preferred default route in cases 
where the link has failed or is otherwise unavailable.

Background
The CUBoulder Research Computing (RC) environment spans three datacenters, each with 
its own set of specialpurpose networks. Publicfacing hosts may be accessed through a 1:1 
NAT or via a dedicated “DMZ” VLAN that spans all three environments. We have histori
cally configured whichever interface was used for inbound connection from the Internet as 
the default route in order to support responses to connections from Internet clients; but our 
recent and ongoing deployment of policy routing (as described in the summer 2016 issue of 
;login:) removes this requirement.

All RC networks are capable of routing traffic with each other, the campus intranet, and the 
greater Internet, so we more recently prefer the host’s “management” interface as its default 
route as a matter of convention; but this unnecessarily limits network connectivity in cases 
where the default interface is down, whether by link failure or during a reconfiguration or 
maintenance process.

The Problem with a Single Default Route
The simplest Linux host routing table is a system with a single network interface.

# ip route list

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192  proto kernel  scope link  src 10.225.160.38

Traffic to hosts on 10.225.160.0/24 is delivered directly, while traffic to any other network 
is forwarded to 10.225.160.1. In this case, the default route eventually provides access to the 
public Internet.

# ping -c1 example.com

PING example.com (93.184.216.34) 56(84) bytes of data.

64 bytes from 93.184.216.34: icmp_seq=1 ttl=54 time=24.0 ms

--- example.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 24.075/24.075/24.075/0.000 ms

Jonathon Anderson has been an 
HPC Sysadmin since 2006 and 
believes that everything would 
be a lot easier if we just spent 
more time figuring out the 

correct way to do things. He’s currently serving 
as HPC Engineer at the University of Colorado, 
and hopes to stick around Boulder for a long 
time to come.  
jonathon.anderson@colorado.edu



50   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SYSADMIN
Some Routes Are More Default than Others

A dualhomed host adds a second network interface and a second 
linklocal route, but the original default route remains.

# ifup ens224 && ip route list

default via 10.225.160.1 dev ens192

10.225.160.0/24 dev ens192  proto kernel  scope link  src 

10.225.160.38

10.225.176.0/24 dev ens224  proto kernel  scope link  src 

10.225.176.38

The new linklocal route provides access to hosts on 
10.225.176.0/24, but traffic to other networks still requires 
access to the default interface as defined by the single default 
route. If the default route interface is unavailable, external 
networks become inaccessible, even though identical routing is 
available via 10.225.176.1.

# ifdown ens192 && ping -c1 example.com; ifup ens192

connect: Network is unreachable

Attempts to add a second default route fail with an error mes
sage (in typically unhelpful iproute2 fashion), implying that it 
is impossible to configure a host with multiple default routes 
simultaneously.

# ip route add default via 10.225.176.1 dev ens224

RTNETLINK answers: File exists

It would be better if the host could select dynamically from 
any of the physically available routes, but without an entry in 
the host’s routing table directing packets out the ens224 “data” 
interface, the host will simply refuse to deliver the packets.

Multiple Default Routes and Routing Metrics
The RTNETLINK error above indicates that the ens224 “data” 
route cannot be added to the table because a conflicting route 
already exists—in this case, the ens192 “management” route. 
Both routes target the “default” network, which would lead to 
nondeterministic routing with no way to select one route in 
favor of the other.

However, the Linux routing table supports more attributes than 
the “via” address and “dev” specified in the above example. Of 
use here, the “metric” attribute allows us to specify a preference 
number for each route.

# ip route change default via 10.225.160.1 dev ens192 metric 100

# ip route add default via 10.225.176.1 dev ens224 metric 200

# ip route flush cache

The host will continue to prefer the ens192 “management” 
interface for its default route due to its lower metric number, but 
if that interface is taken down, outbound packets will automati
cally be routed via the ens224 “data” interface.

# ifdown ens192 && ping -c1 example.com; ifup ens192    

PING example.com (93.184.216.34) 56(84) bytes of data.

64 bytes from example.com (93.184.216.34): icmp_seq=1 ttl=54 

time=29.0 ms

--- example.com ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 29.032/29.032/29.032/0.000 ms

Persisting the Configuration
This customrouting configuration can be persisted in the Red 
Hat “ifcfg” network configuration system by specifying a METRIC 
number in the ifcfg files. This metric will be applied to any 
route populated by DHCP or by a GATEWAY value in the ifcfg file 
or /etc/sysconfig/network file.

# grep METRIC= /etc/sysconfig/network-scripts/ifcfg-ens192 

METRIC=100

# grep METRIC= /etc/sysconfig/network-scripts/ifcfg-ens224

METRIC=200

Alternatively, routes may be specified using route files. These 
routes must define metrics explicitly.

# cat /etc/sysconfig/network-scripts/route-ens192

default via 10.225.160.1 dev ens192 metric 100

# cat /etc/sysconfig/network-scripts/route-ens224

default via 10.225.176.1 dev ens224 metric 200

Alternatives and Further Improvements
The NetworkManager service in RHEL 7.x handles multiple 
default routes correctly by supplying distinct metrics automati
cally; but, of course, specifying route metrics manually allows 
you to control which route is preferred explicitly.

I continue to wonder whether it might be better to go completely 
dynamic and actually run OSPF [2] on all multihomed hosts. 
This should—in theory—allow our network to be even more auto
matically dynamic in response to link availability, but this may 
be too complex to justify in our environment.

Figure 1: The CU-Boulder Research Computing Science Network, with 
subnets in three datacenters



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 51

SYSADMIN
Some Routes Are More Default than Others

There’s also potential to use all available routes simultaneously 
with weighted loadbalancing, either perflow or perpacket [3]. 
This is generally inappropriate in our environment but could be  
preferable in an environment where the available networks are 
definitively generalpurpose.

# ip route equalize add default \

    nexthop via 10.225.160.1 dev ens192 weight 1 \

    nexthop via 10.225.176.1 dev ens224 weight 10

Conclusion
We’ve integrated a multipledefaultroute configuration into 
our standard production network configuration, which is being 
deployed in parallel with our migration to policy routing. Now 
the default route is specified not by the static binary existence 
of a single default entry in the routing table but by an order of 
preference for each of the available interfaces. This allows our 
hosts to remain functional in more failure scenarios than before, 
when link failure or network maintenance makes the preferred 
route unavailable.

References
[1] iproute2: http://www.linuxfoundation.org/collaborate 
/workgroups/networking/iproute2. 

[2] OSPFv2: https://www.ietf.org/rfc/rfc2328.txt. 

[3] Policy Routing: http://www.policyrouting.org/Policy 
RoutingBook/ONLINE/CH05.web.html. 

What matters now—and why
Get news and insight every week in the O’Reilly newsletters

“ This is one of the few newsletters that I actually 
read in its entirety. There’s always something 
new and interesting.”

— Walter Lapchynski

View sample newsletters, pick your topics, and sign up today:

oreilly.com/go/usenixn

■   Programming  ■    Data  ■    Security  ■    Design  ■    Web  
■    Next:Economy  ■    FinTech  ■    WebOps & Performance



52   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SECURITYBootstrapping Trust in Distributed Systems 
with Blockchains
M U N E E B  A L I ,  J U D E  N E L S O N ,  R Y A N  S H E A ,  A N D  M I C H A E L  J .  F R E E D M A N

Muneeb Ali is the co-founder 
and CTO of Blockstack Labs and 
a final-year PhD candidate at 
Princeton University, where he 
has worked in the Systems and 

Networks group and at PlanetLab. He helped 
start a new course at Princeton on “How to 
Be a CTO” and gives guest lectures on cloud 
computing at Princeton. Muneeb has been 
awarded a J. William Fulbright Fellowship. 
muneeb@blockstack.com

Jude Nelson is an Engineering 
Partner at Blockstack Labs and 
a final-year PhD candidate at 
Princeton University working 
with Larry Peterson. For over 

five years, Jude worked as a core member of 
PlanetLab. He has received nearly $4 million 
in research grants, and his systems have been 
deployed across dozens of universities.  
jude@blockstack.com

Ryan Shea is the co-founder 
and CEO of Blockstack Labs. 
He graduated from Princeton 
University, where he studied 
computer science and 

mechanical and aerospace engineering. He 
was also an engineer at ZocDoc and President 
of the Princeton Entrepreneurship Club. Recent 
honors include a Forbes 30 under 30 award. 
ryan@blockstack.com

Michael J. Freedman is a 
Professor of Computer Science 
at Princeton University, with a 
research focus on distributed 
systems, networking, and 

security. Recent honors include a Presidential 
Early Career Award (PECASE) as well as early 
investigator awards through the NSF and 
ONR, a Sloan Fellowship, and DARPA CSSG 
membership. mfreed@cs.princeton.edu

Blockchains like Bitcoin and Ethereum have seen significant adop
tion in the past few years. Beyond their cryptocurrency uses, block
chains are being used to build new, decentralized versions of DNS 

and publickey infrastructure (PKI) that have no central points of trust. Such 
blockchainbased naming and PKI services can be used as a generalpurpose 
“trust layer” for Internet applications. We present the design of a new block
chainbased naming and storage system called Blockstack. Blockstack powers 
a production system for 60,000 users and is released as open source software.

Cryptocurrency blockchains and their respective P2P networks are useful beyond exchang
ing money. They provide cryptographically auditable, appendonly global logs that have a 
high computationalcost barrier for tampering with data written to them. Blockchains have 
no central points of trust or failure: they minimize the degree to which users/nodes need to 
trust a single party, such as a DNS root server or a root certificate authority.

Blockchain networks have attracted a lot of interest from enthusiasts, engineers, and inves
tors. In fact, $1.1 billion has been invested in blockchain startups over the past few years [5]. 
With this rapid capital infusion, infrastructure for blockchains is getting quickly deployed, 
and they are emerging as publicly available common infrastructure for building services and 
applications.

Blockchains are already being used to build new, decentralized versions of DNS (http:// 
namecoin.info) and publickey infrastructure (http://onename.com) that have no central 
points of trust. Such blockchainbased naming and PKI services can be used as a general
purpose “trust layer” for other distributed systems and applications. For example, an IoT 
node can be registered on a blockchain with a unique name and controlled by a cryptographic 
keypair binding, stored on the blockchain, with that name.

Blockchainbased naming systems securely bind names, which can be humanreadable, to 
arbitrary values. The blockchain gives consensus on the global state of the naming system 
and provides an appendonly global log for state changes. Writes to namevalue pairs can 
only be announced in new blocks, as appends to the global log. The global log is fully repli
cated (all nodes on the network see the same state) but organizationally decentralized (no 
central party controls the log).

The decentralized nature of blockchainbased naming introduces meaningful security 
benefits, but certain aspects of contemporary blockchains present technical limitations. 
Individual blockchain records are typically on the order of kilobytes [10] and cannot hold 
much data. The latency of creating and updating records is capped by the blockchain’s write 
propagation and leader election protocol, and it is typically on the order of 10–40 minutes 
[4]. The total number of new operations in each round is limited by the average bandwidth of 
the network’s nodes; for Bitcoin, the current average is ~1500 new operations per new round 
[5]. Further, new nodes need to independently audit the global log from its beginning: as the 
system makes forward progress, the time to bootstrap new nodes increases linearly.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 53

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

We believe that in spite of these scalability and performance 
challenges, blockchains provide important infrastructure for 
bootstrapping trust in distributed systems and building new 
decentralized services. The cost of tampering with blockchains 
grows with their adoption: today, it would require hundreds of 
millions of dollars to attack a large blockchain like Bitcoin [5].

These benefits motivated us to use blockchains to build a new 
global naming and storage system, called Blockstack [3]. Our 
system enables users to register unique, humanreadable user
names and associate publickeys, like PGP, along with additional 
data to these usernames. In this article, we present an overview 
of the design of Blockstack and discuss how it can be used as a 
generalpurpose “trust layer” for building other applications and 
services. Unlike previous blockchainbased systems, Blockstack 
separates its control and data plane considerations: it keeps only 
minimal metadata (namely, data hashes and state transitions) in 
the blockchain and uses external datastores for actual bulk stor
age. Blockstack enables fast bootstrapping of new nodes by using 
checkpointing and skip lists to limit the set of blocks that a new 
node must audit to get started.

Modifying production blockchains like Bitcoin (and introducing 
new functionality for which it was not designed) is quite dif
ficult, particularly since the system still needs to reach “consen
sus.” With Blockstack, we extend the singlestate machine model 
of blockchains to allow for arbitrary state machines without 
requiring consensusbreaking changes in the underlying block
chain. This design was nonintuitive before our work; indeed, 
the standard approach for the past three years was to fork the 
main Bitcoin blockchain to add new and different functionality. 
We have released Blockstack as open source (http://github.com/
blockstack).

Motivation and Background
We next describe the motivation for building naming systems 
that have no central point of trust and provide the relevant back
ground on blockchains. We use the term naming system to mean: 
(1) names are human-readable and can be picked by humans; (2) 
namevalue pairs have a strong sense of ownership—that is, they 
can be owned by cryptographic keypairs; and (3) there is no cen-
tral trusted party or point of failure. Building a naming system 
with these three properties was considered impossible accord
ing to Zooko’s Triangle (http://dankaminsky.com/2011/01/13/
spelunktri), and most traditional naming systems provide two 
out of these three properties [8]. Namecoin used a blockchain
based approach to provide the first naming system that offered 
all three properties: humanreadability, strong ownership, and 
decentralization.

Background on Blockchains
Blockchains provide a global appendonly log that is publicly 
writeable. Writes to the global log, called transactions, are orga
nized as blocks, and each block packages multiple transactions 
into a single atomic write. Writing to the global log requires a 
payment in the form of a transaction fee. Nodes participating in a 
blockchain network follow a leader election protocol for deciding 
which node gets to write the next block and collect the respec
tive transaction fees. Only one node gets to write a block in each 
leader election round. Not all nodes in the network participate in 
leader election. Those actively competing to become the leader 
of the next round are called miners. At the start of each round, 
all miners start working on a new computation problem, derived 
from the last block, and the miner that is the first to solve the 
problem gets to write the next block. In Bitcoin, the difficulty 
of these computation problems is automatically adjusted by 
the protocol so that one new block is produced roughly every 10 
minutes. See [4] for further details on how blockchains work and 
how they reach consensus.

Naming System on a Blockchain
The first blockchain to implement a naming system was 
Namecoin. It is one of the first forks of Bitcoin and is the old
est blockchain other than Bitcoin that is still operational. 
The main motivation for starting Namecoin was to create an 
alternate DNSlike system that replaces DNS root servers 
with a blockchain for mapping domain names to DNS records 
[8]. Given that blockchains don’t have central points of trust, a 
blockchainbased DNS is much harder to censor, and registered 
names cannot be seized from owners without getting access to 
their respective private keys [8]. Altering name registrations 
stored in a blockchain requires prohibitively high computing 
resources because rewriting blockchain data requires proof-of-
work [2]. Before our work, it was common practice to start new 
blockchains (by forking them from Bitcoin) to introduce new 
functionality and make modifications required by the respec
tive service/application, which is the precise approach taken by 
Namecoin.

Just like DNS, there is a cost associated with registering a 
new name. The name registration fee discourages people from 
registering a lot of names that they don’t actually intend to use. 
In Namecoin, the recipient of registration fees is a “black hole” 
cryptographic address from which money cannot be retrieved 
[8]. Namecoin defines a pricing function for how the cost of 
name registrations changes over time. Namecoin supports 
multiple namespaces (like TLDs in DNS), and the same rules for 
pricing and name expiration apply to all namespaces. By conven
tion, the d / namespace is used for domain names.



54   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

In Namecoin, name registration uses a twophase commit 
method where a user first pre-orders a name hash and then 
registers the namevalue pair by revealing the actual name and 
the associated value. This is done to avoid frontrunning uncon
firmed name registrations [8]. Name registrations expire after a 
fixed amount of time, measured in new blocks written (currently 
36,000 blocks, which translates to roughly eight months), and 
cannot be purchased for longer periods. Namecoin also supports 
updating the value associated with a name, as well as ownership 
transfers.

Our experience with the Namecoin blockchain shows that start
ing new, smaller blockchains leads to security problems (like 
reduced computational power needed to attack the network) 
and should be avoided when possible. We detailed our findings 
in a recent USENIX ATC paper [3]. Importantly, we discovered 
a critical security problem where a single miner consistently had 
more than 51% of the total compute power on the Namecoin net-
work (see Figure 1 for the Namecoin mining distribution for the 
month of August 2015, and see [4] for details on the 51% attack 
and compute power of miners). A 51% attack is one of the most 
serious attacks on a blockchain and impacts its security and 
decentralization properties. Other than Namecoin, blockchains 
like Ethereum [1] and BitShares (http://bitshares.org) also have 
support for humanreadable names (tied to their respective 
blockchains).

Design of Blockstack
Blockstack is designed to implement a naming system with 
humanreadable names in a layer above the blockchain. In this 
section, we describe how Blockstack uses the underlying block
chain and present how it copes with technical limitations of 
contemporary blockchains.

Challenges
Building systems with blockchains presents challenges:

◆◆ Limits on data storage: Individual blockchain records are 
typically on the order of kilobytes [10] and cannot hold much 
data. Moreover, the blockchain’s log structure implies that 
all state changes are recorded in the blockchain. All nodes 
participating in the network need to maintain a full copy of the 
blockchain, limiting the total size of blockchains to what cur
rent commodity hardware can support. As of May 2016, Bitcoin 
nodes need to dedicate 69 GB total disk space to blockchain 
data for staying synchronized with the network.

◆◆ Slow writes: The transaction processing rate is capped by the 
blockchain’s write propagation and leader election protocol, 
and it is pegged to the rate at which new blocks are announced 
by leader nodes (miners). New transactions can take several 
minutes to a few hours to be accepted.

◆◆ Limited bandwidth: The total number of transactions per 
block is limited by the block size of blockchains. To maintain 
fairness and to give all nodes a chance to become leader in the 
next round, all nodes should receive a newly announced block 
at roughly the same time. Therefore, the block size is typically 
limited by the average uplink bandwidth of nodes. For Bitcoin, 
the current block size is 1 MB (~1000 transactions).

◆◆ Endless ledger: The integrity of blockchains depends on the 
ability of anyone to audit them back to their first block. As the 
system makes forward progress and issues new blocks, the cost 
of an audit grows linearly with time. Thus, booting up new nodes 
becomes progressively more timeconsuming. We call this the 
endless ledger problem. As of May 2016, Bitcoin’s blockchain had 
~413,000 blocks, and new nodes take 1–3 days to download the 
blockchain from Bitcoin peers, verify it, and boot up.

Architecture Overview
Blockstack maintains a naming system as a separate logical 
layer on top of the underlying blockchain on which it operates. 
Blockstack uses the underlying blockchain to achieve consen
sus on the state of this naming system and bind names to data 
records. Specifically, it uses the underlying blockchain as a 
communication channel for announcing state changes, as any 
changes to the state of namevalue pairs can only be announced 
in new blockchain blocks. Relying on the consensus protocol of 
the underlying blockchain, Blockstack can provide a total order
ing for all operations supported by the naming system, like name 
registrations, updates, and transfers.

Separation of the Control and Data Plane: Blockstack decou
ples the security of name registration and name ownership from 
the availability of data associated with names by separating the 
control and data planes.

Figure 1: Mining distribution for Namecoin (Aug. ’15)



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 55

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

The control plane defines the protocol for registering human
readable names, creating (name,hash) bindings and mapping 
name ownership to cryptographic key pairs. The control plane 
consists of a blockchain and a logically separate layer on top, 
called a virtualchain.

The data plane is responsible for data storage and availability. It 
consists of (1) zone files for discovering data by hash or URL and 
(2) external storage systems for storing data (such as S3, IPFS 
[6], and Syndicate [7]). Data values are signed by the public keys 
of the respective name owners. Clients read data values from the 
data plane and verify their authenticity by checking that either 
the data’s hash is in the zone file, or the data includes a signature 
with the name owner’s public key.

We believe this separation is a significant improvement over 
Namecoin, which implements both the control and the data 
plane at the blockchain level. Our design not only significantly 
increases the data storage capacity of the system, but also allows 
each layer to evolve and improve independently of the other.

Agnostic of the Underlying Blockchain: The design of Block
stack does not put any limitations on which blockchain can be 
used with it. Any blockchain can be used, but the security and 
reliability properties are directly dependent on the underly
ing blockchain. We believe that the ability to migrate from one 
blockchain to another is an important design choice as it allows 

for the larger system to survive, even when the underlying 
blockchain is compromised. Currently, Blockstack core develop
ers decide which underlying blockchain(s) to support in which 
version of the software. Individual applications can decide to run 
the software version of their choice and keep their namespace on 
a particular blockchain, if they prefer not to migrate.

Ability to Construct State Machines: A key contribution of 
Blockstack is the introduction of a logically separate layer on top 
of a blockchain that can construct an arbitrary state machine 
after processing information from the underlying blockchain. 
This virtualchain treats transactions from the underlying 
blockchain as inputs to the state machine; valid inputs trigger 
state changes. At any given time, where time is defined logi
cally by the block number, the state machine can be in exactly 
one global state. Time moves forward as new blocks are written 
in the underlying blockchain, and the global state is updated 
correspondingly.

A virtualchain enables the introduction of new types of state 
machines, without requiring any changes to the underlying 
blockchain. This approach is especially beneficial for a new and 
developing technology. Introducing new state machines directly 
in a blockchain would otherwise require peers to upgrade, and 
upgrades potentially break consensus and cause forks. In prac
tice, they are difficult to orchestrate [4]. Currently, Blockstack 

Figure 2: Overview of Blockstack’s architecture. Blockchain records give (name, hash) mappings. Hashes are looked up in routing layer to discover routes to 
data. Data, signed by name owner’s public-key, is stored in cloud storage.



56   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

provides a state machine that represents the global state of a nam
ing system, including who owns a particular name and what data 
is associated with a name. Further, it’s possible to use the virtual
chain concept to define other types of state machines as well.

Blockstack Layers
Blockstack introduces new functionality on top of blockchains 
by defining a set of new operations that are otherwise not sup
ported by the blockchain. Blockstack has four layers, with two 
layers (blockchain and virtualchain) in the control plane and 
two layers (routing and data storage) in the data plane.

Layer 1: Blockchain Layer
The blockchain occupies the lowest tier (see Figure 2) and serves 
two purposes: it stores the sequence of Blockstack operations, 
and it provides consensus on the order in which the operations 
are written. Blockstack operations are encoded in transactions 
on the underlying blockchain.

Layer 2: Virtualchain Layer
Above the blockchain is a virtualchain, which defines new oper
ations without requiring changes to the underlying blockchain. 
Only Blockstack nodes are aware of this layer, and underlying 
blockchain nodes are agnostic to it. Blockstack operations are 
defined in the virtualchain layer and are encoded in valid block
chain transactions as additional metadata. Blockchain nodes 
do see the raw transactions, but the logic to process Blockstack 
operations only exists at the virtualchain level.

The rules for accepting or rejecting Blockstack operations are 
also defined in the virtualchain. Accepted operations—for 
example, a name registration operation on a name that has not 
been registered by anyone yet—are processed by the virtualchain 
to construct a database that stores information on the current 
global state of the system along with a history of previous states 
at earlier blockchain blocks.

Layer 3: Routing Layer
Blockstack separates the task of routing requests (i.e., how to dis
cover data) from the actual storage of data. This avoids the need for 
the system to adopt any particular storage service from the outset 
and instead allows multiple storage providers to coexist, including 
both commercial cloud storage and peertopeer systems.

Blockstack uses zone files for storing routing information, which 
are identical to DNS zone files in their format. Figure 3 shows 
an example zone file. The virtualchain binds names to their 
respective hash(zone file). While these bindings are stored in the 
control plane, the zone files themselves are stored in the routing 
layer. Users do not need to trust the routing layer; this is because, 
as long as the zone file data is available, the integrity of zone files 
can be verified by checking their hash from the control plane. 

Currently, all zone files are public and globally resolvable, and 
we plan to support private data linked to public zone files in the 
future.

In Blockstack’s current implementation, nodes form a DHT
based peer network [9] for storing zone files. The DHT (dis
tributed hash table) only stores zone files if their hash was 
previously announced in the blockchain. This effectively 
whitelists the data that can be stored in the DHT. Due to space 
constraints, we omit most details of our DHT storage from this 
article; the key aspect relevant to the design of Blockstack is 
that routes (irrespective of where they are fetched from) can be 
verified and therefore cannot be tampered with. Further, most 
production servers maintain a full copy of all zone files since the 
size of zone files is relatively small (4 KB per file). Keeping a full 
copy of routing data introduces only a marginal storage cost (24 
MB as of June 2016) on top of storing the blockchain data.

Layer 4: Storage Layer
The topmost layer is the storage layer, which hosts the actual 
data values of namevalue pairs. All stored data values are 
signed by the key of the respective owner of a name. By storing 
data values outside of the blockchain, Blockstack allows values 
of arbitrary size and allows for a variety of storage backends. 
Users do not need to trust the storage layer: as long as the zone file 
data is available, they can verify the integrity of the data values 
in the control plane.

There are two modes of using the storage layer, and they differ in 
how the integrity of data values is verified; Blockstack supports 
both storage modes simultaneously.

Mutable storage is the default mode of operation for the storage 
layer. The user’s zone file contains a URI record that points to 
the data, and the data is constructed to include a signature from 
the user’s private key. Writing the data involves signing and 
replicating the data (but not the zone file), and reading the data 
involves fetching the zone file and data, verifying that hash(zone 
file) matches the hash in Blockstack, and verifying the data’s 
signature with the user’s public key. This allows for writes to be 
as fast as the signature algorithm and underlying storage system 
allows, since updating the data does not alter the zone file and 
thus does not require any blockchain transactions. However, 
readers and writers must employ a data versioning scheme to 
avoid consuming stale data.

Figure 3: Example zone file



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 57

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

Immutable storage is similar to mutable storage, but addition
ally puts a TXT record in the zone file that contains hash(data). 
Readers verify data integrity by fetching the data and checking 
that hash(data) is in the zone file, in addition to verifying the 
data’s signature and the zone file’s authenticity. This mode is 
suitable for data values that don’t change often and where it’s 
important to verify that readers see the latest version of the data 
value. For immutable storage, updates to data values require a 
new transaction on the underlying blockchain (since the zone 
file must be modified to include the new hash), making data 
updates much slower than with mutable storage.

Naming System
Blockstack uses its four tiers to implement a complete naming 
system. Names are owned by cryptographic addresses of the 
underlying blockchain and their associated private keys (e.g., 
ECDSAbased private keys used in Bitcoin [4]). As with Name
coin, a user preorders and then registers a name in two steps in 
order to claim a name without revealing it to the world first and 
allowing an attacker to race the user in claiming the name. The 
first user to successfully write both a preorder and a register 
transaction is granted ownership of the name. Further, any 
previous preorders become invalid when a name is registered. 
Once a name is registered, a user can update the namevalue pair 
by sending an update transaction and uploading the new value 
to the storage layer, changing the namevalue binding. Name 
transfer operations simply change the address that is allowed to 
sign subsequent transactions, while revoke operations disable 
any further operations for names.

The naming system is implemented by defining a state machine 
and rules for state transitions in the virtualchain. Names are 
organized into namespaces, which are the functional equivalent 
of toplevel domains in DNS—they define the costs and renewal 
rates of names. Like names, namespaces must be preordered 
and then registered. Expired names can be reregistered, and 
names can be revoked such that they cannot be reregistered for 
a certain period of time.

Pricing Functions for Namespaces
Anyone can create a namespace or register names in a 
namespace since there is no central party to stop someone from 
doing so. Pricing functions define how expensive it is to create a 
namespace or to register names in a namespace. Defining intel

ligent pricing functions is a way to prevent “land grabs” and stop 
people from registering a lot of namespaces or names that they 
don’t intend to actually use. Blockstack enables people to create 
namespaces with sophisticated pricing functions. For example, 
we use the .id namespace for our PKI system and created the .id 
namespace with a pricing function where (1) the price of a name 
drops with an increase in name length and (2) introducing non
alphabetic characters in names also drops the price. With this 
pricing function, the price of john.id > johnadam.id > john0001.id. 
The function is generally inspired by the observation that short 
names with alphabetic characters only are considered more 
desirable on namespaces like the one for Twitter usernames. 
It’s possible to create namespaces where name registrations are 
free as well. Further, we expect that in the future there will be 
a reseller market for names, just as there is for DNS. A detailed 
discussion of pricing functions is beyond the scope of this 
article, and the reader is encouraged to see [8] for more details on 
pricing functions.

Like names, namespaces also have a pricing function [3]. To 
start the first namespace on Blockstack, the .id namespace, we 
paid $10,000 in bitcoins to the network. This shows that even the 
developers of this decentralized system have to follow Blockstack 
rules and pay appropriate fees.

Conclusion
We have presented Blockstack, a blockchainbased naming and 
storage system that can be used as a generalpurpose “trust 
layer” for building other service and applications without relying 
on any third parties. Blockstack introduces separate control and 
data planes and, by doing so, enables the introduction of new 
functionality without modifying the underlying blockchain. 
This is counter to prior designs, which typically involved the 
introduction of a new blockchain and cryptocurrency in order to 
introduce new functionality.

The design of Blockstack was informed by a year of production 
experience from one of the largest blockchainbased produc
tion systems to date. We have introduced several innovations 
for blockchain services, including the ability to do crosschain 
migrations, faster bootstrapping of new nodes, and keeping data 
updates off the slow blockchain network. These improvements 
all make it easier to build new decentralized services using 
existing, publicly available blockchain infrastructure.



58   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SECURITY
Bootstrapping Trust in Distributed Systems with Blockchains

References
[1] Ethereum Wiki, “A NextGeneration Smart Contract and 
Decentralized Application Platform,” 2016: https://github.com 
/ethereum/wiki/wiki/WhitePaper.

[2] A. Back, “Hashcash—A Denial of Service CounterMeasure,” 
Tech Report, 2002: http://www.hashcash.org/papers/hashcash 
.pdf.

[3] M. Ali, J. Nelson, R. Shea, and M. Freedman, “Blockstack: A 
Global Naming and Storage System Secured by Blockchains,” in 
Proceedings of the 2016 USENIX Annual Technical Conference 
(ATC ’16), June 2016.

[4] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and 
E. W. Felten, “Sok: Research Perspectives and Challenges for 
Bitcoin and Cryptocurrencies,” in 2015 IEEE Symposium on 
Security and Privacy (SP 2015), pp. 104–121.

[5] CoinDesk, “State of Blockchain Q1 2016: Blockchair Fund
ing Overtakes Bitcoin,” May 2016: http://www.coindesk.com 
/stateofblockchainq12016/.

[6] J. Benet, “IPFS—Content Addressed, Versioned, P2P File 
System,” Draft, ipfs.io, 2015: https://github.com/ipfs/papers.

[7] J. Nelson and L. Peterson, “Syndicate: Virtual Cloud Storage 
through Provider Composition,” in Proceedings of the 2014 ACM 
HPDC International Workshop on Software-Defined Ecosystems 
(BigSystem ’14).

[8] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. 
Narayanan, “An Empirical Study of Namecoin and Lessons for 
Decentralized Namespace Design,” in Proceedings of the 14th 
Workshop on the Economics of Information Security (WEIS ’15), 
June 2015.

[9] P. Maymounkov and D. Mazières, “Kademlia: A Peerto
Peer Information System Based on the Xor Metric,” in Revised 
Papers from IPTPS (IPTPS ’01), 2002, pp. 53–65.

[10] S. Nakamoto, “Bitcoin: A PeerToPeer Electronic Cash 
System,” Tech Report, 2009: https://bitcoin.org/bitcoin.pdf.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 59

SECURITY

Practical Threat Modeling
B R U C E  P O T T E R

Threat modeling is a key component to modernday cybersecurity risk 
management, but the processes of creating a threat model can be 
complex and overwhelming. By understanding the components that 

make up statements of threat, such as threat actors, assets, and malicious 
actions, we can turn threat modeling into a management process that can be 
performed by a variety of practitioners. With some practice and awareness 
of your enterprise, you can start creating threat models that will have a large 
impact on the quality of your risk management decisions.

Information security is really all about risk management. Building provably secure systems 
is cost prohibitive and serves as a barrier to innovation. Most modernday systems not only 
operate in a constantly changing environment but are incredibly complex and diverse collec
tions of hardware and software with many interfaces and numerous use cases.

Rather than secure all parts of a system equally, we must invest our time and resources wisely 
to secure a system in the places that actually matter. The idea of addressing the areas of high
est concern first is really the core concept behind risk management. Without understanding 
the risk to the system, we might as well roll dice to determine what to focus our efforts on.

Why Is Threat Modeling Important?
There are several ways to think about risk. While distilling risk down to a simple equation 
has some dangers associated with it, the core concepts behind a risk equation are a useful foil 
to discuss risk. For our purposes, assume understanding a risk follows the equation below:

Risk = ((Threat x Vulnerability) / Countermeasure) x Impact

Understanding each of the values that go into this equation is its own discipline. For 
instance, to understand vulnerabilities in a system, you might employ product evaluators 
or penetration testers who will examine your system from top to bottom to find security 
vulnerabilities and document them. To understand countermeasures, you could perform a 
security control audit to find out where all your security controls are, if they are configured 
correctly, and how effective they are. Finally, to examine impact, you might meet with 
various business managers within your organization to better understand how critical each 
system is and the overall value to the business.

Understanding the threat has been a more elusive problem. The concept of threat feels like 
it has more basis in intelligence gathering than technical analysis. The idea of someone in 
an organized crime ring sitting in a dark room halfway across the world writing custom 
malware targeting your Web site sounds like something out of a spy movie. But understand
ing the threats facing your systems doesn’t require you to hire a security intelligence service 
and go deep underground to find all the organizations wishing to do you harm.

Threat modeling is a process that is used to develop and rank specific threats against your 
system. The resulting threat model is a document with a similar audience as a technical risk 
or vulnerability assessment. The threat model can be used by developers to understand what 

Bruce Potter, CTO of the 
KEYW Corporation, has 
over 20 years of experience 
focused on tackling high-end 
information security research 

and engineering problems. During his career, 
Bruce has built and led teams focused on 
hard problems in information security such 
as cybersecurity risk analysis, high assurance 
system and network engineering, advanced 
software analysis techniques, wireless security, 
and IT operations best practices. Bruce is 
also the founder of The Shmoo Group, a 
nonprofit think tank comprising security, 
privacy, and crypto professionals who donate 
time to information security research and 
development. Bruce assists in the organization 
of ShmooCon, an annual computer security 
conference in Washington, D.C. Bruce has 
authored many publications and has delivered 
numerous presentations at various security 
and network conferences and private events, 
including DefCon, BlackHat USA, ShmooCon, 
the United States Military Academy, Johns 
Hopkins University, and the Library of 
Congress. bpotter@keywcorp.com



60   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SECURITY
Practical Threat Modeling

attackers might try to do to the system when they are determin
ing how to code defensively. The threat model can be used by 
system and network operators to help determine what network 
controls should be put in place based on potential adversarial 
actors. The model can even be used by management to assist in 
understanding the threat landscape and adjust development and 
IT spend.

The process of threat modeling can be very complex. Microsoft, 
as part of its well documented and publicly available security 
development life cycle, published a book [1] that documents 
their threat modeling process. Adam Shostack’s Threat Model-
ing: Designing for Security puts forth a great process for threat 
modeling in the development process. The book is comprehen
sive and can be applied in structured development environ
ments. However, the process described in Threat Modeling can 
be very heavyweight, especially in lean or understaffed develop
ment environments. And the process is very difficult to modify 
for suitability for use for nondevelopers. The threat modeling 
process put forth in this article has been influenced by a number 
of sources, including Threat Modeling. However, I have created 
this process to be useful and applicable to a broad audience of 
practitioners, not just system developers.

All that said, what exactly is a threat?

The Syntax of a Threat
In the context of threat modeling, I’ve found it is useful to think 
about threats using a very specific syntax:

$ACTOR does $ACTION to $ASSET for $OUTCOME because 
$MOTIVATION

A threat model is a collection of threat statements that follow 
this basic syntax listed in ranked order. In order to create a 
specific threat in a threat model, we must have specific knowl
edge about an instance of each variable. The process of creat
ing a threat model involves identifying interesting values for 
each variable and determining which are important to your 
organization.

The first three variables ($actor, $action, and $asset) are some
what selfexplanatory and will be covered later in this article. 
The outcome is critically important to each threat. There are 
many actions that an adversary could take involving your 
system. However, if the action results in no bad outcome, there 
is no consequence to the action. For instance, if an attacker can 
anonymously log in to your FTP server but the only data on the 
server is public data, then there’s no bad outcome. In fact, your 
adversary is acting with the same privilege and access as your 
regular users. Anonymous FTP access to your FTP server in 
this case is not a threat action.

The last variable, motivation, is somewhat optional. The motiva
tion of an adversary is not necessarily of interest to every organi
zation. Some organizations are interested in what is motivating 
their attackers and use that information to develop deterrence 
strategies. Other organizations do not have as robust an under
standing of adversaries and only care about the outcome, not the 
motivation. As you go through this process, you will get a sense 
of what you and your organization cares about and can decide 
whether capturing the attacker’s motivation is important to you.

Threat Actors
While there are specific bad actors in the world that may wish to 
harm your systems, you don’t necessarily need to identify them 
by name. Rather, thinking of threat actors in broad categories 
helps you understand motivations and resourcing and how that 
would impact what they can and would do. The following five 
major threat actor categories are a useful starting point for you 
to develop an understanding of threat actors and the role they 
will have in your model.

Nation State
Nation state actors are very well resourced and may maintain 
operations for months or even years. These actors are motivated 
by national interests such as intelligence gathering, military 
action, critical infrastructure control, and industrial espionage. 
Nation states are generally very difficult to defend against.

Organized Crime
Organized crime actors are moderately well resourced with 
operations that may last for months. These actors are generally 
motivated by financial gain or access to information that can 
lead to financial gain such as personal information or credit card 
data. Due to the focused nature of organized crime, they can be 
very difficult to defend against, although the information they 
are interested in is often more limited than that of nation states.

Insiders
Insiders are as well resourced as you let them be. Insiders will 
utilize whatever access is available to accomplish their objective. 
Given the state of internal security of most organizations, insid
ers are far overaccessed and can cause great harm. Motivation 
for insiders can range from ideological issues to profit to revenge. 
Insiders are difficult to defend against as they may dedicate 
their lives to pursuing their objective.

Hacktivists
Hacktivists have limited resources and run operations that last 
weeks to months. They are generally motivated by ideological 
issues and target organizations very specifically. Hacktivists 
often publicly discuss their objectives and hide behind anonymity 
services such as Tor. Organizations with wellrun IT operations 



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 61

SECURITY
Practical Threat Modeling

can often defend against hacktivists, although social engineering 
can be the Achilles heel of enterprises under hacktivist attack.

Script Kiddies
Script kiddies have very limited resources. These adversaries 
are often motivated by curiosity and simple malicious intent. 
Their tooling often only consists of publicly available tools, 
hence the “script kiddie” moniker. These attackers will look for 
targets of opportunity and can be defended against using normal 
IT security best practices.

Others
As you work through several threat models, you may find that 
you identify specific threat actors that are unique to your orga
nization. Maybe you have been targeted by an organized crime 
group in the past with particular interest in your company. Or 
maybe Bob from Accounting seems like he might be up to no 
good. Whatever the reason, feel free to add to the list of threat 
actors as your models evolve. However, be cautious of creating 
too many specific actors; if their resourcing and motivations  
are similar, there’s little utility in splitting out multiple actors.

System Representation
The first step in the threat modeling process is to create a sys
tem representation. In Microsoft’s process, the system is rep
resented formally through Data Flow Diagrams (DFD). These 
DFDs capture all interfaces, assets, and data f lows through 
very specific iconography. While Microsoft DFDs are in some 
contexts a universal language, they are also timeconsuming to 
create and at such a low level to not be useful to nondevelopers.

Rather than completely decomposing the system you are threat 
modeling, capture the system in a manner that is convenient for 
you and your team. These might be network diagrams, system 
architectures, or even basic scribbling on a whiteboard. What’s 
important in capturing the representation is that it captures the 
assets and capabilities you are trying to protect. For instance, if 
you are threat modeling a CRM (customer relationship manage
ment) solution, your system representation should include your 
sales force, the types of systems they use to access the solution, 
transport and storage mechanisms, the CRM servers them
selves, and any external data sources. Whether the servers are 
circles or squares really doesn’t matter; what does matter is that 
all the components of the system are represented. Ultimately, 
these diagrams capture all the $assets that you will use to create 
the threat model.

Brainstorming
The real meat of the threat modeling process is brainstorming. 
This is the part of the process that requires a little bit of creativ
ity and security knowledge. Start with an asset represented in 
your system representation. Pick a threat actor and then think 

of the bad things the attacker may do to that asset and how that 
would affect your organization. Write down that threat in the 
syntax described above, and then think of another bad thing that 
threat actor could do…and another…and another. Write down 
ideas for that threat actor until you’ve run out of ideas, then go to 
another threat actor.

It may seem like you could just write a program that does some
thing like

Foreach (ASSET) 
               Foreach (ACTOR) 
                              Foreach (ACTION) 
                                             Print “$ACTOR does $ACTION to $ASSET

and BOOM you’d have a threat model. While this is true, in real
ity the number of threats you would come up with is astronomi
cal. This is where common sense comes in to play. The idea of a 
script kiddie launching a highly sophisticated attack involving 
a large amount of resources is nonsensical. Similarly, there are 
numerous attacks a nation state wouldn’t carry out because 
they aren’t motivated to, such as defacements and social media 
attacks. There are several techniques you can use to help target 
your threat statements.

Use Your Knowledge
Only write down threats that you think are real issues. There’s 
a great deal of knowledge of contemporary attack techniques 
and motivations. Based on the line of work that your business is 
engaged in, the specifics of your assets, and the capabilities of 
various threat actors, use your knowledge of security and attacks 
to capture threats that make sense. For instance, if you run a 
large retail operation: we know that in the attack against Target 
and other institutions, attackers went after the pointofsale 
terminals. Therefore, when thinking of threats against pointof
sale systems, a threat like this is appropriate:

◆◆ Organized crime group places RAM scraper on pointofsale 
terminals in order to steal mag stripe data to facilitate fraud

You’ll note that this threat adheres to our threat syntax

◆◆ Organized crime group ($actor) uses physical access to place 
RAM scraper ($action) on pointofsale terminals ($asset) in 
order to steal mag stripe data ($outcome) to facilitate fraud 
($motivation)

This threat is contemporary and is likely of high concern to 
retail organizations.

A Threat Is Specific as It Needs to Be
Sometimes a threat does not need all the syntactical parts in 
order to be useful. Take potential threats against a network 
router. As we brainstorm what different threat actors would do, 
we might find that we end up with a list of threats such as these:



62   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

SECURITY
Practical Threat Modeling

◆◆ Nation state performs denial of service on router to stop all 
access to internal services from Internet

◆◆ Organized crime performs denial of service on router to stop 
all access to internal services from Internet

◆◆ Insider performs denial of service on router to stop all access 
to internal services from Internet

Note that multiple threat actors may do the exact same action to 
your router. While the motivation may be different, the actual 
attack is the same. Unless you are really worried about the moti
vation, you can distill these three threats into one:

◆◆ Networkbased denial of service against router stops all access 
to internal services from Internet

This threat is still actionable even though a specific threat actor 
is not represented.

Taking a Break
Brainstorming threats is tough work. It can be difficult to be cre
ative in developing a long list of threats during the early stages. 
Work your way through all the components in the system repre
sentation in the first pass, then take a break. Go do something 
else, take a walk, drink a beer, or just go home for the day. What
ever you need to do to get away from creating threats, do it. From 
our experience, taking three or four cycles on adding threats to 
the list is when we hit the point of diminishing returns. After 
several sessions of listing threats, you’ve generally run through 
all the knowledge you have of a system and likely attack scenar
ios. Any more sessions will have very little impact on the quality 
of the resulting model.

Cutting Down the List
After several brainstorming sessions, you should have a list of 
between 50 and 200 threats, depending on the size of the system 
under analysis and the types of interfaces it has. A list that big 
is unusable. To be practical, a threat model should consist of 
between five and 20 topline threats. These threats are the top 
threats the system faces and can be kept in your head as you 
build and operate the system. Twenty threats can be printed on  
a single piece of paper and taped on the office wall of every devel
oper and operator in an organization to remind them of what 
they’re defending against.

The first thing to do is to look through the list for threats that 
are just not realistic. In the process of brainstorming, we should 
allow ourselves creative license to dream and imagine all man
ner of bad actions an adversary might take. That process can 
sometimes lead us to strange places and result in threats that 
are really just nonsense. Remove these threats from the list. 
Mechanically, this doesn’t mean deleting them. Rather, put 
them somewhere else. As you threat model more and more sys
tems, having a list of threats to look back on to jar your memory 

is important. So never delete threats, just move them to a differ
ent document or tab.

The next thing to do with the list is to order by variables (actor, 
action, asset, etc.) to see if there is a way to distill  multiple 
threats into a single threat using the idea that a “threat is as 
 specific as it needs to be.” If there are numerous threats that  
look like basically the same thing, spend time deciding whether 
they really are different or whether they have the same im pli
cation on the enterprise and can be condensed into some
thing similar.

Finally, once you have nonsense threats removed and similar 
threats condensed, you can start sorting through the threats 
and ranking them. Ranking does not need to be a formal process; 
rather, you can use the basic calculus of the risk equation at the 
beginning of this article to think about what countermeasures  
you have in place, what the impact of the attack would be, and 
how likely the threat actor is to carry out the attack. Take your 
time and play around with the ordering until you think it’s correct.

Once the threats are in order, look for a “cut line.” Find a place 
in the list where threats above the list are likely to be important 
to developers and operators in your organization and below 
where folks are unlikely to care. There is no right size for the list 
of threats above the cut line, but generally the list of important 
threats should fit on a single piece of paper (printing in 6point 
font doesn’t count). Once you have found your cut line, take those 
threats, print them out, and tape them to your wall. Congratula
tions, you have made your first threat model!

Using the Threat Model
Now what? Unlike a risk assessment or vulnerability assess
ment, threat models tend to change slowly over time. As vulner
abilities are patched, a vulnerability assessment loses its utility. 
Vulnerability assessments may have a useful life of a few weeks. 
Risk assessments, which tend to focus on higherlevel issues, 
may have a lifetime of a few months. Threat models can often 
live on for a year or two without any changes. Threats to an 
organization change slowly over time as economic and political 
systems evolve. After a year, you should reexamine your threat 
model to determine whether it needs updating; if your organiza
tion’s situation is generally the same as it was, you can let it ride.

The threat model should be presented to developers and opera
tors throughout your organization. Developers can use the model 
to help them write more defensible code. Operators can use the 
model to help implement and configure better security controls. 
The threat model can serve as the foundation of future risk 
assessments and help penetration testers understand what you 
are really concerned about. The threat model is a foundational 
piece of a riskbased approach to cybersecurity.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 63

SECURITY
Practical Threat Modeling

Threat modeling is still an art form. It is an important part of 
any cybersecurity program, but performing threat modeling is 
not a well understood process. The process and ideas put forth 
here are guidelines; they are not meant to be the hard and fast 
method you must use to create a threat model. Rather, they are a 
starting point. As you work through the process a few times, you 
will find ways to optimize and customize it to have more utility 
for you and your organization. Use these customizations to cre
ate even better and more relevant threat models to help secure 
your systems. Further, share your improvements with those 
around you so that we can all learn as we advance the discipline 
of threat modeling.

Reference
[1] A. Shostack, Threat Modeling: Designing for Security 
(Wiley, 2014).



64   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
Network programming has been a part of Python since its earliest 

days. Not only are there a wide variety of standard library modules 
ranging from lowlevel socket programming to various aspects of 

Web programming, there are a large number of thirdparty packages that 
simplify various tasks or provide different kinds of I/O models. As the net
work evolves and new standards emerge, though, one can’t help but  wonder 
whether the existing set of networking libraries are up to the task. For 
example, if you start to look at technologies such as websockets, HTTP/2, or 
coroutines, the whole picture starts to get rather fuzzy. Is there any room for 
innovation in this space? Or must one be resigned to legacy approaches from 
its past. In this article, I spend some time exploring some projects that are at 
the edge of Python networking. This includes my own Curio project as well 
as some protocol implementation libraries, including hyperh2 and h11.

Introduction
For the past year, I’ve been working on a side project, Curio, that implements asynchronous 
I/O in Python using coroutines and the newfangled async and await syntax added in Python 
3.5 [1]. Curio allows you to write lowlevel network servers almost exactly like you would 
with threads. Here is an example of a simple TCP Echo server:

from curio import run, spawn

from curio.socket import *

async def echo_server(address):

    sock = socket(AF_INET, SOCK_STREAM)

    sock.setsockopt(SOL_SOCKET, SO_REUSEADDR, True)

    sock.bind(address)

    sock.listen(1)

    while True:

        client, addr = await sock.accept()

        print(‘Connection from’, addr)

        await spawn(echo_handler(client))

async def echo_handler(client):

    async with client:

        while True:

            data = await client.recv(100000)

            if not data:

                break

            await client.sendall(data)

    print(‘Connection closed’)

if __name__ == ‘__main__’:

    run(echo_server((‘’,25000)))

David Beazley is an open 
source developer and author of 
the Python Essential Reference 
(4th Edition, Addison-Wesley, 
2009). He is also known as the 

creator of Swig (http://www.swig.org) and 
Python Lex-Yacc (http://www.dabeaz.com 
/ply.html). Beazley is based in Chicago, where 
he also teaches a variety of Python courses. 
dave@dabeaz.com

The Networks of Reinvention
D A V I D  B E A Z L E Y



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 65

COLUMNS
The Networks of Reinvention

If you haven’t been looking at Python 3 recently, there is a certain 
risk that this example will shatter your head. Functions defined 
with async are coroutines. Coroutines can be called from other 
coroutines using the special await qualifier. Admittedly, it looks 
a little funny, but if you run the above code, you’ll find that it has 
no problem serving up thousands of concurrent connections 
even though threads are nowhere to be found. You’ll also find 
it to be rather fast. This article isn’t about the details of my pet 
project though.

Here’s the real issue—even though I’ve written an experimental 
networking library, where do I take it from here? Most develop
ers don’t want to program directly with sockets. They want to 
use higherlevel protocols such as HTTP. However, how do I 
support that? Because of the use of coroutines, async, and await, 
none of Python’s standard libraries are going to work (coroutines 
are “allin”—to use them they must be used everywhere). I could 
look at code in thirdparty libraries such as Twisted, Tornado, 
or Gevent, but they each implement HTTP in their own way 
that can’t be applied to my problem in isolation. I’m left with few 
choices except to reimplement HTTP from scratch—and that’s 
probably the last thing the world needs. Another custom imple
mentation of HTTP, that is. 

It turns out that other developers in the Python world have been 
pondering such problems. For example, how are all of the differ
ent networking libraries and frameworks going to go about sup
porting the new HTTP/2 protocol? There is no support for this in 
the standard library, and the protocol itself is significantly more 
complicated than HTTP/1.1. Is every library going to reimple
ment the protocol from scratch? If so, how many thousands of 
hours are going to be wasted sorting out all of the bugs and weird 
corner cases? How many developers even understand HTTP/2 
well enough to do it? I am not one of those developers.

At PyCon 2016, Cory Benfield gave a talk, “Building Proto
col Libraries the Right Way,” in which he outlined the central 
problem with I/O libraries [2]. In a nutshell, these libraries mix 
I/O and protocol parsing together in a way that makes it nearly 
impossible for anyone to reuse code. As a result, everyone ends 
up reinventing the wheel. It causes a lot of problems as everyone 
makes the same mistakes, and there is little opportunity to reap 
the rewards of having a shared effort. To break out of that cycle, 
an alternative approach is to decouple protocol parsing entirely 
from I/O. Cory has done just that with the hyperh2 project for 
HTTP/2 [3]. Nathaniel Smith, inspired by the idea, has taken a 
similar approach for the h11 library, which provides a standalone 
HTTP/1.1 protocol implementation [4].

The idea of decoupling network protocols from I/O is interest
ing. It’s something that could have huge benefits for Python 
development down the road. However, it’s also pretty experimen
tal. Given the experimental nature of my own Curio project, I 

thought it might be interesting to put some of these ideas about 
protocols to the test to see whether they can work in practice. 
Admittedly, this is a bit selfserving, but Curio has the distinct 
advantage of being incompatible with everything. There is no 
other option than going it alone—so maybe these protocol librar
ies can make life a whole heck of a lot easier. Let’s find out. 

Reinventing Requests
As a test, my end goal is to reinvent a tiny portion of the popular 
requests library so that it works with coroutines [5]. Requests 
is a great way to fetch data from the Web, but it only works in a 
purely synchronous manner. For example, if I wanted to down
load a Web page, I’d do this: 

>>> import requests

>>> r = requests.get(‘https://httpbin.org’)

>>> r.status_code

200

>>> r.headers

{‘connection’: ‘keep-alive’, ‘content-type’: ‘text/html; 

charset=utf-8’, ‘access-control-allow-origin’: ‘*’, 

‘access-control-allow-credentials’: ‘true’, 

 ‘server’: ‘nginx’, ‘content-length’: ‘12150’, 

  ‘date’: ‘Tue, 28 Jun 2016 14:58:04 GMT’}

>>> r.content

b’<!DOCTYPE html>\n<html>\n<head>\n  ...’

>>>

Under the covers, requests uses the urllib3 library for HTTP 
handling [6]. To adapt requests to coroutines, one approach 
might be to port it and urllib3 to coroutines—a task that would 
involve identifying and changing every line of code related to 
I/O. It’s probably not an impossible task, but it would require a lot 
of work. Let’s not do that. 

Understanding the Problem
The core of the problem is that existing I/O libraries mix proto
col parsing and I/O together. For example, if I wanted to estab
lish an HTTP client connection, I could certainly use the builtin 
http.client library like this: 

>>> import http.client

>>> c = http.client.HTTPConnection(‘httpbin.org’)

>>> c.request(‘GET’, ‘/’)

>>> r = c.getresponse()

>>> r.status

200

>>> data = r.read()

>>>

However, this code performs both the task of managing the pro
tocol and the underlying socket I/O. There is no way to replace 
the I/O with something different or to extract just the code 
related to the protocol itself. I’m stuck. 



66   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
The Networks of Reinvention

Using a Protocol Parser
Let’s look at the problem in a different way using the h11 module. 
First, you’ll want to install h11 directly from its GitHub page 
[4]. h11 is an HTTP/1.1 protocol parser. It performs no I/O itself. 
Let’s play with it to see what this means:

>>> import h11

>>> conn = h11.Connection(our_role=h11.CLIENT)

>>>

At first glance, this is going to look odd. We created a “Connec
tion,” but there is none of the usual networkrelated flavor to it. 
No host name. No port number. What exactly is this connected 
to? As it turns out, it’s not “connected” to anything. Instead, it 
is an abstract representation of an HTTP/1.1 connection. Let’s 
make a request on the connection: 

>>> request = h11.Request(method=’GET’, target=’/’, 

headers=[(‘Host’, ‘httpbin.org’)])

>>> bytes_to_send = conn.send(request)

>>> bytes_to_send

b’GET / HTTP/1.1\r\nhost: httpbin.org\r\n\r\n’

>>> 

Notice that the send() method of the connection returned a byte 
string? These are the bytes that need to be sent someplace. To do 
that, you are on your own. For example, you could create a socket 
and do it manually:

>>> from socket import *

>>> sock = socket(AF_INET, SOCK_STREAM)

>>> sock.connect((‘httpbin.org’, 80))

>>> sock.sendall(bytes_to_send)

>>>  # Send end of message to mark the end of the request

>>> sock.sendall(conn.send(h11.EndOfMessage()))

>>>

Upon sending the request over a socket, the server will respond. 
Let’s read a tiny fragment of the response:

>>> data = sock.recv(10)    # Read 10 bytes

>>> data

b’HTTP/1.1 2’

>>>

This is just a fragment of what’s being sent to us, but let’s feed it 
into the HTTP/1.1 connection object and see how it responds:

>>> conn.receive_data(data)

>>> conn.next_event()

NEED_DATA

>>>

The receive_data() call feeds incoming data to the connection. 
After you do that, the next_event() call will tell you more about 

what has been received. In this case, the NEED_DATA response 
means that incomplete data has been received (the connection 
has not received a full response). You have to read more data. 
Let’s do that. 

>>> data = sock.recv(1000)

>>> conn.receive_data(data)

>>> conn.next_event()

Response(status_code=200, headers=[(b’server’, b’nginx’), 

(b’date’, b’Tue, 28 Jun 2016 15:31:50 GMT’), 

(b’content-type’, b’text/html; charset=utf-8’), 

(b’content-length’, b’12150’), (b’connection’, b’keep-alive’), 

(b’access-control-allow-origin’, b’*’), 

(b’access-control-allow-credentials’, b’true’)], http 

_version=b’1.1’)

>>>

Aha! Now we see the response and some headers. There is a 
very important but subtle aspect to all of this. When using the 
protocol library, you just feed it byte fragments without worrying 
about lowlevel details (e.g., splitting into lines, worrying about 
the header size, etc.). It just works. If more data is needed, the 
library lets you know with the NEED_DATA event. 

After getting the basic response, you can move on to reading 
data. To do that, call conn.next_event() again. 

>>> conn.next_event()

Data(data=bytearray(b”<!DOCTYPE html>\n<html>\n<head>\n...”)

>>>

This is a block of data found in the last read of the underlying 
sock. You can continue to call conn.receive_data() and conn.

next_event() to process the entire stream. 

>>> conn.next_event()

NEED_DATA

>>> data = sock.recv(100000)     # Get more data

>>> conn.receive_data(data)

>>> conn.next_event()

Data(data=bytearray(b’p h3+pre {margin-top:5px}\n .mp img ...’)

>>> conn.next_event()

EndOfMessage(headers=[])

>>>

The EndOfMessage event means that the end of the received 
data has been reached. At this point, you’re done. You’ve made a 
request and completely read the response. 

The really critical part of this example is that the HTTP/1.1 
protocol handling is completely decoupled from the underlying 
socket. Yes, bytes are sent and received on the socket, but none 
of that is mixed up with protocol handling. This means that you 
can make the I/O as crazy as you want to make it.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 67

COLUMNS
The Networks of Reinvention

A More Advanced Example: HTTP/2
The hyperh2 library implements a similar idea as the previous 
example, but for the HTTP/2 protocol [3]. HTTP/2 is a much 
more complicated beast, but here is an example of what it looks 
like to drive it with h2. This program makes a request to https://

http2bin.org and prints out the events that are returned.

from socket import *

import ssl

# Establish a socket connection with TLS

sock = socket(AF_INET, SOCK_STREAM)

sock.connect((‘http2bin.org’, 443))

ssl_context = ssl.create_default_context()

sock = ssl_context.wrap_socket(sock, server_hostname=

 ‘http2bin.org’)

# Create HTTP/2 connection

import h2.connection

import h2.events

conn = h2.connection.H2Connection(client_side=True)

conn.initiate_connection()

sock.sendall(conn.data_to_send())

# Get the response to the initial connection request

data = sock.recv(10000)

events = conn.receive_data(data)

for evt in events:

    print(evt)

# Send out a request 

request_headers = [ 

    (‘:method’, ‘GET’),

    (‘:authority’, ‘http2bin.org’),

    (‘:scheme’, ‘https’),

    (‘:path’, ‘/’)

]

conn.send_headers(1, request_headers, end_stream=True)

sock.sendall(conn.data_to_send())

# Read all responses until stream is ended

done = False

while not done:

    data = sock.recv(100000)

    events = conn.receive_data(data)

    for evt in events:

        print(evt)

        if isinstance(evt, h2.events.StreamEnded):

            done = True

If you run this, you should get output like this:

<RemoteSettingsChanged changed_settings:{3: 

ChangedSetting(setting=3, 

original_value=None, new_value=100), 

4: ChangedSetting(setting=4, original_value=65535, 

new_value=16777216)}> 

<SettingsAcknowledged changed_settings:{}> 

<ResponseReceived stream_id:1, headers:[(‘:status’, ‘200’),

(‘server’, ‘h2o/1.7.0’), 

(‘date’, ‘Tue, 28 Jun 2016 16:12:48 GMT’), (‘content-type’, 

‘text/html; charset=utf-8’), 

(‘access-control-allow-origin’, ‘*’), 

(‘access-control-allow-credentials’, ‘true’), 

(‘x-clacks-overhead’, ‘GNU Terry Pratchett’), 

(‘content-length’, ‘11729’)]>

<DataReceived stream_id:1, flow_controlled_length:11729, 

data:3c21444f43545950452068746d6c3e0a3c68746d>

<StreamEnded stream_id:1>

This probably looks fairly lowlevel, but the key part of it is that 
all of the protocol handling and the underlying I/O are decou
pled. There is a TLS socket on which lowlevel sendall() and 
recv() operations are performed. However, all interpretation of 
the data is performed by the H2Connection instance. I don’t have 
to worry about the precise nature of those details.

Putting It All Together
Looking at the previous two examples, you might wonder who 
these libraries are for? Yes, they handle lowlevel protocol 
details, but they provide none of the convenience of higher
level libraries. In the big picture, the main beneficiaries are the 
authors of I/O libraries, such as myself. To see how this might 
work, here is barebones implementation of a requestslike clone 
using coroutines and Curio: 

# example.py

from urllib.parse import urlparse

import socket

import curio

import h11

class Response(object):

    def __init__(self, url, status_code, headers, conn, sock):

        self.url = url

        self.status_code = status_code

        self.headers = headers

        self._conn = conn

        self._sock = sock



68   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
The Networks of Reinvention

    # Asynchronous iteration for a streaming response

    async def __aiter__(self):

        return self

    async def __anext__(self):

        while True:

            evt = self._conn.next_event()

            if evt == h11.NEED_DATA:

                data = await self._sock.recv(100000)

                self._conn.receive_data(data)

            else:

                break

        if isinstance(evt, h11.Data):

            return evt.data

        elif isinstance(evt, h11.EndOfMessage):

            raise StopAsyncIteration

        else:

            raise RuntimeError(‘Bad response %r’ % evt)

    # Asynchronous property for getting all content

    @property

    async def content(self):

        if not hasattr(self, ‘_content’):

            chunks = []

            async for data in self:

                chunks.append(data)

            self._content = b’’.join(chunks)

        return self._content

async def get(url, params=None):

    url_parts = urlparse(url)

    if ‘:’ in url_parts.netloc:

        host, _, port = url_parts.netloc.partition(‘:’)

        port = int(port)

    else:

        host = url_parts.netloc

        port = socket.getservbyname(url_parts.scheme)

    # Establish a socket connection

    use_ssl = (url_parts.scheme == ‘https’)

    sock = await curio.open_connection(host,

 port,

 ssl=use_ssl,

 server_hostname=host if use_ssl else None)

    # Make a HTTP/1.1 protocol connection

    conn = h11.Connection(our_role=h11.CLIENT)

    request = h11.Request(method=’GET’,

 target=url_parts.path,

 headers=[(‘Host’, host)])

    bytes_to_send = conn.send(request) + conn.send(h11.

EndOfMessage())

    await sock.sendall(bytes_to_send)

    # Read the response

    while True:

        evt = conn.next_event()

        if evt == h11.NEED_DATA:

            data = await sock.recv(100000)

            conn.receive_data(data)

        elif isinstance(evt, h11.Response):

            break

        else:

            raise RuntimeError(‘Unexpected %r’ % evt)

    resp = Response(url, evt.status_code, dict(evt.headers), 

conn, sock)

    return resp

Using this code, here is an example that makes an HTTP request 
and retrieves the result using coroutines:

import example

import curio

async def main():

    r = await example.get(‘http://httpbin.org/’)

    print(r.status)

    print(r.headers)

    print(await r.content)

curio.run(main())

Or, if you want to stream the response back in chunks, you can 
do this:

async def main():

    r = await example.get(‘http://httpbin.org/bytes:100000’)

    with open(‘out.bin’, ‘wb’) as f:

        async for chunk in r:

            print(‘Writing’, len(chunk))

            f.write(chunk)

curio.run(main())

Fleshing out this code to something more worthy of produc
tion would obviously require more work. However, it didn’t take 
a lot of code to make a barebones implementation. Nor was it 
necessary to worry too much about underlying mechanics of the 
HTTP/1.1 protocol. That’s pretty neat.

The Future
If it catches on, the whole idea of breaking out network proto
cols into libraries decoupled from I/O would be an interesting 
direction for Python. There are certain obvious benefits such as 
eliminating the need for every I/O library to implement its own 
protocol handling. It also makes experimental work in I/O han
dling much more feasible as it is no longer necessary to imple
ment all of that code from scratch. 



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 69

COLUMNS
The Networks of Reinvention

Although Cory Benfield’s work on HTTP/2 handling may be the 
most visible, one can’t help wonder whether a similar approach 
to other protocols might be useful. For example, isolating the 
protocols used for database engines (MySQL, Postgres), Redis, 
ZeroMQ, DNS, FTP, and other networkrelated technologies 
might produce interesting results if it enabled those protocols 
to be used in different kinds of I/O libraries. It seems that there 
might be opportunities here.

References
[1] Curio project: https://curio.readthedocs.io.

[2] C. Benfield, “Building Protocol Libraries the Right Way,” 
PyCon 2016: https://www.youtube.com/watch?v=7cC3_jGwl_U.

[3] Hyperh2 Project: http://pythonhyper.org/projects/h2/.

[4] H11 Project: https://github.com/njsmith/h11.

[5] Requests Project: https://docs.pythonrequests.org.

[6] Urllib3 Project: https://urllib3.readthedocs.io.

We are looking for people with personal experience and ex pertise who 
want to share their knowledge by writing.  USENIX supports many confer-
ences and workshops, and articles about topics related to any of these 
subject areas (system administration, programming, SRE, file systems, 
storage, networking, distributed systems, operating systems, and security) 
are welcome. We will also publish opinion articles that are relevant to the 
computer sciences research community, as well as the system adminstra-
tor and SRE communities.

Writing is not easy for most of us. Having your writing rejected, for any 
reason, is no fun at all. The way to get your articles published in ;login:, 
with the least effort on your part and on the part of the staff of ;login:, is 
to submit a proposal to login@usenix.org.

PROPOSALS
In the world of publishing, writing a proposal is nothing new. If you plan 
on writing a book, you need to write one chapter, a proposed table of 
contents, and the proposal itself and send the package to a book pub-
lisher. Writing the entire book first is asking for rejection, unless you are a 
well-known, popular writer.

;login: proposals are not like paper submission abstracts. We are not asking 
you to write a draft of the article as the proposal, but instead to describe 
the article you wish to write. There are some elements that you will want 
to include in any proposal:

• What’s the topic of the article?

•  What type of article is it (case study, tutorial, editorial, article based 
on published paper, etc.)?

•  Who is the intended audience (syadmins, programmers, security 
wonks, network admins, etc.)?

• Why does this article need to be read?

•  What, if any, non-text elements (illustrations, code, diagrams, etc.) 
will be included?

• What is the approximate length of the article?

Start out by answering each of those six questions. In answering the ques-
tion about length, the limit for articles is about 3,000 words, and we avoid 
publishing articles longer than six pages. We suggest that you try to keep 
your article between two and five pages, as this matches the attention 
span of many people.

The answer to the question about why the article needs to be read is 
the place to wax enthusiastic. We do not want marketing, but your most 
eloquent explanation of why this article is important to the readership of 
;login:, which is also the membership of USENIX.

UNACCEPTABLE ARTICLES
;login: will not publish certain articles. These include but are not limited to:

•  Previously published articles. A piece that has appeared on your own 
Web server but has not been posted to USENET or slashdot is not 
considered to have been published.

•  Marketing pieces of any type. We don’t accept articles about 
products. “Marketing” does not include being enthusiastic about 
a new tool or software that you can download for free, and you are 
encouraged to write case studies of hardware or software that you 
helped install and configure, as long as you are not affiliated with 
or paid by the company you are writing about.

• Personal attacks

FORMAT
The initial reading of your article will be done by people using UNIX sys-
tems. Later phases involve Macs, but please send us text/plain formatted 
documents for the proposal. Send pro posals to login@usenix.org.

The final version can be text/plain, text/html, text/markdown, LaTex, or 
Microsoft Word/Libre Office. Illustrations should be EPS if possible. 
Raster formats (TIFF, PNG, or JPG) are also  acceptable, and should be a 
minimum of 1,200 pixels wide.

DEADLINES
For our publishing deadlines, including the time you can expect to be 
asked to read proofs of your article, see the online schedule at 
www.usenix.org/publications/login/publication_schedule.

COPYRIGHT
You own the copyright to your work and grant USENIX first publication 
rights. USENIX owns the copyright on the collection that is each issue of 
;login:. You have control over who may reprint your text; financial nego-
tiations are a private  matter between you and any reprinter.

Writing for ;login:



70   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS

iVoyeur
Pager Trauma Statistics Daemon, PTSD

D A V E  J O S E P H S E N

Dave Josephsen is the 
sometime book-authoring 
developer evangelist at Librato 
.com. His continuing mission: to 
help engineers worldwide close 

the feedback loop. dave-usenix@skeptech.org

I began writing this article late in the third and final day at Monitorama, 
the singletrack monitoring conference. In fact, as I wrote these first few 
paragraphs, a man named Joey Parsons from Airbnb was talking about 

the health and wellbeing of Airbnb’s oncall workers. In fact, “people matter” 
was something of a theme this year—a pretty drastic change for a normally 
tools and techniques focused crowd. It is certainly true, for whatever reason, 
that this Monitorama took a heavy turn toward introspection about measure
ment culture and especially oncall pain. 

Over the last several years, a few speakers have talked about what can only be described as 
posttraumatic reactions to other people’s ringtones, wherein they’ll react in visceral, lizard
brain terror to the sound of someone else’s phone, or even just ambient noise that sounds 
similar to their own phone’s notification tone. This resonates very strongly with me, and I 
suspect that if you’re reading this, it might resonate with you as well.

In 2012 I took a much needed break from Operations to travel the conference circuit, speak
ing and writing in the name of developer advocacy, outreach, and evangelism. By the time I 
finally quit Ops to find a job without an oncall component, I’d been oncall for seven years. 
Yep, every day and every night, as the (usually) sole technical lead for one startup or another.

I think I still underestimate the stress I put on myself and my family during this nearly 
decadelong oncall stint. I spent three consecutive Thanksgiving dinners alone at a data
center in what became a running joke at my last startup: the “Thanksgiving Day Curse.” The 
last time this happened in 2012, when my phone went off shortly after I sat down for Thanks
giving dinner, my exasperated wife dumped the contents of my plate into a large ziplock bag 
and handed it to me on the way out the door.

Talks on “alert fatigue” have popped up now and again. I’ve even given one myself, but these 
normally focus on tools and techniques to reduce and filter falsepositives. It seems to me 
that we rarely talk about the more intangible “people problems” that oncall work can intro
duce into our lives, or attempt to quantify the amount of pain oncall participants experience 
on a weekly basis. There are what can only be described as support groups, like the “I made a 
huge mistake” BoF Shawn Sterling has thrown for years at LISA, but these have always been 
tertiary events, rather than mainevent fodder. 

But because we are engineers, and especially because we are engineers who enjoy the mea
suring and quantification of things, many of the talks at Monitorama this year went beyond 
descriptions of the problem and described efforts to actually assess the cognitive and emo
tional stress that the computational firstresponders in their organizations have to put up 
with. Many shared data, either in the form of graphs or spreadsheets, and a few even shared 
HR techniques like sleeptracking, and mandatory threeday weekends for individuals com
ing off their oncall rotation.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 71

COLUMNS
iVoyeur: Pager Trauma Statistics Daemon, PTSD

I especially found the numbers fascinating. In Joey Parsons’ 
talk “Monitoring and Health at Airbnb” [1], he shared that 
they’ve had some success at Airbnb making oncall a voluntary 
endeavor that is spread among engineers across every internal 
discipline. Airbnb’s 50(!) oncall volunteers take threeday shifts 
and participate in weekly sysop meetings to keep everyone up 
to date with respect to chronic, ongoing production issues. The 
top oncall volunteer for the week before Monitorama fielded 48 
production issues.

One of the most important things enabling teams like Airbnb to 
quantify their oncall stress is the use of thirdparty alert pro
cessing systems like PagerDuty and VictorOps. These systems 
export APIs that expose a wealth of information about every 
incident. Who was oncall when it happened, to whom it was 
assigned, the number of actual notifications that each incident 
spawned and on and on.

As I write this, I’m also in the process of transitioning back to 
Ops, so as you can imagine I’m certainly interested in seeing how 
our own oncall endeavors line up. We have, of course, no hope 
of finding 50 oncall volunteers in a company of < 20 people, but 
the ebb and flow of our production issues is a line I’d like to see. 
To that end, on the plane ride home I spent some time playing 
with the PagerDuty API, and landed with a rough firstpass at 
a Go program that can interrogate the PagerDuty API for total 
incidents, peruser pager notifications, and peruser acknowl
edgments, and forward these as counter increments to StatsD 
for visualization.

For the moment I’m calling it PTSD (Pager Trauma Statistics 
Daemon), and you can find it at http://github.com/djosephsen 
/ptsd. My hope is that it’ll make it trivial for anyone using Pager
Duty to get some stats about their oncall volume. It dumps these 
stats to STDOUT and a locally running StatsD instance. 

Using Go
Increasingly, I find myself reaching for Go over something like 
Bash or Python to write API glue code like this. And I’d like to 
share the reasons with you, since I feel like it’s rare to see real 
talk about Go in a context other than Web services and hard
core systems tooling. Here, I want to write some longishterm 
maintainable glue code to tie together a REST API and a service 
listening on a network socket.

Traditionally, Go has not been my first choice for parsing JSON 
responses from Web APIs. The builtin net/http library is fan
tastic for running queries, but the builtin JSON library, encod
ing/json, is a complete pain when it comes to working with large, 
complex, or unknown structures. In these cases I almost always 
find myself decoding into a hashmap (map[string]interface), 
and then manually typecasting my way to the real values. This 
process is errorprone, painful, and fragile, and you wind up with 
line upon line of incomprehensible nested expressions like:

‘foo[‘people’].(map[string]interface)[‘dave’].(string)’

By comparison Bash and Python have lovely JSON parsing capa
bilities, but I’ve never really cared for their HTTP clients, which 
are sufficiently complicated that I’ve never really been able to 
commit their syntax to memory. Python, especially, is somewhat 
of a mess in this regard, with urllib vs. requests vs. httplib. 
To be clear, I’m a pretty down to earth practitioner who doesn’t 
have anything in particular against any of these libraries, but it’s 
basically a nightmare to have to go back and forth between them 
depending on the project/people I’m working on/with. I’ve seri
ously considered picking one and just severing ties with all of the 
people who use the others.  

Recently, however, I discovered Anton Holmquist’s “Jason” 
library [3], and I have to say it’s made Go my…well, goto language 
for working with JSON WebAPIs. Here’s the pattern for making 
a GET request to an API and parsing the JSON response into 
something we can work with:

client := &http.Client{}

req, _ := http.NewRequest(“GET”, url, nil)

req.Header.Add(“Authorization”, authToken)

resp,err := client.Do(req)

body,err := jq.NewObjectFromReader(resp.Body)

First, we make a new http.Client object. This is unnecessary 
unless you need to do advanced things to the request like add 
headers. You can make simple requests directly with http.

Post(). In this case, I add a header to submit my auth token. 
Once the request is built, we send it with client.Do(), and 
then we parse the response body directly into a JSON object 
with  NewObjectFromReader, which we’ve imported from 
antonholmquist/jason.

Once the response is in a json.Object, a vast and powerful 
assortment of functions enable us to read out toplevel or nested 
values straight into strings, ints, and etc. without any type
casting on our part. For example, to parse out a toplevel type 
attribute into a Gonative string variable we would:

type_of_thingie := body.GetString(“type”)

There are even functions that return ‘[]*jason.Object,’ which 
makes it completely trivial to iterate through arrays nested 
inside the JSON. 

logs, _ := body.GetObjectArray(“log_entries”)

for _,log := range logs{

 fmt.Printf(“log type :: %s”, log.getString( “type”))

}

Needless to say, if I ever meet Anton Holmquist and he needs any
thing, like a ride home or a free beer or a dude with a truck to help 
him move, I’ll happily oblige him. He’s made my life much easier.



72   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
iVoyeur: Pager Trauma Statistics Daemon, PTSD

The second reason I chose Go was because I was going to want 
this to be a somewhat extensible project, by which I mean, I 
wanted to make it as easy as possible for other people to extend 
it without having to refactor. That meant implementing both the 
“collector” piece (e.g., PagerDuty) as well as the “outputter” piece 
(e.g., StatsD) as modules from the…well, getgo.

There are two reasons I find Go pretty nice for writing modular 
code. The first of these is the Package system. Suffice to say, 
within the same Go “Package” you can pretty much drop files 
in the package directory and Go will just use them. I’ve written 
a lot of toplevel framework code that accepts usercontributed 
extensions in languages like Python (see, for example, Graphios), 
and it’s just never as easy as it should be. I’m always having to 
manually include things at the very least, or more likely, fiddle 
around with ugly stuff like __init__py and sys.path.insert. 

With PTSD, if you want to implement VictorOps, you just make a 
victorops.go file in the package dir and implement the Collector 
interface. That’s pretty much it. The go build tooling will pick 
your file right up along with the rest of it and do the right thing. 
Literally zero messing around with metaimport magic.

The second reason I like writing modular code is the type 
system. Types are just so easy to create in Go, and interfaces 
are, IMO, a much more straightforward way of modeling logic 
in a systemsprogramming context than Javastyle classes. Go 
interfaces let you reason about the functionality that’s common 
between objects rather than the attributes or datastructures 
they have in common. In this context, writing a new PTSD Col
lector means creating a type that implements three simple func
tions (methods, whatever). 

Enabled takes no arguments and returns a Boolean indicating 
whether or not PTSD should enable your collector. This allows 
us to import all available collector addons and just switch on 
the ones we want. The PagerDuty collector’s Enabled function 
returns true if you’ve set a PDTOKEN environment variable con
taining your PagerDuty token.

Run takes an int and returns nothing. This int is PTSD’s polling 
interval (60 minutes by default). The PagerDuty collector uses 
this interval to decide how far back it should query the PD API 
for records of incidents.

Finally, Name returns the name of the Collector as a string. 
This is really just used for debugging (e.g., “enabled collector: 
<name>”).

That’s it. Just implement those three functions, and the rest 
of PTSD knows how to deal with your code, and your code can 
pretty much do anything it wants visàvis actually collect
ing metrics and sending them to the Outputters via the global 
 increment function. When I’m dealing with classbased systems 
like Python that use object inheritance, I somewhat ironically 
wind up creating much more formal and therefore usually less 
flexible object definitions. 

The final reason I chose Go was to make it easy for other people 
to actually use PTSD in real life. This really boils down to the 
fact that I get a compiled binary as output so I don’t have to worry 
about moving the toolchain around with the executable. This 
makes things mindnumbingly simple when I want to embed 
this in a Docker container or toss it on a Heroku Dyno. Really, I 
know that this thing I just made is going to just run pretty much 
wherever I throw it, without any bundler, pip, npm, or any other 
kind of toolchain dependency hell, and by extension I know that 
nobody else who wants to use this will have to experience any of 
that either.

By the time you read this, PTSD should be stable and in use at 
Librato. Despite the latent scarring, I’m really looking forward 
to returning to Ops work again, and I hope I’ve inspired you to 
think about quantifying the oncall stress in your organization, 
and possibly giving Go a whirl if you haven’t already.

Take it easy. 

References:
[1] Monitorama, Joey Parsons talk: https://www.youtube 
.com/watch?v=1SlljMU9V5k&feature=youtu.be&t=20704).

[2] PTSD (Pager Trauma Statistics Daemon): http://github 
.com/djosephsen/ptsd.

[3 ] Anton Holmquist’s “Jason” library: https://github.com 
/antonholmquist/jason.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 73

COLUMNS

Practical Perl Tools
Seek Wise Consul

D A V I D  N .  B L A N K - E D E L M A N

A s we build infrastructure that is more and more fluid, the idea of 
“service discovery” becomes more and more important. Once upon 
a time, service discovery was trivial. If you wanted to figure out 

where a particular service resided so you could tell some other thing in your 
environment how to talk to it, you could walk over to a machine in one of your 
racks of equipment, read the labels, and point at it. It likely had a fixed IP 
address in addition to a fixed physical address. 

Those halcyon days (which I’m not sure even I am pining for) are almost gone. With the onset 
of one or any of a list of factors like virtualization, containerization and “cloudy” provision
ing, components in a system and the people running them have a much more difficult time 
locating each other on the fly. There are a number of different good approaches/tools for 
this problem. Today we are going to look at the open source package Consul from HashiCorp 
(https://www.consul.io/—you’ve probably heard of them because they are the makers of 
Vagrant) and how to interact with it via Perl. If this topic is popular, I’m happy to look at some 
of the other choices in a future column.

Basic Consul Concepts
The heart of most of these solutions is some sort of distributed/highly available keyvalue 
store that provides easy methods for your other infrastructure components to query/inter
act with it. “Distributed/highly available” in this case means that the package makes it easy 
to run multiple servers that replicate data between themselves so that if one goes down, 
your infrastructure continues to hum along. This requires handling all of the gnarly details 
around this sort of setup (what to do when one goes down and comes back up again with stale 
data, how to handle network partitions, where are writes handled in the system, deciding on 
the fly which instance should be “master” and which should be replicas, etc.). The “keyvalue 
store” part of the first sentence is not much more complicated than the keyvalue concept 
of a Perl hash, so we should feel right at home when we get to working with that portion of 
Consul.

In practice what this means is that you run a number of Consul servers and Consul agents. 
The servers are, well, servers. The agents run on or with every service you wish to make dis
coverable. Their job is to report in to the servers. They do a little bit more than just register 
their respective service (which you can do with the Perl modules we’re going to be discuss
ing). They can perform health checks on your service and register/deregister it from Consul 
as appropriate when it becomes operational or sick. They also provide query forwarding so 
Consul queries can be made of both the servers or the agents (who will automatically forward 
to an appropriate server). These queries can either be via HTTP, or, to make things really 
easy, via DNS. If you haven’t seen this sort of pure magic before, it entails just having the 
thing that wants to find that service make a DNS query for the right host name (as in  
{servicename}.service.consul). Super spiffy.

David Blank-Edelman is the 
Technical Evangelist at Apcera 
(the comments/views here 
are David’s alone and do not 
represent Apcera/Ericsson) . 

He has spent close to 30 years in the systems 
administration/DevOps/SRE field in large 
multiplatform environments including Brandeis 
University, Cambridge Technology Group, 
MIT Media Laboratory, and Northeastern 
University. He is the author of the O’Reilly 
Otter book Automating System Administration 
with Perl and is a frequent invited speaker/
organizer for conferences in the field. David 
is honored to serve on the USENIX Board of 
Directors. He prefers to pronounce Evangelist 
with a hard ‘g’.  dnblankedelman@gmail.com



74   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
Practical Perl Tools: Seek Wise Consul

(Not So) Secret Agent Man
As much as I want to dive directly into the Perl part of all of 
this, I think it will help if we first start out interacting with the 
system using the builtin agent functionality before we bring 
in Perl as an external actor. And while I’m making caveats, I’m 
not really going to demonstrate any of the functionality around 
health checks or clustering because it basically just works as the 
doc suggests and is almost orthogonal to the later discussions 
around Perl. I’m also not going to discuss installation issues—
they are covered in the excellent doc at https://www.consul.io/.

So let’s look at perhaps the simplest example of using Consul 
with a single agent (that will also act as a server). This example 
comes only slightly modified from the Getting Started documen
tation. There are two ways to tell a Consul agent about a service 
that it should advertise: through a config file or via the API. Let’s 
do it both ways.

For a config file, we just need to drop in place a tiny JSON file 
that looks like this:

{

  “service”: {

    “name”: “webserver”

    “port”: 80

  }

}

and start up the agent in “dev” mode:

consul agent -dev -config-dir ./config.d

The agent spins up, loads the config, decides it should become a 
lead server, and is ready to answer requests (I’m leaving all of the 
output from the somewhat chatty dev mode in place just because 
I think the election stuff looks cool):

==> Starting Consul agent...

==> Starting Consul agent RPC...

==> Consul agent running!

         Node name: ‘dNb-MBP.local’

        Datacenter: ‘dc1’

            Server: true (bootstrap: false)

       Client Addr: 127.0.0.1 (HTTP: 8500, HTTPS: -1, 

  DNS: 8600, RPC: 8400)

      Cluster Addr: 172.27.4.103 (LAN: 8301, WAN: 8302)

    Gossip encrypt: false, RPC-TLS: false, TLS-Incoming: false

             Atlas: <disabled>

==> Log data will now stream in as it occurs:

    2016/06/29 17:32:29 [INFO] raft: Node at 172.27.4.103:8300

 [Follower] entering Follower state

    2016/06/29 17:32:29 [INFO] serf: EventMemberJoin: 

dNb-MBP.local 172.27.4.103

    2016/06/29 17:32:29 [INFO] serf: EventMemberJoin: 

dNb-MBP.local.dc1 172.27.4.103

    2016/06/29 17:32:29 [INFO] consul: adding WAN server 

dNb-MBP.local.dc1 (Addr: 172.27.4.103:8300) (DC: dc1)

    2016/06/29 17:32:29 [INFO] consul: adding LAN server 

dNb-MBP.local (Addr: 172.27.4.103:8300) (DC: dc1)

    2016/06/29 17:32:29 [ERR] agent: failed to sync remote 

state: No cluster leader

    2016/06/29 17:32:31 [WARN] raft: Heartbeat timeout 

reached, starting election

    2016/06/29 17:32:31 [INFO] raft: Node at 

172.27.4.103:8300 [Candidate] entering Candidate state

    2016/06/29 17:32:31 [DEBUG] raft: Votes needed: 1

    2016/06/29 17:32:31 [DEBUG] raft: Vote granted from 

172.27.4.103:8300. Tally: 1

    2016/06/29 17:32:31 [INFO] raft: Election won. Tally: 1

    2016/06/29 17:32:31 [INFO] raft: Node at 172.27.4.103:8300

[Leader] entering Leader state

    2016/06/29 17:32:31 [INFO] raft: Disabling 

EnableSingleNode (bootstrap)

    2016/06/29 17:32:31 [INFO] consul: cluster leadership 

acquired    2016/06/29 17:32:31 [DEBUG] raft: Node 

172.27.4.103:8300 updated peer set (2): [172.27.4.103:8300]

    2016/06/29 17:32:31 [DEBUG] consul: reset tombstone 

GC to index 2

    2016/06/29 17:32:31 [INFO] consul: New leader elected: 

dNb-MBP.local

    2016/06/29 17:32:31 [INFO] consul: member ‘dNb-MBP.local’ 

joined, marking health alive

    2016/06/29 17:32:32 [INFO] agent: Synced service ‘consul’

    2016/06/29 17:32:32 [INFO] agent: Synced service 

‘webserver’

We can then query it either via DNS:

$ dig @127.0.0.1 -p 8600 webserver.service.consul

; <<>> DiG 9.8.3-P1 <<>> @127.0.0.1 -p 8600 webserver.service.

consul

; (1 server found)

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36403

;; flags: qr aa rd; QUERY: 1, ANSWER: 1, AUTHORITY: 0, 

ADDITIONAL: 0

;; WARNING: recursion requested but not available

;; QUESTION SECTION:

;webserver.service.consul. IN A

;; ANSWER SECTION:

webserver.service.consul. 0 IN A 172.27.4.103



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 75

COLUMNS
Practical Perl Tools: Seek Wise Consul

or via a call to the API:

$ curl -s http://localhost:8500/v1/catalog/service/

webserver|jq -M

[

  {

    “Node”: “dNb-MBP.local”,

    “Address”: “172.27.4.103”,

    “ServiceID”: “webserver”,

    “ServiceName”: “webserver”,

    “ServiceAddress”: “”,

    “ServicePort”: 80,

    “ServiceEnableTagOverride”: false,

    “CreateIndex”: 5,

    “ModifyIndex”: 5

  }

]

We can also register a service via the API:

$ curl -X POST -d @newservice.json http://localhost:8500/v1/

agent/service/register --header “Content-Type:application/json”

This does an HTTP POST of the JSON file with this content:

{

  “ID”: “webconsole”,

  “Name”: “webconsole”,

  “Port”: 8080

}

And now we can see it in a query (output excerpted):

$ dig @127.0.0.1 -p 8600 webconsole.service.consul

‘ ;; ANSWER SECTION:

webconsole.service.consul. 0 IN A 172.27.4.103

Key-Value Time
In addition to just being able to register and query service 
records, Consul also offers the more general keyvalue store 
functionality à la etcd or zookeeper. HTTP API calls can be 
made to store/retrieve a value under a certain key. This is useful 
if you want to also store some configuration info in Consul. A 
component can come up, check in with Consul, and get not only 
pointers to the services it might need but also its configuration 
values. Consul’s keyvalue support is more sophisticated than 
what Perl’s hashes offer, so perhaps the analogy earlier was a 
little simplistic. In addition to the usual GET/SET operations, 
it offers transactions (multiple operations at once that either 
succeed or fail all together), locks, testbeforeset and watch for 
changes functionality. 

Simple work with keys just involves PUT or GET operations to 
the /v1/kv/<key> endpoint. We could do this via curl commands 
(similar to exactly what we did before), but better yet, let’s use 
this as an excuse to get into the land of Perl.

Perl Meet Consul
One of the purposes of showing all of these command lines is 
to demonstrate the ease of interacting with the system. Trans
lating these operations directly to an equivalent generic Perl 
module would be easy:

◆◆ curl calls easily become HTTP::Tiny (or whatever the HTTP 
module of choice is for you) calls.

◆◆ DNS queries are easily done via Net::DNS. The only tricky thing 
here would be to make sure you specify either the port option 
to Net::DNS::Resolver>new() or be sure to set the port via the 
port() method to the port that Consul is using.

We’ve used this stuff time and time again in the past, so instead 
let’s take a quick look at the more customized modules for Con
sul. The two I’m aware of are “Consul” and “Consul::Simple.” 
The one thing Consul::Simple has that I think is kind of neat 
(and possible to easily implement while using the other module) 
is the ability to set a prefix for keyvalue operations. As the doc 
says, this essentially gives you “namespaces,” meaning you could 
have keys named “namespace/thing” so you could use different 
namespaces for different kinds of keys (e.g., “dev/something,” 
“prod/something,” etc.). Unfortunately, Consul::Simple hasn’t 
been touched in a couple of years, so I’m going to focus on the 
module just called “Consul.” 

You’ll be pleased and I suspect unsurprised to know that using 
this module looks just like the previous command line operations 
only simpler. Here’s how we might set and retrieve key/values:

use Consul;

# talk to localhost by default

my $consul = Consul->kv;

# set some values

my $status;

$status = $consul->put( ‘lisa2016’ => ‘boston’ );

die “1st put failed” unless defined $status;

$consul->put( ‘sreconEU2016’ => ‘dublin’ );

die “2nd put failed” unless defined $status;

# retrieve them

my $response = $consul->get(‘lisa2016’);

print ‘LISA is in ‘ . $response->value . “ in 2016\n”;

$response = $consul->get(‘sreconEU2016’);

print ‘SREconEU is in ‘ . $response->value . “ in 2016\n”;

# let’s try the namespaces idea

$status = $consul->put( ‘conferences/2017/lisa2017’   

   => ‘san francisco’ );

$status = $consul->put( ‘conferences/2017/srecon2017’ 

    => ‘san francisco’ );



76   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
Practical Perl Tools: Seek Wise Consul

# returns all of the matching keys

my $pairs = $consul->get_all(‘conferences/2017’);

foreach my $pair (@$pairs) {

    print $pair->key, “\n”;

}

I’m hoping that the code above is fairly selfexplanatory. We no 
longer have to worry about HTTP endpoints; the module is tak
ing care of all that for us. The other endpoints in the API are also 
equally available should we want to register or retrieve services, 
or receive or change internal Consul configuration (for example, 
around clustering).

I’d encourage you to play with Consul and all it can do. Take care, 
and I’ll see you next time.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 77

COLUMNS

Shutting Down Applications Cleanly
K E L S E Y  H I G H T O W E R

Developers around the world are building new applications at blazing 
speeds, and with the growing adoption of microservices and continu
ous delivery, people are shipping applications faster than ever. Most 

developers focus on getting applications out the door and deployed to produc
tion, which can mean neglecting critical parts of an application’s life cycle—
the shutdown process.

It’s easy to understand why the shutdown process is often neglected. The main goal is to 
deploy applications and keep them running around the clock, not shutting them down. 
However, the reality is that modern applications shut down as often as they start up thanks 
to continuous delivery and better deployment tools. As a developer, it’s your job to ensure 
applications are robust and not only start up correctly but also shut down cleanly. Clean 
shutdowns are the key to zerodowntime deployments and keeping your production systems 
in a consistent state. Applications that exit abruptly can wreak havoc on system resources 
caused by leaving network connections open and partial writes to file systems. 

Just Give Me the Signal and I’ll Do the Rest
On UNIX systems, applications are sent an asynchronous signal to indicate when an appli
cation should terminate. The most common signals sent to initiate the shutdown process 
are SIGINT, SIGTERM, and SIGKILL. SIGINT is sent when the user wants to interrupt a 
process. For example, say you’re running a ping process in the foreground like this:

$ ping usenix.org

PING usenix.org (50.56.53.173): 56 data bytes

64 bytes from 50.56.53.173: icmp_seq=0 ttl=51 time=66.741 ms

64 bytes from 50.56.53.173: icmp_seq=1 ttl=51 time=65.001 ms

^C

--- usenix.org ping statistics ---

2 packets transmitted, 2 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 65.001/65.871/66.741/0.870 ms

Notice how pressing the CtrlC key combination causes the ping process to terminate. Also 
notice how the ping process was able to print a few additional lines before terminating. This 
works because the ping process caught the SIGINT signal, which made it stop pinging use
nix.org and print the results of the ping session.

The SIGTERM signal is sent to a process in order to request that the process terminates. 
Both the SIGTERM and SIGINT signals can be caught by a running process and cause it to 
shut down; this is not a hard requirement as a process is free to ignore these signals. The SIG
KILL signal is sent to a process to cause it to terminate immediately, and unlike the SIGTERM 
and SIGINT signals, your process is not given an opportunity to clean up and will be killed—
yeah, SIGKILL is brutal. The SIGKILL signal is normally sent after sending a SIGTERM 
signal and waiting some amount of time before considering the process hung. This is what we 
want to avoid, so we must make sure the cleanup process happens as quickly as possible.

Kelsey Hightower has worn 
every hat possible throughout 
his career in tech, and enjoys 
leadership roles focused on 
making things happen and 

shipping software. Kelsey is a strong open 
source advocate focused on building simple 
tools that make people smile. When he is not 
slinging Go code, you can catch him giving 
technical workshops covering everything from 
programming to system administration and 
distributed systems. 
kelsey.hightower@gmail.com



78   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
Shutting Down Applications Cleanly

Don’t Forget to Clean Up
Once a termination signal is received it’s the application’s 
responsibility to clean up any open network connections, flush 
pending writes, or complete outstanding client requests before 
terminating. Let’s write a simple Web application that demon
strates how clean shutdowns work in practice. The Go standard 
library provides everything required to catch UNIX signals, but 
we’ll use a thirdparty library called manners to simplify the han
dling of incoming HTTP requests during the shutdown process.

Review the following code sample and save it to a file named 
main.go.

package main 

import (

    “log”

    “net/http”

    “os”

    “os/signal”

    “syscall”

    “github.com/braintree/manners”

)

func main() {

    log.Println(“Starting up...”)

    http.HandleFunc(“/”, func(w http.ResponseWriter, r 

 *http.Request) {

        log.Printf(“%s %s - %s”, r.Method, r.URL.Path, 

 r.UserAgent())

        w.Write([]byte(“Hello USENIX!\n”))

    })

    // Catch signals in the background using 

    // an anonymous go routine.

    go func() {

        signalChan := make(chan os.Signal, 1)

        signal.Notify(signalChan, syscall.SIGINT, 

 syscall.SIGTERM)

        // This blocks until this process receives a SIGINT 

        // or SIGTERM signal.

        <-signalChan

        log.Println(“Shutting down...”)

        // stop accepting new requests and begin shutting down.

        manners.Close()

    }()

    // The call to ListenAndServe() blocks until an error is 

    // returned or the manners.Close() function is called.

    err := manners.ListenAndServe(“:8080”, 

 http.DefaultServeMux)

    if err != nil {

       log.Fatal(err)

    }

    log.Println(“Shutdown complete.”)

}

The source code can also be cloned from https://github.com 
/kelseyhightower/hellousenix:

$ git clone https://github.com/kelseyhightower/hello-usenix.git

$ cd hello-usenix

Next, fetch the manners package, which provides a wrapper 
for Go’s standard HTTP server and ensures all active HTTP 
requests have completed before the HTTP server shuts down.

$ go get github.com/braintree/manners

Finally, build the hellousenix server using the go build 
command:

$ go build -o hello-usenix main.go

At this point you should have a hellousenix binary in the current 
directory that can be used to examine a clean shutdown process 
in action. The remainder of this tutorial will require three sepa
rate terminals where commands can be executed.

Terminal #1
Start the hellousenix server in the foreground:

$ ./hello-usenix

2016/07/03 15:37:30 Starting up...

Terminal #2 
Use curl to make HTTP requests to the hellousenix service:

$ while true; do curl http://127.0.0.1:8080; sleep 1; done

Hello USENIX!

Hello USENIX!

…

Terminal #3
Grab the process ID (PID) of the running hellousenix process 
using the ps command:

$ ps -u `whoami` | grep hello-usenix

55211 ttys003    0:00.03 ./hello-usenix

Use the kill command to send the SIGTERM signal to the hello
usenix process using the correct process ID:

$ kill 55211

By default the kill command sends the SIGTERM signal to the 
running process specified by the given process ID (PID). Once 
the SIGTERM signal reaches the hellousenix process, the shut
down process will begin by rejecting new HTTP requests, which 



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 79

COLUMNS
Shutting Down Applications Cleanly

will cause the curl command running in Terminal #2 to return 
connectionrefused errors:

Terminal #2 
$ while true; do curl http://127.0.0.1:8080; sleep .2; done

Hello USENIX!

Hello USENIX!

...

curl: (7) Failed to connect to 127.0.0.1 port 8080: Connection 

refused

Although handling signals and performing a clean shutdown 
will give your servers the opportunity to tidy up, it won’t prevent 
clients from continuing to send your services requests. In the 
case of the hellousenix application, a frontend load balancer 
can be used to detect when an instance of hellousenix is no 
longer accepting HTTP requests and route incoming requests to 
another instance.

Once the the final HTTP request has completed, the hellouse
nix server will print the “Shutdown complete” log message and 
terminate:

Terminal #1
$ ./hello-usenix

2016/07/03 20:42:06 Starting up...

2016/07/03 20:43:03 GET / - curl/7.43.0

2016/07/03 20:43:04 GET / - curl/7.43.0

...

2016/07/03 20:44:24 Shutting down...

2016/07/03 20:44:24 Shutdown complete.

That’s what a clean shutdown looks like. Catch a few signals and 
clean up before terminating. It looks so easy, right? Thanks to 
manners and the Go standard library, it is.

Conclusion
As a developer it’s important to think about the complete appli
cation life cycle, and that includes the shutdown process. All 
applications should perform clean shutdowns and tidy up before 
terminating. Applications that get this right are much easier to 
manage and reduce the need for complex deployment scripts that 
attempt to protect clients from servers which accept requests 
that will never be processed or to clean up database connections 
left behind by misbehaving applications.



80   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS

W hether cybersecurity is, or could become, a science is no easy 
question, and any seemingly easy answer is simplistic. We 
need a science of security, that much is sure. Yes, we are mak

ing, and have made, significant advances in technique, but there is no doubt 
that something more generative needs to come onto the scene. Consider, via 
 Figure 1, six major advances in technique and their useful lifetime [1].

But what would a science of security be? There is much to think about in revisiting T. S. 
Kuhn’s 1962 landmark work, The Structure of Scientific Revolutions. Kuhn begins and ends 
with what is a circular idea, that a scientific community is defined by what beliefs practitio
ners share, and what beliefs practitioners share defines what community they are in. This 
is, in fact, instructive as no science begins in mature form, but rather any new science will 
begin in much more modest circumstances where, early on, consensus is not even a concept. 
As such, part of becoming a mature science is the development of a broad consensus about 
the core concerns of that branch of knowledge. Kuhn’s word for the collections of exemplars 
of good science was “paradigm,” a word whose meaning today is all but entirely Kuhn’s, even 
among those who’ve never read a word he wrote.

But what is a “paradigm” and why do we want one? As Kuhn puts it, “[Paradigms] are the 
source of the methods, the problemfield, and standards of solution accepted by any mature 
scientific community at any given time.” Kuhn’s book and the twodecadelong back and 
forth between Kuhn and philosophers notwithstanding, the simplest version is that a para
digm is all the things that a scientist can assume that his or her colleagues will congenially 
understand about their common work without explicitly explaining them or arguing them 
from first principles again and again.

Again quoting Kuhn, “Men whose research is based on shared paradigms are committed to 
the same rules and standards for scientific practice. That commitment and the apparent con
sensus it produces are prerequisites for normal science, i.e., for the genesis and continuation 
of a particular research tradition.... Acquisition of a paradigm and of the more esoteric type 
of research it permits is a sign of maturity in the development of any given scientific field.” 
Competing schools of thought are always present before a mature science first appears. As 
Kuhn said, “What is surprising, and perhaps also unique in its degree to the fields we call sci
ence, is that such initial divergences should ever largely disappear. For they do disappear to a 
very considerable extent and then apparently once and for all.” Perhaps it is thus possible to 
say that topics of study that never coalesce their competing schools are either fated never to 
be sciences or are in some state of arrested development that may someday be cured. Those 
that can and will, but have not yet done so, are what Kuhn called preparadigmatic, meaning 
not yet a science. The appearance of a paradigm that all can accept is when the transition to 
being a science occurs, or, as Kuhn put it, “Except with the advantage of hindsight, it is hard to 
find another criterion that so clearly proclaims a field a science.” 

For Good Measure
Paradigm

D A N  G E E R

Dan Geer is the CISO for  
In-Q-Tel and a security 
researcher with a quantitative 
bent. He has a long history 
with the USENIX Association, 

including officer positions, program 
committees, etc. dan@geer.org



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 81

COLUMNS
For Good Measure: Paradigm

For Kuhn, the appearance of a paradigm transforms those who 
merely study first into a discipline and then into a profession. 
One can even say, and Kuhn does, that the paradigm itself is the 
last result of the science in question that can be appreciated by 
the lay audience—after that, all progress is in journal articles 
not readable by nonspecialists, to the extent that “[t]he scientist 
who writes [for the lay reader] is more likely to find his profes
sional reputation impaired than advanced” for having done so.

Now as everyone here knows, from time to time a science may 
undergo a revolution, which in Kuhn’s terms is precisely the 
laying down of one paradigm in preference for another. The title 
of his book is to be understood as precisely that, that scientific 
revolutions share aspects of structure that we can now describe 
as there have been enough of them in the last 400 years to dis
cern that structure. If you consider physics to be the paragon of a 
hard science, then the transition from Newtonian mechanics to 
Einsteinian relativity demonstrates exactly the point Kuhn was 
making, that there comes a moment when research has reached a 
kind of impasse where the nature of what now look to be puzzles 
needing further study cannot be profitably investigated within 
the paradigm that now holds.

Kuhn referred to these impasses as the appearance of an anom
aly, one that the existing paradigm cannot evaluate by way of 
further research consistent with the paradigm then in place. His 
review of past revolutions centered in each case on the appear
ance of irreconcilable anomalies that made a given field ripe for 
revolution. That roasting metals caused them to gain weight thus 
indicating that they had absorbed some fraction of the air around 
them, a fraction that could be exhausted, led to the idea that air 
might not be the one and only gas but rather a combination of 
gases. Perhaps more significantly to the very idea of revolution 
is that even though Lavoisier had discovered oxygen, others in 
the field, notably Priestly, never accepted the existence of oxygen 
and held to the phlogiston theory to the end of their careers. I say 
“more significantly” as  the trite version of “What is a scientific 

revolution?” is that it is a time when newcomers to the field adopt 
the new paradigm while those already in the field slowly die off. 
It is a generational change.

Kuhn’s idea of crisis is the dual of his idea of paradigm. Where a 
science’s paradigm suggests puzzles that further research will 
solve, in a crisis this is no longer so. Yet the occasional crisis is 
itself necessary for advancement as any paradigm whose theo
ries completely explain all observable fact ceases to be science 
and becomes engineering. In other words, a crisis is not the end 
of research but the substitution of a new paradigm for an old and 
a new set of research puzzles awaiting solution.

Just as “a scientific theory is declared invalid only if an alternate 
candidate is available to take its place,” to reject one paradigm 
without simultaneously substituting another is “to reject science 
itself.” In short, when an anomaly appears, there are only three 
resolutions available: (1) solve the problem, (2) leave the problem 
for future scientists, or (3) use the crisis to force a new paradigm 
on the field.

When there is a shift of paradigm, that is to say a scientific 
revolution, it may serve to redirect a field so completely that 
some parts of it fall away entirely, the separation of astronomy 
from astrology or the separation of chemistry from physics being 
two examples. As Kuhn put it, the choice between paradigms is 
a choice between incompatible modes of community life (and, 
yes, he does mean “scientific community” in an altogether social 
sense). “Since no two paradigms leave all the same problems 
unsolved, paradigm debates always involve the question: Which 
problems is it more significant to have solved?”

One of the first questions we might ask is whether cybersecurity 
is a science or, if not, whether it ever will be. I am one of several 
expert reviewers for the National Security Agency’s annual 
“Science of Security” competition and award [2]. Quoting its 
rationale, “The competition was established to recognize the 
current security paper that best reflects the conduct of good 
science in the work described. [Science of Security] is a broad 
enterprise, involving both theoretical and empirical work. While 
there can only be one best paper, any one paper cannot span that 
full breadth. Nonetheless, the field is broad and work in all facets 
is encouraged and needed. The common denominator across the 
variety of approaches is solid methodology and effective com
munication, so those aspects of the papers [are] strong factors in 
our decision” [3].

Papers are nominated for consideration, and I encourage you 
to do so, but I am also here to report that among the reviewers 
our views of what constitutes a, or the, Science of Security vary 
rather a lot. Some of us would prioritize purpose, agreeing with 
Charles Darwin that “all observation must be for or against some 
view if it is to be of any service” [4]. Some of us view aspects of 
methodology as paramount, especially reproducibility and the 

Figure 1: Major advances in technique and their useful lifetime



82   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
For Good Measure: Paradigm

clarity of communication on which it depends. Some of us are 
ever on the lookout for what a physicist would call a unifying 
field theory. Some of us insist on the classic process of hypothesis 
generation followed by designed experiments. We vary, and I take 
that to be a vote of sorts on whether cybersecurity is yet a science.

Whether cybersecurity is yet a science is a hard question. Let’s 
consider candidate paradigms of cybersecurity; if they exist and 
have turned over from time to time then, yes, cybersecurity is 
now a science. Take one of the most basic tools we employ, that 
of authentication. Authentication is the solution to the puzzle of 
identity establishment, a puzzle that derived from the paradigm 
of perimeter control.

The paradigm of perimeter control has been in an evident crisis 
for some time now. The crisis is not merely because the defini
tion of perimeter may have been poorly applied in practice, but 
because some combination of alwayson and universal address
ability collectively make the paradigm of a defensible perimeter 
less and less a paradigm where research is itself likely to patch 
up the mess and retain the core and guiding paradigm of perime
ter control. The parallel with Ptolemaic astronomy is pretty fair. 
On the one hand, every improvement in observational accuracy 
made the motions of the planets more complicated to describe 
with epicycles upon epicycles. On the other hand, our hand, the 
threat to systems from alwayson universal addressability has 
become too rich to be just a new set of puzzles solely within the 
paradigm of perimeter control—the defensible perimeter began 
to have its own version of epicycles within epicycles by a shrink
ing of what a perimeter could, or should, control [5].

A second crisis for the paradigm of perimeter control is upon us 
now as exemplified with a commercial example. Table 1 counts 
cores in the Qualcomm Snapdragon 801.

That is somewhere between 18 and 21 cores. In the vocabulary 
of the Internet of Things, is that one “thing” or the better part of 
two dozen “things”? Is the perimeter to be defended the physical 
artifact in the user’s pocket or is it the execution space of each 
of those cores? The compound annual growth rate of deployed 
“things” approximates 35%—meaning a 27month doubling time. 
That’s a lot of new perimeter.

If the paradigm of perimeter control is no longer produc
ing puzzles that can be solved by further scientific research, 
then what? Noting, as Kuhn does, that “to reject one paradigm 
without simultaneously substituting another is to reject science 
itself,” what might be a substitution? If everything we are or do 
is unique if examined closely enough, then the idea of authenti
cation as verifying an assertion like “My name is Dan” can easily 
morph into an observable like “Sensors say that this is Dan.” In 
other words, our paradigm of an authentication transaction before 
any other perimeterpiercing transaction is itself showing its age.

The paradigm that is the obvious alternative to perimeter 
control, and thus authentication as a gating function, is account
ability based on one single unspoofable identity per person. If I 
am right—that realsoonnow identity is simply an observable 
that needs no assertions—then that single identity which the 
individual has but does not need to prove may be fast upon us. 
The National Strategy for Trusted Identities in Cyberspace is 
not worded in that way although that is how I read it. That means 
there is a crisis in privacy research, too. Privacy’s paradigm has 
long been, “Privacy is the power to selectively reveal oneself 
to the world” [6], but all uses of virtual reality come with total 
surveillance.

Nevertheless, if being part of the modern world in no more robust 
way than appearing unmasked on a public street is the same as 
submitting to unitary identification observable at a distance by 
things you never heard of, then that means either submission or 
withdrawal for the individual.

Note that Kuhn never said that a switch to a new paradigm 
would be delightful or comforting, he merely said that it would 
better explain the way the world works while suggesting new 
puzzles for scientists who share that paradigm to pursue. 
Authentication transactions as a prodrome to authorization 
transactions in service to a paradigm of perimeter control may 
soon be behind us, including in the peertopeer world. If, in 
fact, being authenticated as yourself is unavoidable, then there 
is no proving that this is the Dan for whom there is a book entry 
allowing him into some robotprotected building, but rather an 
accountability regime based on whether that Dan did or did not 
enter a building for which he might later be penalized. His crime 
would not be masquerading as some identity other than his own 
so as to get in, but rather that of he was observed to have gone in 
even though he was forbidden to do so.

Central CPU 4 

Adreno 330 GPU 4 

Video out 1 

Hexagon QDSP 3 

Modem 2–4 

Bluetooth 1 

USB controller 1 

GPS 1 

Wifi 1–2 

Charging ? 

Power ? 

Display ?

Table 1: Identifiable cores in Qualcomm Snapdragon 801



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 83

COLUMNS
For Good Measure: Paradigm

What I am suggesting as the crisis around the paradigm of 
selective revelation is that, as with metadata, there is so much 
redundancy in what is observable that prohibiting one or another 
form of collection has no meaningful effect whatsoever on those 
agencies, whether intelligence or advertising, who would build 
a model of you from metadata alone. As but one example, with 
current technology I can read the unique radio signature of your 
beating heart at five meters. As with anything that has an elec
tromagnetic output, the only technological question is the qual
ity of the antenna. If I can take your picture on the public street 
without your permission or notice, why can’t I record your heart? 
Or your iris? Or your gait? Or the difference in temperature 
between your face and your hands? That list is long and getting 
longer. It is a crisis for which the paradigm of selective revelation 
can scarce put up puzzles fast enough, and scientific solving of 
those puzzles can, at best, trail the curve.

The crisis is simply that what heretofore we have known as 
confidentiality is becoming quaint and irrelevant. Perhaps sci
ence will have to reposition confidentiality within some new 
paradigm that prioritizes integrity, not confidentiality. Perhaps 
a world in which data can and will be collected irrespective of 
selective permission granting is a world in which the data had 
better be right. If more and more intelligent actors are to be out 
there doing our implicit bidding long after we’ve forgotten their 
configuration interface, then data integrity had better be as 
absolute as we can make it, and that is then where the research 
puzzles will have to be found.

Perhaps I have it wrong, perhaps the topmost paradigm of the 
science of security is simply that of defense. Perhaps the rise of 
sentient opponents makes a paradigm of defense unarguable, as 
evidenced by rafts of paradigmatically generated puzzles of the 
sort of how can this or that be hardened or otherwise defended, 
up to and including DARPA’s Grand Challenge [7].

If defense is and has been our paradigm, then that, too, is in 
crisis. That is in no way a failure; paradigms only change due to 
the success that the one paradigm has in motivating science to 
explore the world thoroughly enough to discover anomalies that 
cannot be made to fit within the paradigm that caused them to 
be discovered in the first place. The outgrowth of the paradigm 
of defense has been guidance that has allowed us, including non
scientist practitioners, to get better and better. We have discov
ered and then deployed better tools, we have come to understand 
causal chains and thus have achieved better understood prac
tices and work with better colleagues. That’s the plus side, and it 

is one terrific plus side. But if I am interested in the ratio of skill 
to challenge, then, as far as I can estimate, we are expanding the 
societywide attack surface faster than our science of security is 
expanding our collection of tools, practices, and colleagues. The 
paradigm of defense is in crisis.

One embodiment of the paradigm of defense has been the move
ment to build security in. The successes of that movement are 
precisely of the sort I mentioned before when I said that we have 
discovered and then deployed better tools. But to remind you of 
the truism in Adi Shamir’s 2002 Turing Award lecture, “Cryp
tography is typically bypassed, not penetrated.” I would argue 
that this is true of all aspects of the cybersecurity mechanism, 
including those delivered by building security in; it is the possi
bility of bypass that ultimately matters. Our sentient opponents 
know that, too, and their investments in automating the discov
ery of methods of bypass are in a hell of a horse race with both 
building security in and instatic analysis of code bodies, new or 
old. Look (again) at Figure 1.

Kuhn takes some pains to say why it is that a paradigm shift 
requires a crisis, that “to an extent unparalleled in other fields, 
[scientists] have undergone similar educations and professional 
initiations.” One here must ask the central question of this 
essay by mirroring Kuhn: are the paradigms of cybersecurity in 
enough of a crisis that resolution of the crisis requires a change 
of paradigm? The answer is by no means obvious, although to 
my eye there are several crises now in play. If the crises suffi
cient to require a reformulation of the paradigm or paradigms of 
cybersecurity, then a scientific revolution is upon us, what Kuhn 
calls “a reconstruction of group commitments.” As he points out, 
a crisis requiring such a reconstruction might not even be in 
cybersecurity itself, but instead might be due to discoveries in 
some other field or venue, just as discoveries in physics engen
dered a crisis in chemistry once upon a time.

That, then, is the question before us, complicated by the chang
ing nature of what scientists of security are studying both with 
respect to rapid technological change and the presence of sen
tient opponents, leavened, of course, with the societal demands 
fast upon us largely independent of what we know or say. I think I 
see paradigms here that are in undeniable crisis. I can, of course, 
be entirely wrong, and we may still be working our way up to 
being a science, still coalescing schools of thought into the kind 
of paradigm that will define us as scientists.

A fuller treatment of this topic is available at http://geer.tinho 
.net/geer.nsf.6i15.txt.



84   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
For Good Measure: Paradigm

References
[1] Chart data courtesy of Hamed Okhravi, MIT.

[2] NSA, Science of Security: www.nsa.gov/whatwedo 
/research/scienceofsecurity/index.shtml.

[3] Best Scientific Cybersecurity Paper winner: https:// 
www.nsa.gov/newsfeatures/pressroom/pressreleases/2014 
/bestscientificcybersecuritypapercompetition.shtml.

[4] Letter to Henry Fawcett, 1863, as quoted in E. J. Huth and 
T. J. Murray, eds., Medicine in Quotations: Views of Health and 
Disease through the Ages (American College of Physicians, 
2006), p. 169.

[5] IT Conversations, “The Shrinking Security Perimeter,” 
recorded March 1, 2004: audio mirror at: geer.tinho.net 
/Dan_Geer__The_Shrinking_Security_Perimeter.mp3.

[6] E. Hughes, “A Cypherpunk’s Manifesto,” March 9, 1993: 
http://www.activism.net/cypherpunk/manifesto.html.

[7] “Cyber Grand Challenge”: https://cgc.darpa.mil/.



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 85

COLUMNS

/dev/random
Distributed Illogic

R O B E R T  G .  F E R R E L L

A s a teen I bought my first car (a ’69 Chevy Impala Custom, in the 
trunk of which you could park most of today’s models with room to 
spare) using money I’d saved from various jobs after school and on 

weekends. The engine was a small block 350 without any fancy electronics, 
emissions control devices apart from an exhaust manifold, or fuel  injection 
mumbojumbo. I knew how it worked, how to do routine maintenance and 
simple repairs, and where everything was in the engine compartment. I 
could replace/gap spark plugs, change the oil, filters, and distributor cap, 
adjust the timing, play with the carb mixture, and so on. It was a straight
forward, reliable vehicle, even if it did lack certain optional luxuries like 
functional motor mounts.

When I open the hood of my 2001 Trans Am (yeah, I still drive that wonderful dinosaur, 
when I drive at all), even after 15 years of ownership I’m frankly at a loss to understand any 
more than half of what I see in there. I’m lucky if I can find the oil dipstick, to be brutally 
honest. So much has changed in the world of automotive technology since 1974. I plug in my 
diagnostic computer readout thingamajig whenever I get a warning light on the dashboard, 
but I don’t have any idea what the messages it displays are talking about most of the time. I 
just shrug and hit “erase all.”

Technology in virtually every area has advanced significantly, of course. Take distributed 
computing, for example. It wasn’t that long ago that the suggestion that bits and pieces of not 
only our data but the very software and hardware that process it would be scattered hither 
and yon across the Internet like propaganda leaflets dropped from a vintage South Korean 
Piper Cub would have been met with ridicule or at least eye rolls and headshaking.

I figure if we’re going to continue down the distributed everything road, we may as well take 
it to the next level and distribute the electricity that runs these machines while we’re at it. 
So let’s say I need 30 amps at 110 volts to run a server rack that’s processing on the cloud. In 
the old system, I would simply plug into a UPS that then was fed by a circuit from the local 
electrical utility (in most cases). How quaint. In my sleek, modern power supply engineering 
paradigm, nodes all over the planet advertise the number of electrons they have sitting 
around unused at the moment and send them wherever they’re needed on request.

At any given moment, then, you might be powering your cloud server with juice from Monte
video, Edmonton, Aberdeen, Zagreb, Taipei, Jakarta, and Perth. I’m not certain, but that 
could require some conversion from European or Asian volts to North American volts. I 
think electrons might travel on the other side of the wire in most of those countries, too, but 
we can work with that.

As an adjunct to the distributed computing trend, I propose we stop calling it the “Internet” 
and adopt “Omninet.” It has a more inclusive ring, don’t you think? With the term Omninet 
you don’t need to make cumbersome distinctions like “the Internet of Things” because 

Robert G. Ferrell is an award 
winning author of humor, 
fantasy, and science fiction, 
most recently The Tol Chronicles 
(www.thetolchronicles.com).  

rgferrell@gmail.com



86   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

COLUMNS
/dev/random: Distributed Illogic

Omninet pretty much covers all that ground by default. It also 
has a sort of Orwellian the government is watching you feel to 
it that should prove popular amongst certain elements of today’s 
(justifiably) paranoid society.

Maybe it is also time we consider taking our distributed physical 
architecture to its logical extreme. Why stop at the board level 
when you can drill on down to individual components? We can 
assemble the necessary circuits on the fly from a database of 
hundreds of thousands or even millions of resistors, capacitors, 
diodes, integrated circuits, and so on available worldwide using 
the new generation of justintime hardware compilers I recently 
made up. That way the only piece of processing hardware you 
actually need on premises is the compiler itself. Everything else 
can be recruited from the Omninet in real time. Maybe we could 
even figure out a way to assemble the compiler on the fly. Closed 
loops are so entertaining.

Having a ten thousandmilelong electrical bus might seem 
a little ponderous, but think of the local thermal advantages, 
not to mention the savings from not needing to buy equipment 
that becomes obsolete before you can get it installed and 
configured. Heck, I see significant advantages even for home 
users, especially gamers. One of the reasons I finally gave up on 
PCs and went to console gaming exclusively some years ago is 
that I got tired of having to upgrade my video card for every new 
astronomicalpolygon count game release. Sixty bucks for the 
game and another three hundred for the hardware to run it puts 
a real dentaroo in the ol’ household budget, know what I mean? I 
have a cabinet drawer that could supply the nucleus of a decent 
graphics card museum.

If the game itself could actually specify its minimum hardware 
requirements for running and recruit the necessary components 
from the Omninet, that would be just super. Sure, a few itty
bitty latency issues might crop up at first, but I’m certain they’ll 
be overcome. After all, we can stream 4K cat videos to corners 
of the planet where indoor plumbing is considered a novelty. 
All a gamer would need is a monitor, an Omninet connection, 
and whatever interface was necessary to make the distributed 
components work together. 

Of course, some might argue, why bother with onpremises 
hardware at all? Just use a sort of distributed Steamlike system 
where each player forks a new instantiation of both the game 
and platform. Simplifies multiplayer quite a bit. We might take 
clipping to new heights, as well: instead of merely hiding the 
parts of a rendered scene not currently visible to the player, don’t 
even write the code until the predictive engine determines it will 
be required soon. Who needs human programmers these days, 
anyway? Am I right? Step away from the pitchfork, meatbag.

If I’ve said all this before, I’m not surprised. Three days is about 
the maximum I can go without repeating myself at dinner table 
conversation with my wife; I’ve been writing this column now for 
over ten years. You’re lucky I don’t just select random paragraphs 
from previous columns and string them together. I called it “/dev 
/random” for a reason, you know.

Um, actually, that’s not a bad idea. Reusable code is all the rage, 
after all. Maybe I can put every paragraph I’ve ever written into 
a database and let you mash them up yourselves: sort of a literary 
mix tape. This sort of betrayal only hurts if you let it.



16 12th USENIX Symposium 
on Operating Systems Design
and Implementation
Sponsored by USENIX in cooperation 
with ACM SIGOPS

November 2–4, 2016 • Savannah, GA

Join us in Savannah, GA, November 2–4, 2016, for the 12th USENIX Symposium on Operating 

Systems Design and Implementation (OSDI ’16). The Symposium brings together professionals 

from academic and industrial backgrounds in what has become a premier forum for discussing 

the design, implementation, and implications of systems software.

Co-located with OSDI ’16 on Tuesday, November 1:

•  INFLOW ’16: 4th Workshop on Interactions of NVM/Flash with Operating Systems and Workloads

Register Now!

www.usenix.org/osdi16

The full program and registration are now available.

Register by Friday, October 7, and save!



88   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

BOOKSBook Reviews
M A R K  L A M O U R I N E

Introducing Go
Caleb Doxsey
O’Reilly Media, 2016, 112 pages
ISBN: 9781491941959

I didn’t look twice when I saw this title come up as a “people 
also bought” on Amazon. A lot of my work recently has been 
developing or using applications written in Go(lang), and I’ve 
been looking for good books on Go for more than a year. For the 
longest time there were no professionally published books on 
Go, and the only resources were blogs, the official godoc Web 
site (https://godoc.org), and a couple of Creative Commons texts 
written by developers mostly found on the Golang Web site 
(https://golang.org/doc/). (Don’t misunderstand me. These are 
great resources, but I like books, made of paper, in my hand.) 
Recently this has changed dramatically: there are half a dozen 
books on learning Go in my local bookstore. I’m really glad about 
this and have started picking up books to read.

When I first open a box of books, I take each one out and leaf 
through it before setting it on the pile of “to be read” books. I 
stopped when I got to Introducing Go and looked more carefully. 
It turns out that I’d read and reviewed the same book in 2014. 
Well, not quite the same book.

Caleb Doxsey was one of the first authors to publish a book on 
learning Go. It was first available as a Web site in collaboration 
with Google, then a PDF entitled “An Introduction to Program
ming in Go” made available by Doxsey and Google under a CC3 
license in 2012. It’s still there if you want to read it (http://www 
.golangbook.com/books/intro). For a time the book was also 
available as a paperback, but the conversion from etext to paper 
was a mixed success.

Introducing Go is, at its core, Doxsey’s original corpus but pub
lished by O’Reilly. It’s still a slim volume and the contents and 
flow are largely lifted from the earlier work, but that’s not what’s 
important. The text has been updated and reformatted, and this 
is a significant improvement over the selfpublished version 
from 2012. It’s not that Doxsey didn’t do a good job, but O’Reilly 
really enforces good editing and layout: the code examples stand 
out and are much easier to read in the standard typeset style; the 
paragraphing and tables are clearer; and although the book is 
physically smaller, what’s there is what’s important and it’s clear.

There is a small set of books that I call the “slim classics.” I’m 
thinking of The C Programming Language (Kernighan and 
Ritchie), Unix Programming Environment (Kernighan and Pike), 
and a couple of others like them. They’re not always the best 

allaround guides or references, but they distill the essence of a 
topic in a way that thicker tomes sometimes lose in their quest 
for authoritative completeness. In these days of fastmoving lan
guage development, I don’t know if there’s room for slim classics, 
but I think Introducing Go could be a contender.

Go in Action
William Kennedy, with Brian Ketelsen and Erik St Martin
Manning Publications Company, 2016, 241 pages
ISBN: 9781617291781

As just mentioned, I’ve been on a bit of a Go(lang) book kick 
recently. Go in Action is one I looked forward to. In general I like 
Manning’s style, and their editorial choices tend to walk the fine 
line between traditional dusty references and frothy Dummies
style tutorials.

The authors used the MEAP (Manning Early Access Program) 
process for writing and prerelease editing and commentary, in 
which early subscribers get to see the chapters raw as they are 
submitted, and the authors and editors get commentary during 
the writing process. In other words, they use the Internet to 
apply the “many eyes” principle to writing. 

After reading a number of texts on Go, I see a kind of standard 
narrative path emerging: “Hello, world,” general development 
and build environment, pulling packages for inclusion, then into 
the language constructs themselves, finally ending with a chap
ter on testing. This is a perfectly reasonable path to take, but 
after reading a number of them, I’m finding it harder to see what 
distinguishes one book from another.

Go in Action does have a number of aspects that set it apart. 
The first I noted above: Manning has developed a very clean 
typography and layout style, which makes following the com
mentary and code very easy. Line numbering each code block 
makes following references easy both for the authors and for the 
reader. Using a registration table inside the front cover of the 
book, Manning offers a watermarked copy of every book in PDF, 
EPUB, and MOBI for every paper copy purchased. Their focus on 
writing for both paper and electronic documents means that the 
two forms have parity. I can read the EPUB version and get as 
good an experience as when reading the hard copy. 

Once you get below the general arc of these books, Kennedy et 
al. do a very good job of showing both how to use Go constructs 
and what happens when you do. The Go runtime environment is 
very different from anything that readers coming from scripting 
languages or Java might be familiar with. Each language con



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 89

BOOKS

struct has a deliberate effect and behavior in the runtime, and 
unlike modern scripting languages, Go is explicitly designed not 
to hide the underlying mechanisms. You can stick your hand in 
the running motor if you want to. Kennedy et al. provide text and 
diagrams that illustrate these behaviors. This helps new devel
opers avoid (or in my case, recognize after the fact) the pitfalls 
that can lead to lost fingers.

This is not an introductory book on programming. It’s likely to 
be too much for a reader who isn’t already proficient in one or 
several other languages. 

The code examples are available online as are updates to the 
etext (assuming you’ve registered your copy). The authors are 
available by email or other means for questions or commentary. 

If you’re coming to Go as a student or professional developer, 
Go in Action would not be a bad introduction. I don’t think you’ll 
want to stop there, though.

Docker in Action
Jeff Nickoloff
Manning Publications, 2016, 284 pages
ISBN 9781633430235

As with the Go language, there has been a shortage of good books 
on Docker. There is a relationship between the two. Docker 
is written in Go, and Go and Docker both have reached a level 
of maturity and stability where it makes sense to begin writing 
about them, and Docker in Action does a good job. 

Often when people try to explain software containers they begin 
with Docker’s shipping container metaphor. Unfortunately, this 
isn’t really an apt metaphor. It’s neither insightful or informa
tive when applied to software containers. Then they start trying 
to define them as “not virtual machines” which is similarly 
uninformative. 

Nickoloff opens Docker in Action with one of the best descrip
tions of software containers that I’ve seen (though he does at 
one point tip a hat to shipping containers). Containers are just 
processes with blinders on, and Nickoloff shows clearly how 
they relate to the OS, to VMs, and traditional processes.

I really like the progression of the narrative in this book. The 
author begins with simple containers doing simple jobs locally. 
All of the examples involve realworld tasks, using containers to 
replace the traditional applications. Along the way he discusses 
both the benefits and costs of this. Every case shows the CLI 
command, which invokes the container, the overt result, and 

then goes under the covers to show how the result was achieved 
in the context of containers. When readers follow the text care
fully, they will know “what happened” at each of the appropriate 
layers. This is really important when readers put their under
standing to use doing new tasks. 

Another thing I really like about the book is Nickoloff’s restraint 
when it comes to building new containers. Dockerfiles and cus
tom images are sexy and interesting looking, but for containers 
to fulfill their promise, most people should be using offtheshelf 
images. Nickoloff manages to get more than half way through the 
text before discussing container builds. Even then he treats it as 
a small step, merely extending existing images and moving right 
on to continuous integration and publishing, the true life cycle of 
container images. I suspect he knows that there are other texts 
that go into Dockerfile management in painful detail and that 
the “best practices” for creating new images for composition are 
still being developed.

I did learn quite a bit about a more open topic in container man
agement: orchestration. Docker Inc. has been developing inhouse 
tools for composing containers into applications. Others have 
been doing similar work, but Docker Inc. would really like you to 
use theirs. This final section introduces Docker’s offerings. 

Docker Compose is Docker’s answer to Kubernetes. It provides 
a way to create containers that are meant to work in unison to 
form an application or service. Docker Machine (which was 
once known as “boot to docker”) is a tuned bootable image meant 
solely to host the Docker runtime. It is an analog of CoreOS or 
Project Atomic, both minimized bootable images meant to host 
container runtime environments. Docker Swarm is meant to 
allow for scaling and distribution of containers across a multi
host environment. Again, this is comparable to Kubernetes or 
OpenShift.

Each of these tools gets a chapter and a little more at the end of 
the book. The examples and illustrations are every bit as good 
here as they are in the chapters covering the more mature ele
ments of Docker. Even though I’m familiar with Kubernetes, I 
expect I will turn back here the next time I need to build a multi
container application quickly. Once I am more familiar with the 
Docker tools, I can evaluate whether they will fill the needs of 
the kinds of largescale systems that Kubernetes means to build. 
Nickoloff has made it easy for me to explore a tool set I would 
otherwise not have considered given my current experience. 
Make of that what you will.

Of the few texts I’ve seen on Docker so far, this is the one I would 
hold out to someone who asked me where to start. Nicely done.



NOTES

90   FA L L 20 16  VO L .  41 ,  N O.  3  www.usenix.org

USENIX Member Benefits
Members of the USENIX Association 
 receive the following benefits:

Free subscription to ;login:, the Associa
tion’s quarterly magazine, featuring techni
cal articles, system administration articles, 
tips and techniques, practical columns on 
such topics as security, Perl, networks and 
operating systems, and book reviews

Access to ;login: online from December 
1997 to the current issue: www.usenix.org/
publications/login/

Discounts on registration fees for all 
 USENIX conferences

Special discounts on a variety of products, 
books, software, and periodicals: www.
usenix.org/memberservices/discount
instructions

The right to vote on matters affecting the 
Association, its bylaws, and election of its 
directors and officers

For more information regarding member
ship or benefits, please see www.usenix.org/
membership/or contact office@usenix.org. 
Phone: 5105288649.

USENIX Board of Directors
Communicate directly with the  USENIX 
Board of Directors by writing to 
board@usenix.org.

P R E S I D E N T

Carolyn Rowland, National Institute of  
Standards and Technology 
carolyn@usenix.org

V I C E  P R E S I D E N T

Hakim Weatherspoon, Cornell University 
hakim@usenix.org

S E C R E T A R Y

Michael Bailey, University of Illinois  
at Urbana-Champaign 
bailey@usenix.org

T R E A S U R E R

Kurt Opsahl, Electronic Frontier  Foundation 
kurt@usenix.org

D I R E C T O R S

Cat Allman, Google 
cat@usenix.org

David N. BlankEdelman, Apcera 
dnb@usenix.org

Angela Demke Brown, University  
of  Toronto 
demke@usenix.org

Daniel V. Klein, Google 
dan.klein@usenix.org

E X E C U T I V E  D I R E C T O R

Casey Henderson 
casey@usenix.org

Why USENIX?
by Carolyn Rowland,  
USENIX Board President

My first LISA conference was in 1994 in 
Monterey, California. I was a lone sysadmin 
professionally, and I had never seen that 
many IT operations people under one roof. 
There were people who had authored the 
tools the rest of us used, and it seemed like 
a gathering of every kind of systems person 
you could imagine. I mostly kept to myself 
in the early days. Eventually several of us on 
my team attended LISA and it turned into 
a week of collecting ideas and then coming 
together to bond and talk about what we had 
heard. I changed jobs, but LISA continued to 
be a place to go to get exposure to interest
ing ideas and to hear people from across all 
industries discuss how they faced all kinds 
of challenges.

Eventually I realized there was also a great 
big community of people at the conference. 
The community was multifaceted, so find
ing the groups that interested me meant 
frequenting BirdsofaFeather sessions 
(BoFs) and other social activities, such 
as board game night and the reception. I 
made a bunch of great professional contacts 
with whom I still talk today. That’s when I 
realized that I didn’t need to bring my own 
community to LISA; there was a whole 
community waiting for me. Somehow the 
“hallway track,” or community interaction, 
was just as valuable as the formal confer
ence content. 

At some point I volunteered, and there I 
was, on a LISA program committee. I was 
reading draft LISA paper submissions with 
my industry perspective, and it was a tiny 
peek into the inner workings. I chaired 
LISA in 2012 and realized that it was rush



www.usenix.org  FA L L 20 16  VO L .  41 ,  N O.  3 91

NOTES

threats to your being become more main
stream, this isn’t a small achievement. 
USENIX is also a freedom fighter in the 
battle for open access to information. This 
is a hard battle to win. Behind the scenes, 
the staff are often burning the candle at 
both ends to organize, produce, promote, 
and publish talks, papers, journals, and 
;login: in order for you to have access to that 
information as soon as possible as well as 
freeandclear. Of course, nothing is free to 
produce. USENIX is continually looking for 
ways to ensure that we continue to support 
open access. USENIX isn’t a huge corpora
tion—we are a nonprofit organization—and 
there isn’t a long line of companies champ
ing at the bit to line the open access coffers. 
So why do it? We do it because it’s the right 
thing to do. Research and knowledge should 
be available to all. 

This means that our events tend toward 
strong content in talks, panels, tutorials, 
and workshops without much glitz and 
flash. It means the staff wear many hats as 
they work toward the goal. It means the goal 
keeps changing because the world keeps 
changing and there are so many thriving 
communities to serve. 

Looking into the machinery, I am capti
vated by the strength and passion of the 
USENIX team. These attributes extend 
beyond the staff team to the Board of Direc
tors, who volunteer their service, and the 
community members who act as steering 
committee, program, and organizing com
mittee members; program chairs; speakers; 
instructors; and researchers, all who share  
a common goal. 

If there is one thing I would still like to do, 
it would be an expansion of good works. We 
have been focused on the fiscal health of 
USENIX and making sure the staff are not 
overworked as they produce the events that 
feed our current communities. I would love 
to look at the makeup of these communities 
and bring in more students and under
represented folks. As we begin to reach the 
point of financial sustainability, we can do 
more in this effort financially, but it’s not 
too soon to start strategizing about it.

There’s definitely more work to be done. 
I look forward to partnering with the 
 USENIX staff, the rest of the Board, and 
members like you to nurture and grow our 
communities to be even more inclusive, 
supportive, and essential to advancing 
computing research and enhancing our 
professional lives.

ing by too quickly. I loved trying to create 
and nurture communities through shared 
interests, but chairing LISA was a firehose 
of project planning with no time to try to 
grok how it all worked before it was time to 
deliver the conference program to USENIX. 
I tried to leave behind some breadcrumbs 
for the chairs that came after me, but my 
real chance to make a difference came when 
a USENIX Board member approached me 
and asked me to consider running for a seat 
in the upcoming Board election. This would 
not only mean getting more involved in 
USENIX from a broader perspective, but it 
would also give me a chance to slow down 
and potentially have a bigger impact on 
LISA, my own community. 

Upon joining the Board, I found that there 
were many communities under the USENIX 
umbrella and many of them had champi
ons on the Board. This was fascinating 
as we talked about ways that each of us 
wanted to help our communities. David 
Blank Edelman and I became the LISA 
co champions on the Board. We talked to 
volunteers and attendees. We heard from 
people who wanted to update the confer
ence. There were so many ideas, most of 
them excellent. How would we execute the 
plans? How could we improve on the LISA 
model in ways that would get the commu
nity more excited about training and talks? 
How could we address longstanding con
cerns about the complexity of the program 
or the sheer volume of information we were 
cramming into a week? How do people learn 
best and how can we enable people in our 
community to stay relevant when it seemed 
like technology was only moving faster all 
the time? Would we find a way?

The LISA of today looks a bit different from 
the LISA of 2012, and it feels good to see 
the USENIX staff, Board, and community 
working together to make it happen. But it’s 
more than just LISA. 

To me, USENIX is that small momand
pop shop you love to champion, where the 
service is tiptop and the community is 
supportive and accepting. In a world where 
negativity, bullying, misogyny, and other 



Announcement and Call for Papers www.usenix.org/fast17/cfp

February 27–March 2, 2017 • Santa Clara, CA

FAST ’17: 15th USENIX Conference on 
File and Storage Technologies 

Important Dates
• Paper submissions due: Tuesday, September 27, 2016, 9:00 p.m. PDT
• Tutorial submissions due: Tuesday, September 27, 2016, 9:00 p.m. PDT
• Notification to authors: Monday, December 12, 2016
• Final paper files due: Tuesday, January 31, 2017

Conference Organizers 
Program Co-Chairs
Geoff Kuenning, Harvey Mudd College
Carl Waldspurger, CloudPhysics

Program Committee
Nitin Agrawal, Samsung Research
Irfan Ahmad, CloudPhysics
Remzi Arpaci-Dusseau, University of Wisconsin-Madison
Mahesh Balakrishnan, Yale University
André Brinkmann, Johannes Gutenberg University Mainz
Haibo Chen, Shanghai Jiao Tong University
Peter Desnoyers, Northeastern University
Ashvin Goel, University of Toronto
Ajay Gulati, ZeroStack
Danny Harnik, IBM Research - Haifa
Kimberly Keeton, Hewlett Packard Labs
Ricardo Koller, IBM Research
Sungjin Lee, Inha University
Tudor Marian, Google
Marshall Kirk McKusick, McKusick Consultancy
Arif Merchant, Google
Brad Morrey, Hewlett Packard Labs
Sam H. Noh, UNIST (Ulsan National Institute of Science and Technology)
Raju Rangaswami, Florida International University
Erik Riedel, EMC
Jiri Schindler, Simplivity
Bianca Schroeder, University of Toronto
Philip Shilane, EMC
Keith A. Smith, NetApp
Swaminathan Sundararaman, Parallel Machines
Vasily Tarasov, IBM Research
Eno Thereska, Confluent and Imperial College London
An-I Andy Wang, Florida State University
Hakim Weatherspoon, Cornell University
Sage Weil, Red Hat
Theodore M. Wong, Human Longevity, Inc.
Gala Yadgar, Technion—Israel Institute of Technology
Erez Zadok, Stony Brook University
Ming Zhao, Arizona State University

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—Madison
William J. Bolosky, Microsoft Research
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Garth Gibson, Carnegie Mellon University and Panasas, Inc.
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs

Florentina Popovici, Google
Erik Riedel, EMC
Jiri Schindler, SimpliVity
Bianca Schroeder, University of Toronto
Margo Seltzer, Harvard University and Oracle
Keith A. Smith, NetApp
Eno Thereska, Confluent and Imperial College London
Ric Wheeler, Red Hat
Erez Zadok, Stony Brook University
Yuanyuan Zhou, University of California, San Diego

Overview
The 15th USENIX Conference on File and Storage Technologies (FAST ’17) 
brings together storage-system researchers and practitioners to explore 
new directions in the design, implementation, evaluation, and deployment 
of storage systems. The program committee will interpret “storage systems” 
broadly; everything from low-level storage devices to information manage-
ment is of interest. The conference will consist of technical presentations 
including refereed papers, Work-in-Progress (WiP) reports, poster sessions, 
and tutorials.

FAST accepts both full-length and short papers. Both types of submis-
sions are reviewed to the same standards and differ primarily in the scope of 
the ideas expressed. Short papers are limited to half the space of full-length 
papers. The program committee will not accept a full paper on the condi-
tion that it is cut down to fit in the short paper page limit, nor will it invite 
short papers to be extended to full length. Submissions will be considered 
only in the category in which they are submitted.

Topics
Topics of interest include but are not limited to:
• Archival storage systems
• Auditing and provenance
• Caching, replication, and consistency
• Cloud storage
• Data deduplication
• Database storage
• Distributed storage (wide-area, grid, peer-to-peer)
• Empirical evaluation of storage systems
• Experience with deployed systems
• File system design
• High-performance file systems
• Key-value and NoSQL storage
• Memory-only storage systems
• Mobile, personal, and home storage
• Parallel I/O and storage systems
• Power-aware storage architectures
• RAID and erasure coding
• Reliability, availability, and disaster tolerance
• Search and data retrieval
•  Solid state storage technologies and uses (e.g., flash, byte- 

addressable NVM)
• Storage management
• Storage networking

Sponsored by USENIX in cooperation with ACM SIGOPS



• Storage performance and QoS
• Storage security
• The challenges of big data and data sciences

New in 2017! Deployed Systems
In addition to papers that describe original research, FAST ’17 also solicits 
papers that describe large-scale, operational systems. Such papers should 
address experience with the practical design, implementation, analysis, 
or deployment of such systems. We encourage submission of papers that 
disprove or strengthen existing assumptions, deepen the understanding of 
existing problems, and validate known techniques at scales or in environ-
ments in which they were never before used or tested. Deployed-system 
papers need not present new ideas or results to be accepted, but should 
offer useful guidance to practitioners.

Authors should indicate on the title page of the paper and in the submission 
form that they are submitting a deployed-system paper.

Submission Instructions
Please submit full and short paper submissions (no extended abstracts) by 
9:00 p.m. PDT on September 27, 2016, in PDF format via the Web submission 
form on the FAST ’17 Web site, www.usenix.org/fast17/cfp. Do not email 
submissions.
•  The complete submission must be no longer than 12 pages for full 

papers and 6 pages for short papers, excluding references. The program 
committee will value conciseness, so if an idea can be expressed in 
fewer pages than the limit, please do so. Supplemental material may be 
appended to the paper without limit; however the reviewers are not 
required to read such material or consider it in making their decision. 
Any material that should be considered to properly judge the paper for 
acceptance or rejection is not supplemental and will apply to the page 
limit. Papers should be typeset on U.S. letter-sized pages in two-column 
format in 10-point Times Roman type on 12-point leading (single-spaced), 
with the text block being no more than 6.5” wide by 9” deep. Labels, 
captions, and other text in figures, graphs, and tables must use reasonable 
font sizes that, as printed, do not require extra magnification to be legible. 
Because references do not count against the page limit, they should not be 
set in a smaller font. Submissions that violate any of these restrictions 
will not be reviewed. The limits will be interpreted strictly. No extensions 
will be given for reformatting.

•  Templates and sample first pages (two-column format) for Microsoft Word 
and LaTeX are available on the USENIX templates page, www.usenix.org/
templates-conference-papers.

•  Authors must not be identified in the submissions, either explicitly or 
by implication. When it is necessary to cite your own work, cite it as if 
it were written by a third party. Do not say “reference removed for blind 
review.” Any supplemental material must also be anonymized.

•  Simultaneous submission of the same work to multiple venues, sub-
mission of previously published work, or plagiarism constitutes dishonesty 
or fraud. USENIX, like other scientific and technical conferences and 
journals, prohibits these practices and may take action against authors 
who have committed them. See the USENIX Conference Submissions 
Policy at www.usenix.org/conferences/submissions-policy for details.

•  If you are uncertain whether your submission meets USENIX’s guidelines, 
please contact the program co-chairs, fast17chairs@usenix.org, or the 
USENIX office, submissionspolicy@usenix.org.

•  Papers accompanied by nondisclosure agreement forms will not be 
considered.

Short papers present a complete and evaluated idea that does not need 12 
pages to be appreciated. Short papers are not workshop papers or work-in-
progress papers. The idea in a short paper needs to be formulated concisely 
and evaluated, and conclusions need to be drawn from it, just like in a full-
length paper.

The program committee and external reviewers will judge papers on 
technical merit, significance, relevance, and presentation. A good research 
paper will demonstrate that the authors:
• are attacking a significant problem,
• have devised an interesting, compelling solution,
• have demonstrated the practicality and benefits of the solution,
• have drawn appropriate conclusions using sound experimental methods,

• have clearly described what they have done, and
• have clearly articulated the advances beyond previous work.

A good deployed-system paper will demonstrate that the authors:
• are describing an operational system that is of wide interest,
•  have addressed the practicality of the system in more than one real-world 

environment, especially at large scale,
• have clearly explained the implementation of the system,
• have discussed practical problems encountered in production, and
• have carefully evaluated the system with good statistical techniques.

Moreover, program committee members, USENIX, and the reading commu-
nity generally value a paper more highly if it clearly defines and is accom-
panied by assets not previously available. These assets may include traces, 
original data, source code, or tools developed as part of the submitted work.

Blind reviewing of all papers will be done by the program committee, 
assisted by outside referees when necessary. Each accepted paper will 
be shepherded through an editorial review process by a member of the 
program committee.

Authors will be notified of paper acceptance or rejection no later than 
Monday, December 12, 2016. If your paper is accepted and you need an 
invitation letter to apply for a visa to attend the conference, please contact 
conference@usenix.org as soon as possible. (Visa applications can take at 
least 30 working days to process.) Please identify yourself as a presenter and 
include your mailing address in your email.

All papers will be available online to registered attendees no earlier than 
Tuesday, January 31, 2017. If your accepted paper should not be published 
prior to the event, please notify production@usenix.org. The papers will be 
available online to everyone beginning on the first day of the main confer-
ence, February 28, 2017. Accepted submissions will be treated as confidential 
prior to publication on the USENIX FAST ’17 Web site; rejected submissions 
will be permanently treated as confidential.

By submitting a paper, you agree that at least one of the authors will 
 attend the conference to present it. If the conference registration fee will 
pose a hardship for the presenter of the accepted paper, please contact 
conference@usenix.org.

If you need a bigger testbed for the work that you will submit to FAST ’17, 
see PRObE at www.nmc-probe.org.

Best Paper Awards
Awards will be given for the best paper(s) at the conference. A small, 
 selected set of papers will be forwarded for publication in ACM Transactions 
on Storage (TOS) via a fast-path editorial process. Both full and short papers 
will be considered.

Test of Time Award
We will award a FAST paper from a conference at least 10 years earlier with 
the “Test of Time” award in recognition of its lasting impact on the field.

Work-in-Progress Reports and Poster Sessions
The FAST technical sessions will include a slot for short Work-in-Progress 
(WiP) reports presenting preliminary results and opinion statements. We are 
particularly interested in presentations of student work and topics that will 
provoke informative debate. While WiP proposals will be evaluated for ap-
propriateness, they are not peer reviewed in the same sense that papers are.
We will also hold poster sessions each evening. WiP submissions will auto-
matically be considered for a poster slot, and authors of all accepted full 
papers will be asked to present a poster on their paper. Other poster submis-
sions are very welcome. Please see the Call for Posters and WiPs, which will 
be available soon, for submission information.

Birds-of-a-Feather Sessions
Birds-of-a-Feather sessions (BoFs) are informal gatherings held in the eve-
nings and organized by attendees interested in a particular topic. BoFs  
may be scheduled in advance by emailing the Conference Department at 
bofs@usenix.org. BoFs may also be scheduled at the conference.

Tutorial Sessions
Tutorial sessions will be held on February 27, 2017. Please submit tutorial pro-
posals to fasttutorials@usenix.org by 9:00 p.m. PDT on September 27, 2016.

Registration Materials
Complete program and registration information will be available in Decem-
ber 2016 on the conference Web site.



Announcement and Call for Papers www.usenix.org/nsdi17/cfp

March 27–29, 2017 • Boston, MA

NSDI ’17: 14th USENIX Symposium on 
Networked Systems Design and 
Implementation  

Important Dates
• Paper titles and abstracts due: Wednesday, September 14, 2016, 

3:00 p.m. US PDT

• Full paper submissions due: Wednesday, September 21, 2016, 
3:00 p.m. US PDT

• Notification to authors: Monday, December 5, 2016

• Final paper files due: Thursday, February 23, 2017

Symposium Organizers
Program Co-Chairs

Aditya Akella, University of Wisconsin–Madison
Jon Howell, Google

Program Committee
Sharad Agarwal, Microsoft
Tom Anderson, University of Washington
Andrea Arpaci-Dusseau, University of Wisconsin—Madison
Anirudh Badam, Microsoft
Mahesh Balakrishnan, Yale University
Fabian Bustamante, Northwestern University
Ranveer Chandra, Microsoft
David Choffnes, Northeastern University
Romit Roy Choudhury, University of Illinois at Urbana–Champaign
Mosharaf Chowdhury, University of Michigan
Mike Dahlin, Google
Anja Feldmann, Technische Universität Berlin
Rodrigo Fonseca, Brown University
Nate Foster, Cornell University
Deepak Ganesan, University of Massachusetts Amherst
Phillipa Gill, Stony Brook University
Srikanth Kandula, Microsoft
Teemu Koponen, Styra
Sanjeev Kumar, Uber
Swarun Kumar, Carnegie Mellon University
Wyatt Lloyd, University of Southern California
Boon Thau Loo, University of Pennsylvania
Jacob Lorch, Microsoft
Ratul Mahajan, Microsoft
Dahlia Malkhi, VMware
Dave Maltz, Microsoft
Z. Morley Mao, University of Michigan
Michael Mitzenmacher, Harvard University
Jason Nieh, Columbia University
George Porter, University of California, San Diego
Luigi Rizzo, University of Pisa
Srini Seshan, Carnegie Mellon University
Anees Shaikh, Google
Ankit Singla, ETH Zürich
Robbert van Renesse, Cornell University
Geoff Voelker, University of California, San Diego

David Wetherall, Google
Adam Wierman, California Institute of Technology
John Wilkes, Google
Minlan Yu, University of Southern California
Heather Zheng, University of California, Santa Barbara
Lin Zhong, Rice University

Steering Committee
Katerina Argyraki, EPFL
Paul Barham, Google
Nick Feamster, Georgia Institute of Technology
Casey Henderson, USENIX Association
Arvind Krishnamurthy, University of Washington
Jeff Mogul, Google
Brian Noble, University of Michigan
Timothy Roscoe, ETH Zürich
Alex C. Snoeren, University of California, San Diego

Overview
NSDI focuses on the design principles, implementation, and practical 
evaluation of networked and distributed systems. Our goal is to bring 
together researchers from across the networking and systems com-
munity to foster a broad approach to addressing overlapping research 
challenges.

NSDI provides a high-quality, single-track forum for presenting results 
and discussing ideas that further the knowledge and understanding of 
the networked systems community as a whole, continue a significant re-
search dialog, or push the architectural boundaries of network services.

Topics
We solicit papers describing original and previously unpublished re-
search. Specific topics of interest include but are not limited to:

• Highly available and reliable networked systems

• Security and privacy of networked systems

• Distributed storage, caching, and query processing

• Energy-efficient computing in networked systems

• Cloud/multi-tenant systems

• Mobile and embedded/sensor applications and systems

• Wireless networked systems

• Network measurements, workload, and topology characterization 
systems

• Self-organizing, autonomous, and federated networked systems

• Managing, debugging, and diagnosing problems in networked 
systems

• Virtualization and resource management for networked systems 
and clusters

• Systems aspects of networking hardware

• Experience with deployed/operational networked systems

Sponsored by USENIX, the Advanced Computing Systems Association

http://static.usenix.org/


• Communication and computing over big data on a networked 
system

• Practical aspects of network economics

• An innovative solution for a significant problem involving net-
worked systems

Operational Systems Track
In addition to papers that describe original research, NSDI ’17 also solicits 
papers that describe the design, implementation, analysis, and experi-
ence with large-scale, operational systems and networks. We encourage 
submission of papers that disprove or strengthen existing assumptions, 
deepen the understanding of existing problems, and validate known 
techniques at scales or environments in which they were never used or 
tested before. Such operational papers need not present new ideas or 
results to be accepted.

Authors should indicate on the title page of the paper and in the 
submission form that they are submitting to this track.

What to Submit
NSDI ’17 is double-blind, meaning that authors should make a good- 
faith effort to anonymize papers. This is new for NSDI in 2017. As an 
 author, you should not identify yourself in the paper either explicitly 
or by implication (e.g., through the references or acknowledgments). 
However, only non-destructive anonymization is required. For example, 
system names may be left un-anonymized, if the system name is impor-
tant for a reviewer to be able to evaluate the work. For example, a paper 
on experiences with the design of .NET should not be re-written to be 
about “an anonymous but widely used commercial distributed systems 
platform.”

Additionally, please take the following steps when preparing your 
submission:

• Remove authors’ names and affiliations from the title page.

• Remove acknowledgment of identifying names and funding 
sources.

• Use care in naming your files. Source file names, e.g., Joe.Smith.
dvi, are often embedded in the final output as readily accessible 
comments.

• Use care in referring to related work, particularly your own. Do not 
omit references to provide anonymity, as this leaves the reviewer 
unable to grasp the context. Instead, a good solution is to refer-
ence your past work in the third person, just as you would any 
other piece of related work.

• If you need to reference another submission at NSDI ’17 on a 
related topic, reference it as follows: “A related paper describes the 
design and implementation of our compiler [Anonymous 2017].” 
with the corresponding citation: “[Anonymous 2017] Under sub-
mission. Details omitted for double-blind reviewing.”

• Work that extends an author’s previous workshop paper is 
welcome, but authors should (a) acknowledge their own previ-
ous workshop publications with an anonymous citation and (b) 
explain the differences between the NSDI submission and the 
prior workshop paper.

• If you cite anonymous work, you must also send the deanony-
mized reference(s) to the PC chair in a separate email.

• Blinding is intended to not be a great burden. If blinding your 
 paper seems too burdensome, please contact the program co-
chairs and discuss your specific situation.

Submissions must be no longer than 12 pages, including footnotes, 
figures, and tables. Submissions may include as many additional pages 
as needed for references and for supplementary material in appendices. 
The paper should stand alone without the supplementary material, but 
authors may use this space for content that may be of interest to some 
readers but is peripheral to the main technical contributions of the 

 paper. Note that members of the program committee are free to not 
read this material when reviewing the paper.

Submissions must be in two-column format, using 10-point type on 
12-point (single-spaced) leading, with a maximum text block of 6.5” wide 
x 9” deep, with .25” inter-column space, formatted for 8.5” x 11” paper. 
Papers not meeting these criteria will be rejected without review, and 
no deadline extensions will be granted for reformatting. Pages should 
be numbered, and figures and tables should be legible when printed 
without requiring magnification. Authors may use color in their figures, 
but the figures should be readable when printed in black and white. All 
papers must be submitted via the Web submission form linked from the 
Call for Papers Web site, www.usenix.org/nsdi17/cfp.

Submissions will be judged on originality, significance, interest, clar-
ity, relevance, and correctness.

Policies
Simultaneous submission of the same work to multiple venues, submis-
sion of previously published work, or plagiarism constitutes dishonesty 
or fraud. USENIX, like other scientific and technical conferences and jour-
nals, prohibits these practices and may take action against authors who 
have committed them. See the USENIX Conference Submissions Policy 
at www.usenix.org/conferences/submissions-policy for details.

Previous publication at a workshop is acceptable as long as the NSDI 
submission includes substantial new material. See remarks above about 
how to cite and contrast with a workshop paper.

Authors uncertain whether their submission meets USENIX’s guide-
lines should contact the Program Co-Chairs, nsdi17chairs@usenix.org.

Papers accompanied by nondisclosure agreement forms will not 
be considered. All submissions will be treated as confidential prior to 
publication on the USENIX NSDI ’17 Web site; rejected submissions will 
be permanently treated as confidential.

Ethical Considerations
Papers describing experiments with users or user data (e.g., network 
traffic, passwords, social network information) should follow the basic 
principles of ethical research, e.g., beneficence (maximizing the benefits 
to an individual or to society while minimizing harm to the individual), 
minimal risk (appropriateness of the risk versus benefit ratio), voluntary 
consent, respect for privacy, and limited deception. When appropriate, 
authors are encouraged to include a subsection describing these issues. 
Authors may want to consult the Menlo Report at www.caida.org/
publications/papers/2012/menlo_report_actual_formatted/ for further 
information on ethical principles, or the Allman/Paxson IMC ‘07 paper at 
conferences.sigcomm.org/imc/2007/papers/imc76.pdf for guidance on 
ethical data sharing.

Authors must, as part of the submission process, attest that their 
work complies with all applicable ethical standards of their home 
institution(s), including, but not limited to privacy policies and policies 
on experiments involving humans. Note that submitting research for 
approval by one’s institution’s ethics review body is necessary, but not 
sufficient—in cases where the PC has concerns about the ethics of the 
work in a submission, the PC will have its own discussion of the ethics of 
that work. The PC’s review process may examine the ethical soundness 
of the paper just as it examines the technical soundness.

Processes for Accepted Papers
If your paper is accepted and you need an invitation letter to apply for a 
visa to attend the conference, please contact conference@usenix.org as 
soon as possible. (Visa applications can take at least 30 working days to 
process.) Please identify yourself as a presenter and include your mailing 
address in your email.

Accepted papers may be shepherded through an editorial review 
process by a member of the Program Committee. Based on initial 
feedback from the Program Committee, authors of shepherded papers 

Continued on next page ➛



will submit an editorial revision of their paper to their Program Commit-
tee shepherd. The shepherd will review the paper and give the author 
additional comments. All authors, shepherded or not, will upload their 
final file to the submissions system by the camera ready date for the 
conference Proceedings.

All papers will be available online to registered attendees before the 
conference. If your accepted paper should not be published prior to the 
event, please notify production@usenix.org. The papers will be available 
online to everyone beginning on the first day of the conference.

Best Paper Awards
Awards will be given for the best paper(s) at the conference.

Community Award
To encourage broader code and data sharing within the NSDI commu-
nity, the conference will also present a “Community Award” for the best 
paper whose code and/or data set is made publicly available by the final 
papers deadline, February 23, 2017. Authors who would like their paper 
to be considered for this award will have the opportunity to tag their 
paper during the submission process.



U P C O M I N G  E V E N T S

OSDI ’16: 12th USENIX Symposium on Operating 
Systems Design and Implementation

Sponsored by USENIX in cooperation with ACM SIGOPS

November 2–4, 2016, Savannah, GA, USA
www.usenix.org/osdi16

Co-located with OSDI ’16
INFLOW ’16: 4th Workshop on Interactions of NVM/Flash 
with Operating Systems and Workloads
November 1, 2016
www.usenix.org/inflow16

LISA16
December 4–9, 2016, Boston, MA, USA
www.usenix.org/lisa16

Co-located with LISA16
SESA ’16: 2016 USENIX Summit for Educators in System 
Administration
December 6, 2016
Submissions due September 19, 2016
www.usenix.org/sesa16

USENIX Journal of Education in System Administration (JESA)
Published in conjunction with SESA
www.usenix.org/jesa

Enigma 2017
January 30–February 1, 2017, Oakland, CA, USA
enigma.usenix.org

FAST ’17: 15th USENIX Conference on File and 
Storage Technologies

Sponsored by USENIX in cooperation with ACM SIGOPS

February 27–March 2, 2017, Santa Clara, CA, USA
Submissions due September 27, 2016
www.usenix.org/fast17

SREcon17
March 13–14, 2017, San Francisco, CA, USA

NSDI ’17: 14th USENIX Symposium on Networked 
Systems Design and Implementation

March 27–29, 2017, Boston, MA, USA
Paper titles and abstracts due September 14, 2016
www.usenix.org/nsdi17

SREcon17 Asia
May 22–24, 2017, Singapore

Do you know about the
USENIX open access policy?

USENIX is the fi rst computing association to  off er free and open access to all of our conferences proceedings 

and videos. We stand by our mission to foster excellence and innovation while supporting research with a 

practical bias. Your membership fees play a major role in making this endeavor successful.

Please help us support open access. Renew your  USENIX membership and ask your colleagues to join or 

renew today!

www.usenix.org/membership

  
www.usenix.org/facebook

  
twitter.com/usenix

  
www.usenix.org/youtube

  
www.usenix.org/linkedin

  
www.usenix.org/gplus



More Craft.
Less Cruft.

Dec. 4–9, 2016
BOSTON

Register by November 10 and save!
usenix.org/lisa16

Now in its 30th year, LISA is the premier IT  operations conference 
where systems engineers, operations pro fessionals, and academic 
researchers share real-world knowledge about  designing, building, 
and maintaining the critical systems of our interconnected world.

KEYNOTE SPEAKERS:
• Jane Adams, Data Research and Acceleration, Two Sigma
• Mitchell Hashimoto, Founder, HashiCorp
• John Roese, CTO, EMC

The complete program is now available.

Sponsored by the USENIX Association

USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

POSTMASTER
Send Address Changes to ;login:
2560 Ninth Street, Suite 215
Berkeley, CA 94710

PERIODICALS POSTAGE
PAID

AT BERKELEY, CALIFORNIA
AND ADDITIONAL OFFICES


	Contents
	Musings
	POSIX Has Become Outdated
	What to Support When You’re Supporting: A Study of Linux API Usage and Compatability
	NOVA: A Log-Structured File System for Hybrid Volatile/Non-Volatile Main Memories
	Interview with Timothy Roscoe
	Runway: A New Tool for Distributed Systems Design
	Design Guidelines for High Performance RDMA Systems
	Invent More, Toil Less
	Some Routes Are More Default than Others
	Bootstrapping Trust in Distributed Systems with Blockchains
	Practical Threat Modeling
	The Networks of Reinvention
	iVoyeur: Pager Trauma Statistics Daemon, PTSD
	Practical Perl Tools: Seek Wise Consul
	Shutting Down Applications Cleanly
	For Good Measure: Paradigm
	/dev/random: Distributed Illogic
	Untitled
	Notes
	FAST ’17
	NSDI '17 Call for Papers



