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Abstract
Trusted, setuid-to-root binaries have been a substantial,
long-lived source of privilege escalation vulnerabilities on
Unix systems. Prior work on limiting privilege escalation
has only considered privilege from the perspective of the ad-
ministrator, neglecting the perspective of regular users—the
primary reason for having setuid-to-root binaries.

The paper presents a study of the current state of setuid-
to-root binaries on Linux, focusing on the 28 most com-
monly deployed setuid binaries in the Debian and Ubuntu
distributions. This study reveals several points where Linux
kernel policies and abstractions are a poor fit for the policies
desired by the administrator, and root privilege is used to
create point solutions. The majority of these point solutions
address 8 system calls that require administrator privilege,
but also export functionality required by unprivileged users.

This paper demonstrates how least privilege can be
achieved on modern systems for non-administrator users.
We identify the policies currently encoded in setuid-to-root
binaries, and present a framework for expressing and en-
forcing these policy categories in the kernel. Our prototype,
called Protego, deprivileges over 10,000 lines of code by
changing only 715 lines of Linux kernel code. Protego also
adds additional utilities to keep the kernel policy synchro-
nized with legacy, policy-relevant configuration files, such
as /etc/sudoers. Although some previously-privileged
binaries may require changes, Protego provides users with
the same functionality as Linux and introduces acceptable
performance overheads. For instance, a Linux kernel com-
pile incurs less than 2% overhead on Protego.

1. Introduction
Unprivileged users of modern Unix systems access safe sub-
sets of otherwise privileged system functionality through
trusted, setuid-to-root binaries. For instance, the mount
utility executes with administrative privilege, allowing un-
privileged users to mount a CD-ROM or USB Flash de-
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Net lines of code de-privileged. 12,717
Percentage of deployed Ubuntu and Debian systems that can
eliminate the setuid bit.

89.5%

Historical exploits that would be unprivileged on Protego. 40/40
Performance overheads ≤7.4%
System calls changed 8

Table 1. Summary of results.

vice without involving a human administrator. Because the
mount binary must issue the mount() system call, which
requires root privilege (or the CAP SYS ADMIN capability),
the mount binary is inadvertently empowered to issue many
more privileged system calls. For instance, if an attacker can
exploit an input parsing bug in mount, she might be able to
change the root user’s password, install a rootkit, or replace
the contents of the /etc directory. Chen et al. [15] show that
many privilege escalation attacks go through setuid-to-root
binaries, even on SELinux [32] or AppArmor [6]. This at-
tack surface is ubiquitous; e.g., 99.99% of surveyed systems
install mount (§3.3).

The problem with setuid-to-root binaries is that they vi-
olate the Least Privilege Principle (LPP) [38], and create
opportunities for privilege escalation attacks. As a result,
most major Linux distributions have ongoing, but incom-
plete efforts to prune unnecessary setuid-to-root binaries [21,
45] (§3.1). Although these efforts have made substantial
progress in reducing the number of setuid-to-root binaries,
they leave a small core of “unavoidable” trusted binaries that
continue to violate least privilege.

Previous research efforts [13, 23, 25, 29, 46, 47], as well
as hardened Linux configurations, such as SELinux and Ap-
pArmor, have only considered least privilege on these util-
ities from the perspective of the administrator, not the un-
trusted user. In the case of mount utilities, systems like
AppArmor attempt to limit the effects of a compromised
mount to arbitrarily changing the file system tree. When
the administrator executes mount with least privilege, she
can only corrupt the file system tree, not change passwords
(directly) or configure the network device. In contrast, least
privilege for an unprivileged user should restrict that user
to only mounting white-listed devices and directories (e.g.,
/cdrom); even on AppArmor, a bug in mount could al-
low an unprivileged user to make arbitrary changes to the
file system tree. SELinux further restricts mount to specific
users and mountpoints, but still trusts mount to correctly
map devices and options to these mountpoints. In this ex-



ample, least privilege on these utilities can only be enforced
by the OS kernel, and policies must be expressed not just in
terms of the user requesting a system call, but also in terms
of the objects of the requested call.

This paper presents a simple, efficient framework for mi-
grating policies from setuid-to-root binaries into the kernel,
obviating the need for these privileged binaries in nearly
all situations. We study the 28 most commonly installed
binaries on Debian and Ubuntu Linux, which account for
all setuid-to-root binaries on roughly 89.5% of systems sur-
veyed (§3.3).

One essential insight from the study is that only eight sys-
tem calls and a few other system interfaces underlie the vast
majority of root privilege requirements. These system calls
export functionality that is required by unprivileged users,
yet require administrative privilege. For these system calls,
this paper proposes enforcing more expressive policies that
more closely match the policies encoded in setuid binaries
and configured by administrators. We present a prototype,
called Protego, which extends the AppArmor [6] Linux Se-
curity Module (LSM) [48]. Protego changes only 715 lines
of Linux kernel code, and adds additional trusted utilities
to keep the kernel policy synchronized with legacy, policy-
relevant configuration files, such as /etc/sudoers. In ad-
dition to these 8 system calls, a few additional system ab-
stractions must be adjusted to remove privilege. Although
Protego extends AppArmor, any security-hardened Linux
variant could adopt these techniques.

An underlying motivation for setuid-to-root binaries is
flexibility. When the kernel adopts a new abstraction, sys-
tem developers may not understand precisely what the safe
subsets of functionality are, or which subsets any real ap-
plication will require. The underlying assumptions are that
the setuid binary can be patched faster than the OS kernel,
and that some experience may be required before a sufficient
and minimal policy language can be defined. This paper ob-
serves, however, that almost all setuid binaries are using ab-
stractions that are decades old with very well-understood
policies, and that modern kernels have flexible infrastruc-
tures for security policy enforcement [48]. Thus, there is no
compelling reason to prefer setuid binaries to dynamically
configurable policies enforced by a kernel security module.

The contributions of this work are as follows:
• A study of the policies encoded in setuid-to-root binaries

on current Linux systems, considering privilege from the
perspective of the non-administrative user.

• Identifying a set of straightforward changes to Linux
which would obviate the need to violate the least privi-
lege principle on most systems. Our prototype reduces the
trusted computing base of Ubuntu Linux by 12,717 lines.

• Evaluating these changes on Linux, demonstrating that
setuid-to-root binaries can be deprivileged with minimal
overheads, minimal changes to trusted code, and no loss
of functionality for users. For instance, a Linux kernel

compilation on Protego is less than 2% slower than on
unmodified Linux.

Thus, this paper demonstrates that most deployed systems
can uphold the Least Privilege Principle at minimal costs.
We are continuing to investigate the long “tail” of infre-
quently installed setuid binaries; Section 5.4 surveys the
expected effort to remove setuid-to-root altogether. We
are also pursuing practical adoption of these techniques.
For instance, the maintainers of the Debian eject pack-
age have agreed to changes that would deprivilege the
dmcrypt-get-device binary.

2. Protego Overview
Protego executes setuid-to-root binaries without privilege.
Underlying a fairly wide range of packages (currently 82)
containing setuid-to-root binaries, are a small number of
system calls (8), system files, and devices that are either
root-only, or have coarse subsets of functionality that are
root-only. Protego centralizes the policies currently encoded
in this disparate collection of trusted binaries by instead
adding Linux Security Module (LSM) hooks (§3.2) that ap-
ply equivalent policies in the kernel. Protego is an extension
of AppArmor on Linux 3.6.0.

To explain the system design, we use the mount sys-
tem call as a representative example. The mount system
call grafts a new file system onto the file system direc-
tory tree at a given location. Similarly, the umount sys-
tem call removes a file system from the directory tree. In
general, changing the file system directory tree requires root
privilege, as a malicious user might mount bad configura-
tion files over /etc or even replace the system binaries in
/bin or /sbin. Thus, the Linux kernel currently rejects
any mount or umount call from processes without admin-
istrative privilege—namely the CAP SYS ADMIN capabil-
ity, explained in §3.2.

Some mount-related binaries are setuid to root. The
reason is to permit certain privileged operations without
requiring administrator privilege, such as mounting a CD-
ROM at /dev/cdrom. Operational constraints for these
privileged functions are set by the administrator in /etc/-
fstab with the “user” or “users” option. The mount util-
ities, e.g., mount or umount, are then responsible for
checking the real UID with which they were invoked: they
are required to fail unless the file system and mount point
match a “user” entry in /etc/fstab.

Protego is based on the observation that the kernel can
just as easily perform these checks in an LSM. Both ap-
proaches are compared in Figure 1. For the mount system
call, Protego keeps a whitelist of allowed user mountpoints
in the kernel. If a process without CAP SYS ADMIN calls
mount, the system call will only succeed if the arguments
match the whitelist. Mount utilities no longer require admin-
istrative privilege when invoked by unprivileged users, as the
policies are migrated to the kernel.



/etc/fstab

/* Parse /etc/fstab */
if (ruid == 0 ||
   user_mount_ok(args))
      sys_mount(args);

/bin/mount

sys_mount() {
if (!capable(CAP_SYS_ADMIN))
     return -EPERM;
...Kernel

User

Linux mount.

/* Parse /etc/fstab */
/etc/
fstab

      sys_mount(args);

/bin/mount

sys_mount() {
if (!security_mount_ok(args))
    return -EPERM;
...Kernel

User

Protego LSM

/proc/
mnt_policy

Privileged Daemon
(backwards compatibility) Unprivileged User

Protego mount.

Figure 1. Comparison of the mount system call on Linux
and Protego. Trusted components are in gray. Linux places
trust in the /bin/mount binary to enforce policies spec-
ified in /etc/fstab; this binary is called by an un-
trusted user. The mount system call fails if the caller
doesn’t have the CAP SYS ADMIN capability (i.e., is not
root). In Protego, a trusted daemon reads the policies from
/etc/fstab and configures the Protego LSM through
a file in /proc. Separately, an untrusted user can use
/bin/mount, or any other binary, to issue a mount sys-
tem call. The mount system call then calls an LSM hook to
check this change against system policy.

This mount whitelist can be created by either the ad-
ministrator by directly adding entries to a file in /proc,
or, for convenience, we also provide a trusted daemon that
reads and monitors /etc/fstab, propagating changes to
the kernel via the /proc file. Protego provides two other
files in /proc for configuration inputs using a simple gram-
mar: a mapping of privileged ports to allowed application
paths, and an /etc/sudoers-like syntax for delegation.
Policies that do not take configuration parameters are sim-
ply hard-coded in the LSM. The underlying policy abstrac-
tions, concerns, and defaults derive from our study of current
setuid-to-root binaries (Section 4).

Table 2 details the added or modified lines of code in
Protego. The only code changes we made to most setuid
utilities was removing checks that cause the binary to exit if
the effective user id is not root—all policy checks are moved
into the OS kernel and the utility runs without changing its
effective user id to root. In a few cases, such as vipw, we
modified these utilities to use different configuration files.

Backward compatibility. Protego modifies a few system
configuration file formats. For example, Protego fragments
the password database to better match policy and file system
permissions; the monitoring database can keep the original
database file and the new files synchronized for backwards

Component Description Lines
Kernel

Linux Additional LSM hooks, /proc filesystem
interface.

415

Protego LSM
module

Implement security policies, called by ad-
ditional LSM hooks in Linux.

200

Netfilter Extensions for raw sockets. 100
Trusted Services

Monitoring
daemon

Trusted process that monitors changes
in policy-relevant configuration files. Re-
quired only for backwards compatibility.

400

Authentication
utility

Trusted binary launched by the kernel
to authenticate user sessions, password
protected groups. Code refactored from
login and newgrp.

1200

Utilities
iptables Extension for raw sockets. 175
vipw Modified to edit per-user files instead of a

shared database file.
+40

dmcrypt-get-
device

Switch to /sys to read underlying device
information.

43

mount/umount,
sudo, pppd

Disable hard-coded root uid checks. -25

Grand Total Changed 2,598

Table 2. Lines of code written or changed in Protego, in-
cluding kernel, trusted services, and command-line utilities.

compatibility. Although some previously-privileged applica-
tions must make changes to adopt the newer file formats,
Protego maintains copies of the old formats for compatibility
with other applications. Applications that did not previously
require privilege are unmodified on Protego.

The monitoring daemon is written with a Python li-
brary [4] based on Linux’s inotify file monitoring frame-
work [40]. The monitoring daemon is only required for
backward compatibility.

Threat model. We assume that setuid binaries may have
programming errors that are exploitable through inputs care-
fully crafted by an adversary. We assume the adversary is an
unprivileged user of a system who aims to acquire enhanced
privileges (one or more administrative capabilities, or root
access, depending on the system).

Protego’s goal is to minimize the privilege held by bina-
ries executed by a non-administrative user. Even if one of
these binaries is compromised, the user acquires no more
privilege than she already had before executing the binary.
Other privilege escalation attack vectors, such as vulnerable
system daemons running as root or bugs in system calls, are
beyond the scope of this paper.

3. Background
This section explains background on the setuid bit, related
efforts to improve Linux security, and current setuid instal-
lation statistics.

3.1 The Setuid Bit
Setuid bit vs. system call. The namespace collision be-
tween the setuid permission bit and setuid system call can



lead to some confusion. The primary mechanism to raise
privilege in Linux is the setuid permission bit (04000) in an
inode’s stat field. When a setuid binary is executed, the
process executes as the binary’s owner, regardless of which
user exec-ed the binary. Some privileged daemons, such
as ssh, may initially execute as root and then drop to an
unprivileged user by using the setuid system call. Similarly,
setuid-to-root binaries often bound the risk of privilege es-
calation by dropping root privilege after completing the last
privileged system call, using the setuid system call. Unless
otherwise specified, setuid in this paper refers to the bit.

Papers including “Setuid Demystified” explain how an
application should use the setuid system call to drop its
privileges [16, 44]. Our primary interest is complementary:
eliminating privilege altogether in current setuid-to-root bi-
naries, and thereby eliminating the need to securely drop
privilege with the setuid system call.

Why is setuid-to-root needed? Administrators use setuid
binaries to relax hard-coded policy decisions in the kernel,
which are inconsistent with the desired system policy. Hecht
et al. [25] observe that there are three categories of system
calls: (1) unprivileged calls, (2) privileged calls, and (3) calls
with privileged options. Modern Linux kernels generally en-
force a stricter policy on calls with privileged options than
administrators want, limiting application functionality. For
example, the mount system call fails if the caller doesn’t
have administrative privilege—even if the caller is only re-
questing options considered safe by system policy. In the
cases of bind and open, setuid is often used to allow an
application to access a single port or file, but trusts the binary
with access to all other ports or files. These point solutions
implement the desired policy, but violate least privilege.

setgid. This paper focuses on the setuid-to-root binaries,
although similar issues could arise with the setgid bit. We
note that no Debian or Ubuntu packages currently install bi-
naries that are setgid to root. The delegation framework
we describe in §4.3 provides equivalent functionality to se-
tuid and setgid-nonroot on Protego.

Eliminating setuid-to-root binaries. Several Linux distri-
butions have hardening efforts that have reduced the number
of setuid-to-root binaries [21, 45]. For instance, Ubuntu has
eliminated roughly 30 setuid-to-root packages since 2008.
These efforts have used the following major techniques:
• Consolidation. When several different packages perform

similar tasks, developers create a shared setuid helper
utility, such as the sensible-mda mail server utility.

• File system permissions. Utilities such as at write to
logs and other protected system files, generally under the
/var directory. Root privilege can be replaced with se-
tuid non-root or setgid non-root by changing permissions
on these files to an unprivileged user or group.

• Capabilities. Linux has a coarse capability model, which
we explain next. Several utilities have replaced setuid with

the similar setcap mechanism, which launches the bi-
nary with specific capabilities. Although setcap can re-
place setuid, several setuid-to-root binaries require capa-
bilities tantamount to root.

These techniques are insufficient to enforce least privilege
on all categories of current setuid-root binaries.

3.2 Capabilities, LSMs, and SELinux.
Capabilities in Linux are not pointers with fine-grained ac-
cess control information, as commonly defined in capability-
based operating systems [31, 39]. Linux divides root privi-
lege into roughly 36 capabilities, called file system capabil-
ities [18], which are roughly based on Trusted IRIX capa-
bilities [26] and the POSIX.1e draft specification [36]. All
uses of the term “capability” in this paper refer to Linux file
system capabilities.

By default, Linux gives all capabilities to a process run-
ning as root. A hardened Linux variant can reduce the capa-
bilities granted to the administrator for a given task, as well
as limit the capabilities given to a setuid-to-root binary.

Capabilities are designed to enforce least privilege on the
administrator, but are generally too coarse to enforce least
privilege on unprivileged users. For instance, if the admin-
istrator is configuring a network interface, the configuration
utility may only run with the CAP NET ADMIN capability. If
the configuration utility is buggy and makes errant privileged
system calls, the damage is limited to the network.

Continuing our example, CAP NET ADMIN is required
by the setuid-to-root pppd binary so that unprivileged users
may make very restricted changes to the system’s routing
tables, such as creating a route if it does not conflict with
previously existing routes. Even if pppd executes only with
the CAP NET ADMIN capability, if pppd is compromised,
the unprivileged user has substantially escalated her privi-
leges, gaining the ability to arbitrarily change routes, disable
devices, set privileged socket options, enable multicasting,
etc. A potential solution to this problem is to bestow finer-
grained capabilities on trusted binaries.

Unfortunately, developers have failed to effectively man-
age 36 coarse capabilities in the Linux kernel. Most Linux
developers are not security experts, but nonetheless are re-
quired to place capability checks throughout the kernel.
When in doubt, developers use the CAP SYS ADMIN ca-
pability. As a result, over 38% of all capability checks in
Linux require this capability. Even our initial mount ex-
ample requires CAP SYS ADMIN. Moreover, this capability
has become so permissive that it can acquire all other ca-
pabilities and is described as “the new root” [27]. Finally,
the mapping of capabilities to privileged tasks is many-to-
many. For instance, the X server requires 4 capabilities to
set the video mode (CAP CHOWN, CAP DAC OVERRIDE,
CAP SYS RAWIO, and CAP SYS ADMIN). Changing pass-
words requires 6 capabilities: CAP SYS ADMIN, CAP -
CHOWN, CAP DAC OVERRIDE, CAP SETUID, CAP DAC -
READ SEARCH, and CAP FOWNER. Linux capabilities do



Package Ubuntu(%) Debian(%) Wt.Avg.(%)
mount 100.00 99.75 99.99
login 99.99 99.82 99.98
passwd 99.97 99.84 99.97
iputils-ping 99.87 99.60 99.85
openssh-client 99.54 99.48 99.53
eject 99.68 90.95 99.24
sudo 99.48 74.34 98.21
ppp 99.54 45.65 96.81
iputils-tracepath 99.78 13.06 95.39
mtr-tiny 99.54 11.79 95.10
iputils-arping 99.60 3.55 94.74
libc-bin 50.14 86.15 51.96
fping 27.70 12.42 26.92
nfs-common 9.76 82.89 13.46
ecryptfs-utils 11.64 0.72 11.08

virtualbox 10.56 7.78 10.41
kppp 10.11 4.97 9.85
cifs-utils 2.59 19.23 3.43
tcptraceroute 0.33 23.38 1.50
chromium-browser 0.48 8.49 0.89

Table 3. Percent of systems that install packages contain-
ing setuid-to-root binaries, as reported by the Debian and
Ubuntu ’popularity contest’ surveys. Average is weighted by
the total number of systems reporting in each survey.

not enforce least privilege on the administrator, much less
limit the risk of privilege escalation by unprivileged users.

The deeper problem with Linux capabilities is that they
provide an insufficient language to express policies for un-
privileged users. Linux capabilities require a subject-based
policy (“allow if requester is root”), yet most setuid-root
binaries export select, safe operations on a kernel abstraction
to all users—an object-based policy. As a result, system se-
curity hinges on a cumbersome, error-prone translation of an
object-based policy onto a strictly subject-based language.

Linux Security Modules (LSMs). LSMs encapsulate so-
phisticated security policies from the rest of the kernel de-
velopment process by placing suitable access control hooks
throughout the kernel [48]. Security experts can then imple-
ment more advanced policies, such as mandatory access con-
trol (MAC), by using these hooks to override the default, dis-
cretionary access control policies. These hooks are intended
to be sufficient to implement any policy without making ad-
ditional changes outside of the module. The exact number of
hooks varies (184 in Linux 3.13.5); Protego adds additional
LSM hooks for system calls that are currently hard-coded to
check specific capabilities.

Security-hardened Linux variants. SELinux [32] and
AppArmor [6] are implemented as LSMs, as is Protego.
SELinux provides a powerful mandatory access control
(MAC) and multi-level security (MLS) model for Linux,
complete with role-based access control [22] and security
type enforcement. AppArmor is also an MLS implementa-
tion, and the default on Ubuntu. AppArmor tends to enforce
coarser policies than SELinux.

LSMs can carefully control when a process is given a
capability, and can use an LSM hook to obviate a capabil-
ity check for some, but not all system calls. For example,
SELinux associates capabilities with roles, which can pre-
vent a process from accumulating capabilities. SELinux can
also replace the coarse capability checks in bind with an
allocation of low-numbered ports to types.

SELinux requires considerable policy effort to expose
safe functionality to non-administrator users. For instance,
SELinux must carefully manage the CAP NET RAW capa-
bility and assign it to trusted binaries, such as ping. This
does not enforce least privilege, as CAP NET RAW is coarser
than ping’s safe functionality (§4.1). SELinux could en-
force simpler and more precise policies by adopting Pro-
tego’s strategy of considering safe functionality separately
from fragmenting administrator privilege.

Tools such as VulSAN [15] analyze system attack sur-
face, generating the path for an attacker to install a rootkit.
In many cases, the path goes through a setuid or capability-
enhanced program, even on SELinux or AppArmor.

3.3 Setuid Installation Statistics
To focus our efforts on removing privilege from the most
commonly-installed setuid-to-root binaries, we studied in-
stallation statistics collected by the Debian and Ubuntu dis-
tributions. The first step was to identify all potentially instal-
lable setuid binaries in all Debian and Ubuntu 12.10 APT
repositories using the Lintian reports [9]. Ubuntu adopts and
repackages stable versions of Debian packages, and the dif-
ferences between the distributions tend to be minor. 82 pack-
ages contain setuid-to-root binaries.

We obtained the rough frequency of installation from the
popularity contest results for all the monitored Ubuntu [10]
and Debian [8] systems, based on over 2.5 million systems
(2,502,647 Ubuntu and 134,020 Debian).

Table 3 lists the 20 most frequently installed packages,
with per-distribution percentages and an average weighted
by number of installations of each distribution. We have
completely investigated all popular packages through ecrypt-
fs-utils—indicating that roughly 89.5% of sample systems
could adopt Protego with no loss of functionality. The 62
packages not listed are installed by fewer than .89% of sys-
tems sampled; Section 5.4 summarizes the additional work
we foresee in deprivileging the remaining packages.

4. Setuid Policy Study
This section presents a detailed study of the policies encoded
in the 28 most commonly installed setuid-to-root binaries.
This study identifies the system-level policy goal encoded in
the binary, how the kernel policy for a specific system call or
other interface is mismatched to the policy goal, how low-
level mechanisms can be easily modified to efficiently and
comprehensively enforce these policies in the kernel, and
how Protego enforces these policies.



Interface Used by Kernel policy System policy Security concerns Our approach
socket ping, ping6,

arping, mtr,
traceroute6.-
iputils

Creating raw
or packet sock-
ets requires
CAP NET RAW.

Users may send and
receive safe, non
TCP/UDP packets,
such as ICMP.

Raw sockets allow one
to send both benign
packets (e.g., ICMP)
and packets that appear
to come from socket
owned by another pro-
cess.

Allow any user to cre-
ate a raw or packet
socket, but outgoing
packets are subject to
firewall rules that filter
unsafe packets.

ioctl
pppd Only the adminis-

trator my config-
ure modem hard-
ware or modify
routing tables.

A user may configure
a modem (if not in
use) and add routes
that don’t conflict
with existing routes.

Protect the integrity of
routes for unrelated ap-
plications.

Add LSM hooks that
verify routes do not
conflict with old rules
when requested by
non-root users.

dmcrypt-get-
device

Require CAP -
SYS ADMIN to
read dmcrypt
metadata.

Any user may read
public portion of dm-
crypt metadata (e.g.,
device set).

The same ioctl dis-
closes both the physical
devices and the encryp-
tion keys.

Abandon this ioctl
for a /sys file that
only discloses the
physical devices.

bind procmail,
sensible-mda,
exim4

Require CAP -
NET BIND -
SERVICE to bind
to ports < 1024.

Mail server should
generally run without
root privilege.

Prevent untrustworthy
applications from run-
ning on “well-known”
ports.

System policies allo-
cating low-numbered
ports to specific (bi-
nary, userid) pairs.

mount,
umount

fusermount,
mount,
umount

Mounting or
unmounting a file
system requires
CAP SYS ADMIN.

Any user may mount
or unmount entries in
/etc/fstab with
the “user(s)” option.

Protect the integrity of
trusted directories (e.g.,
/etc, /lib);

Add LSM hooks that
permit anyone to mount
a white-listed file sys-
tem with safe locations
and options.

setuid,
setgid

polkit-agent-
helper-1,
sudo, pkexec,
dbus-daemon-
launch-helper,
su, sudoedit,
newgrp

Only allowed
with
CAP SETUID.

Permit delegation of
commands as config-
ured by administra-
tor, in some cases re-
quire recent reauthen-
tication.

Require authentication
and authorization to ex-
ecute as another user.

Add LSM hooks that
check delegation rules
encoded in files like
/etc/sudoers, and
a kernel abstraction for
recency.

Credential
databases

chfn, chsh,
gpasswd,
lppasswd,
passwd

Only root can
modify these
files (or read
/etc/shadow).

A user may change
her own entry to up-
date password, shell,
etc.

Prevent users from ac-
cessing or modifying
each other’s accounts.

Fragment the database
to per-user or per-
group configuration
files, matching DAC
granularity.

Host
private
ssh key

ssh-keysign Only root may
read the key (FS
permissions)

Allow non-root users
to sign their public
key with the host key,
disabled by default.

A user should be able to
acquire a host key sig-
nature without copying
the host key.

Restrict file access to
specific binaries in-
stead of, or in addition
to, user IDs.

Video
driver
control
state

X Root must set the
video card control
state, required by
older drivers.

Any user may start an
X server.

An untrustworthy ap-
plication could miscon-
figure another applica-
tion’s video state.

Linux now context
switches video devices
in the kernel, called
KMS.

/dev/pts*
terminal
slaves

pt chown Root must
allocate pts slaves
on pre-2.1
kernels.

Users may create ter-
minal sessions.

This utility has been
obviated for 17 years,
but is still shipped.

Ignore.

Table 4. System abstractions used by commonly installed setuid utilities on recent Debian and Ubuntu systems. The table
identifies the common thread of inconsistent kernel policies and system policies for these abstractions, discusses the underlying
security concerns, and how Protego unifies system and kernel policies.



In the interest of brevity, we do not discuss each binary
in detail, but rather organize our discussion around each in-
terface that requires administrative privilege. Table 4 sum-
marizes these results. The Protego design is guided by two
major themes from this study:
• Express and enforce object-based policies. The major-

ity of these binaries encapsulate sensible policies that do
not map onto subject-based checks (e.g., “is this user x?”),
but that can be easily expressed as object-based policies
(e.g., “may any user take this action on this object?”). For
instance, several utilities enforce fine-grained access con-
trol on network ports, and enforce policies for raw sockets
based on the protocol type (§4.1).

• Interface designs can thwart least privilege. In sev-
eral cases, poor interface design can require applica-
tions to have more privilege than necessary. For instance,
the dmcrypt-get-device utility uses a privileged
ioctl to report the physical device underneath an en-
crypted block device; additional privilege is required be-
cause this ioctl also discloses the private key. A more sub-
tle example of this point is the division of labor between
user and kernel in the X window server (§4.5). Where
needed, Protego adjusts these interfaces.

Several of the issues raised in this study could be ad-
dressed in more than one way, and some already have point
solutions in another OS. This section strives to delineate the
essential requirements of any solution from the particular so-
lution implemented in the Protego prototype, as well as cite
existing alternative point solutions. To the best of our knowl-
edge, however, no system has comprehensively addressed all
of the issues requiring setuid-to-root binaries.

4.1 Network
Three networking tasks require privilege: creating a raw or
packet socket, the point-to-point protocol (PPP), and binding
a socket to a TCP or UDP port less than 1024.

4.1.1 Raw and packet sockets
When applications program with TCP or UDP sockets, the
kernel encapsulates the application-level payload with the
appropriate headers. In the rare case that an application
needs to send messages with a protocol the kernel doesn’t
implement, the application must create most of the packet
headers itself, using a raw or packet socket [5]. The differ-
ence between raw and packet sockets is that raw sockets pro-
vide the IP layer and MAC layer headers, whereas a packet
socket only implements the MAC layer headers.

Linux requires the CAP NET RAW capability to create a
raw or packet socket, because an application can also create
packets that appear to come from another application. How-
ever, a number of setuid-to-root binaries, such as ping, al-
low unprivileged users to send safe packets over raw sockets.

A more precise, object-based policy, would specify which
types of outgoing packets are acceptable from unprivileged

users on raw sockets. We observe that the set of all safe
packets exported by setuid-to-root binaries can be easily
encoded as a whitelist in any packet filtering framework,
such as Linux’s netfilter/iptables [2], or BSD’s Berkeley
Packet Filters (BPF) [33]. For instance, some BSD variants
use BPFs to sandbox binaries in a similar manner, such
as ensuring the DHCP server sends DHCP packets only to
limited addresses [43].

The Protego prototype allows unprivileged programs to
create raw sockets, with the caveat that these unprivileged
raw sockets are subject to additional netfilter rules. The de-
fault rules are based on the studied setuid-to-root binaries,
but the rules may be changed by the administrator through
the iptables utility. Protego implements this with mod-
est extensions to the Linux netfilter framework, as well as
adding an LSM hook to the socket system call.

In Protego, a compromised network utility cannot spoof
packets from a TCP or UDP socket, unlike all current Linux
variants. Also in contrast to Linux, Protego allows any un-
privileged user to create her own enhanced ping utility, as
long as it conforms to system security policy.

4.1.2 Point-to-point protocol (PPP)
PPP is a protocol used to establish connections over modems,
including dial-up and cellular networks. In most Linux sys-
tems, the service that manages a PPP connection (pppd)
requires root privilege for two tasks: configuring modem
hardware and, potentially setting system routing tables to re-
lay IP traffic through a PPP link. The pppd binary is setuid
root so that it can be launched on demand, because, unlike
ethernet, most PPP connections are not constantly active.

When pppd is launched as a user other than root, only
certain safe configuration options are accepted, such as com-
pression and congestion control session parameters. An ad-
ministrator can also configure pppd to allow unprivileged
users to add system routes over a ppp connection, but only
if the new address ranges were not previously reachable. If a
PPP connection duplicates an existing route, a user may only
create a tty that communicates with the remote point.

We add LSM hooks to the appropriate ioctl system
calls for configuring routing tables and modem options.
Specific policies are mined from the ppp configuration file
/etc/ppp/options. We also changed the default file
system permissions on /dev/ppp to be more permissive,
replacing a capability check with device file permissions.

We verified that pppd works without root privilege by
connecting two machines over a crossover serial cable, such
that one serves as an internet gateway to the other. Both
machines ran pppd without root privilege, both were able
to create routing table entries, and the non-gateway machine
was able to connect to remote websites.

4.1.3 Bind
Creating a socket that listens to a TCP or UDP port less than
1024 requires root or the CAP NET BIND SERVICE capa-



bility. For this reason, many network services run with root
privilege, at least temporarily, to set up a listening socket.

This policy reflects the notion that an administrator
should be involved in setting up a service that listens on a
well-known port. For instance, one expects that a web server
listening on port 80 is endorsed by the administrator, but not
if it is listening on port 8080. However, any privileged appli-
cation can open any privileged port; for instance, a malicious
web server can also act as an email or DNS server.

The system policy goal is that specific ports should be al-
located to specific application instances. Protego uses a tuple
of (binary path name, user ID) to represent an application in-
stance, and a simple policy configuration file, /etc/bind,
which maps each TCP or UDP port less than 1024 to an
application instance. Each port may map to only one appli-
cation instance.

Our strategy is a simplified version of SELinux’s ap-
proach, which allocates ports to types. Using types to spec-
ify an application instance is sufficient, but not necessary;
eliminating privilege escalation should not hinge on adopt-
ing SELinux. Similarly, Berkeley Packet Filters can also be
used to delegate access to a privileged port; a centralized
configuration has the advantage of easier auditing.

4.2 Mount
§ 2 explains our approach to the mount utilities as a moti-
vating example; we will not repeat this for space. We val-
idated that unprivileged users can mount user entries in
/etc/fstab but not other file systems.

An alternative point solution used by many Linux and
Unix systems is a trusted daemon (e.g., automounter [3])
that monitors accesses to whitelisted mount points, and auto-
matically mounts them in response to attempts to access the
device. Any design that allows unprivileged users to access
whitelisted mount points is sufficient; the Protego design
adds only 258 lines of trusted code to the system, whereas
the Linux automounter implementation increases the TCB
by 21,674 lines, including a 79 line kernel patch.

4.3 UID Switching and Delegation
A process changes its user and group IDs using a family of
system calls including setuid and setgid, which require
the CAP SETUID or CAP SETGID capabilities. These ca-
pabilities give a process the ability to assume any user’s or
group’s id. Utilities such as sudo are setuid root so that
they start with administrator privilege, validate that the in-
voking user is allowed to switch to the new user, and then
call setuid to drop privileges.

Because our interest is in enforcing least privilege on
non-administrator users, we focus on lateral moves, where
one unprivileged user (Alice) acts for another (Bob). Most
delegation utilities, such as sudo, violate the principle of
least authority by giving Alice the privilege to run as any
user via a setuid root binary, and then dropping back down
to Bob with the setuid system call.

Ideally, Alice’s sudo process should never be able to
switch to any uid other than Bob’s, and only in ways Bob
has authorized her to act for him. If sudo enforced least priv-
ilege on Alice, even if Alice compromises her sudo process,
she should never be able to switch to an unrelated user, say
Charlie. Obviously, in many cases, sudo is used to transi-
tion to root; even in this case, root privilege should only be
granted to the process after all checks have succeeded, not
before. These policies are only possible if the kernel, not a
user application, validates setuid system call transitions.

Taking sudo as a representative example, there are two
checks that require a trusted agent:
1. Authentication: Either the current or target user’s pass-

word should be entered and checked. Utilities like sudo
check the calling user’s password to ensure that another
person hasn’t sat down at an unattended terminal. sudo
only checks the password if a password has not been en-
tered on the terminal in the last 5 minutes. In contrast,
utilities like su ask for the target user’s password as both
authentication and authorization to act as the target user.

2. Authorization: The administrator may configure sudo
to only allow a user to issue specific commands as an-
other user. For instance, Alice may allow Bob to issue
the lpr command to print with her credentials, but sudo
will not allow Bob to directly execute any other binaries
as Alice. Specifying a particular command also requires
limiting inheritance of environment variables or open file
descriptors, to ensure integrity of the delegated command.

An untrusted binary should not be charged with either.
Rather than check for administrator privilege on a set-

uid system call, Protego enforces the policies collected
from the /etc/sudoers configuration file and the config-
uration files in the /etc/sudoers.d/ directory. Policies
currently encoded in setuid binaries are explicated in ad-
ditional /etc/sudoers rules. Similar to /etc/fstab,
the monitoring daemon parses these files, watches for changes,
and sets the kernel policies accordingly. Protego also re-
quires that any user issuing a setuid system call be re-
cently authenticated, unless specifically countermanded by
a sudoers policy with the NOPASSWD directive. We shift
the validation of command-line arguments to the kernel.

The Protego kernel tracks the last authentication time in
the task struct of each process. If a setuid system
call is issued without a recent authentication of the current
user, a trusted authentication service temporarily takes over
the terminal and asks for the user’s password. This authen-
tication service is refactored from the login source code.
This service can also request the password of another user or
group, according to system policy.

A challenge in restricting sudo privilege to a given bi-
nary is that policy enforcement must span two system calls:
setuid and exec. To achieve least privilege, the process
privileges must not change before the exec system call. To
address this, we slightly change the behavior of setuid for



restricted UID transitions. If a process could make an exec
call with at least one permissible binary, the setuid system
call’s return code (0) will indicate success to the applica-
tion, but the system call will set a field in the task’s security
metadata indicating a pending setuid-on-exec and storing the
pending user. When a process with the setuid-on-exec field
set issues an exec call, Protego hooks the exec system
call and checks whether the requested binary is allowed as
the pending user. The authentication service may also ask for
the target user’s password at this point. If the user is not au-
thorized to exec the requested binary as the target user, the
exec will fail with a permission denied error. This change
in error behavior is difficult to avoid when enforcement must
span two system calls; in practice, our target utilities have
worked correctly despite this change. We also add appro-
priate restrictions on inheritance through setuid transitions,
except where explicitly permitted in the sudoers policy.

In our example of Alice acting for Bob, a setuid-to-Bob
binary can provide the desired user transition. In practice,
tools like sudo are preferred because sudo is more flex-
ible, centralizes system policy in an easy-to-audit location,
and sanitizes inputs and environment variables to reduce the
application’s attack surface. An alternative approach to im-
plementing a least-privilege sudo might generate a set of
setuid-nonroot binaries that encode the system policies, sim-
ilar to capability amplification in Hydra [49].

Protego encodes the policies of a wide range of dele-
gation utilities as extended sudoers rules, including su, su-
doedit, dbus, policykit, and newgrp. For instance, newgrp
exports password-protected groups; this functionality can be
encoded by requiring the user authenticate on a setgid sys-
tem call that requests certain groups. We omit full details of
these utilities for brevity.

4.4 File System Permissions
Several setuid-to-root binaries require root in order to work
around inconvenient file system permissions. For instance,
mail servers use root privilege to access configuration files,
such as .forward, even if the user’s permissions otherwise
block access to the file. Similarly, most of the software for
managing one’s local account, such as passwd and chsh,
requires access to a single record in a database file, but the
kernel only enforces access control at the file granularity.

In order for a user to change her password or default shell,
she should be able to modify her own entry of the database
files. However, if Alice can modify Bob’s database entry,
Alice can access or modify Bob’s account—a clear security
problem. Thus, the shared database files can only be writ-
ten by root. In terms of capabilities, a process must acquire
CAP SYS ADMIN, CAP CHOWN, CAP DAC OVERRIDE,
CAP SETUID, CAP DAC READ SEARCH, and CAP FOWN-
ER to complete this operation—undermining the goal of sub-
stantially limiting administrative privilege with capabilities.
To permit users to modify their credentials and preferences,

passwd, chsh, and similar utilities are setuid and validate
that the update does not corrupt the entire database.

To modify one’s account with least privilege, the system
must enforce access control at the granularity of a user’s
record, not the entire database. Protego splits the shared
database files into per-account files. For instance, we split
/etc/passwd into one file per-user under /etc/pass-
wds/. Each file has permissions rw-------, owned by
the user it defines and the parent directory /etc/passwds/
has permissions rwxr-xr-x owned by user root and group
root so that unprivileged users cannot add new users to
the system. For backward compatibility, a trusted dae-
mon monitors the per-user files and updates the legacy
/etc/passwd file (§2). A similar approach is taken with
/etc/group and /etc/shadow.

Network directory servers, such as OSX’s Directory
Server [11] or OpenLDAP [1], already enforce record-level
access control. However, such a mechanism is generally not
available for the local system accounts, and adds substan-
tially more code to the system TCB (Protego changes 240
LoC, whereas OpenLDAP Version 2.8 is 175,368 LoC).

In the case of mail delivery problems, we advocate suffi-
cient warnings in the log to diagnose delivery problems re-
sulting from incorrect file permissions.

We note that users may desire finer-grained access con-
trol to prevent their password hash from leaking from their
/etc/shadows file. Protego mitigates this risk by requir-
ing the user to reauthenticate before reading the shadow file
using the mechanisms described above (§4.3). The shadow
file handle may not be inherited (CLOSE ON EXEC).

4.5 Interface Design
A small number of utilities require root privilege because
the kernel’s interface design forces otherwise unnecessary
trust on the utility. In many cases, non-security reasons nat-
urally lead to more sensible interfaces and obviate the need
for trusted binaries. For instance, very old versions (before
2.1, or 1996) of the Linux pseudo-terminal implementation
required applications to allocate slave terminal devices, and
thus required a trusted binary to prevent applications from
interfering with each other. Ultimately, allocating slaves in
the kernel was simpler all around, and obviated the need for
a trusted pt chown utility.

Similarly, the X window server is setuid to root because
the X server may need to both manage the graphics hardware
as well as display the user’s composite desktop. In practice,
simply drawing a screen image to a frame buffer does not re-
quire any administrator privileges. Root privilege is required
to configure and context switch the video hardware, e.g.,
setting the refresh rate, screen resolution, and, most impor-
tantly, configuring which application’s frame buffer should
be displayed on the screen [7].

In practice, video card management has been migrating
from the X server into the kernel. When the X server man-
ages the video card, developers find writing context switch-



ing code for a range of video hardware cumbersome. The
video configuration changes when a user switches from one
X server to another, or from the X server to a text console
(via Ctrl-Alt-F1). The X server must correctly save and re-
store all state for all supported video cards. Thus, X and
video driver developers have decided that a more sensible
division of labor is for the OS kernel to manage context
switching the video card. Linux now has a standard inter-
face for device drivers to save and restore device state, called
Kernel Mode Setting (KMS) [7], introduced in Linux 2.6.29.

KMS eliminates the need for X to run as root [19],
and is being adopted by all major device manufacturers.
Device drivers with KMS support have been written for
chipsets manufactured by Intel, ATI (radeon), Nvidia (nou-
veau driver), and others. Nvidia’s closed-source drivers have
recently started adopting KMS [30]. We have verified this
on our own machines using the Nouveau driver and running
an X server binary that is not setuid to root.

An interesting contrast is that, unlike many setuid bina-
ries, X and the Linux video drivers are still under very active
development. The same decision that led to a needless attack
surface has caused enough practical problems that develop-
ers are rectifying the problem for non-security reasons.

4.6 Limitations and Discussion
Our study covers a representative sample of setuid-to-root
binaries, and we expect that Protego can easily support most
of the remaining setuid-to-root binaries. We note that the
Protego prototype allows an administrator to reenable the se-
tuid bit if necessary. If the setuid bit is actually removed from
all other binaries when the bit is reenabled on the system, the
only marginal difference will be that the one unsupported bi-
nary is added to the system’s trusted computing base.

The most likely situations where the setuid bit may be
required are new kernel interfaces where the desired policy
is not well understood. For instance, Linux has been grad-
ually adding support for sandboxing with restricted names-
paces [28], beginning with version 2.6.23. Until version 3.8,
the security implications were not sufficiently understood,
and sandboxing utilities, such as chromium-sandbox, had to
run setuid-to-root. The security implications are now better
understood, and newer kernels allow unprivileged users to
use safe namespace configurations.

The main weakness of the Protego design is that its tools
for mitigating information leaks are limited compared to
SELinux, but more powerful than unmodified Linux. Two
setuid binaries need to read sensitive data: ssh-keysign
and password changing utilities. In these cases, a measure of
trust is unavoidable. Protego develops fine-grained delega-
tion rules (§4.3) that allow only these trusted binaries to read
specific sensitive files. These restrictions are not as strong
as SELinux roles [22, 32]. For example, a keysigning role
might take away network access and write permission to any
file handle other than a pipe to the parent. In comparison,
Linux allows any program with root privilege to read these

Test Linux +/- Protego +/- % OH
lmbench

syscall (us) 0.04 0.00 0.04 0.00 0.00
read 0.09 0.00 0.09 0.00 0.00
write 0.09 0.00 0.09 0.00 0.00
stat 0.34 0.00 0.33 0.00 -2.94
open/close 1.17 0.09 1.17 0.09 0.00
mount/umnt 525.15 18.82 531.13 19.44 1.13
setuid 0.82 0.09 0.83 0.06 1.22
setgid 0.82 0.09 0.83 0.09 1.22
ioctl 2.76 0.45 2.78 0.48 0.72
bind 1.77 0.10 1.81 0.11 2.25
sig install 0.10 0.00 0.10 0.00 0.00
sig overhead 0.70 0.00 0.70 0.00 0.00
prot. Fault 0.19 0.00 0.19 0.00 0.00
fork+exit 159.00 0.99 158.00 0.40 -0.63
fork+execve 554.00 1.86 573.00 1.81 3.43
fork+/bin/sh 1360.00 1.33 1413.00 1.72 3.90
0KB create 5.57 0.39 5.43 0.37 -2.51
0KB delete 3.93 0.59 3.79 0.73 -3.56
10KB create 11.00 0.13 10.80 0.10 -1.82
10KB delete 5.90 0.36 5.85 0.57 -0.85
AF UNIX 9.30 0.00 9.69 0.00 4.19
Pipe 6.73 0.00 6.88 0.00 2.23
TCP connect 18.00 0.00 18.55 0.00 3.05
Local TCP lat 19.63 0.00 20.87 0.00 6.32
Local UDP lat 16.70 0.00 17.90 0.00 7.19
Rem. UDP lat 543.60 0.00 578.30 0.00 6.38
Rem. TCP lat 588.10 0.00 631.50 0.00 7.38
BW (MB/s) 5316.60 0.00 5170.69 0.00 2.74

Postal Benchmark for Exim server
Messages/min 258.64 3.33 258.75 3.09 0.04

Kernel Compile
time(s) 764.41 4.36 775.39 5.28 1.44

Apache Bench
Time per request (ms, lower is better)
25 conc. reqs 0.28 0.01 0.29 0.01 3.57
50 conc. reqs 0.26 0.00 0.27 0.00 3.85
100 conc. reqs 0.25 0.01 0.26 0.01 4.00
200 conc. reqs 1.13 0.02 1.16 0.02 2.65
Transfer rate (Kbps, higher is better)
25 conc. reqs 6781.04 134.14 6506.29 157.34 4.05
50 conc. reqs 7375.21 253.56 7083.63 248.34 3.95
100 conc. reqs 7342.15 206.45 7051.54 236.78 3.96
200 conc. reqs 1642.90 106.46 1599.55 113.92 2.64

Table 5. Protego overheads compared to Linux with Ap-
pArmor. Unless otherwise noted, tests measure execution
time in microseconds (lower is better). A few tests measure
bandwidth in MBps or Kbps, where higher is better.

files. Protego’s contributions are orthogonal to SELinux’s,
and could be adopted by SELinux to mutual benefit.

5. Evaluation
This section aims to answer the following questions:
1. What is the cost (in execution time and network through-

put) of moving setuid policies into the kernel? In particu-
lar, what cost is imposed on applications that do not use
any privileged functionality?

2. How does Protego affect overall system security?



3. Are Protego functionality and policies identical to un-
modified Linux?

4. What effort would be required to deprivilege the remain-
ing 67 packages containing setuid-to-root binaries?
Our baseline is an unmodified Linux 3.6.0 kernel config-

ured to use AppArmor and iptables with no firewall rules on
Ubuntu 12.04. Protego was refactored from Linux 3.6.0. All
measurements were collected on a Dell Optiplex 790 with a
4-core 3.40 GHz Intel Core i7 CPU. The test machine has 4
GB of memory and a 250GB, 7200 RPM SATA disk.

5.1 Performance Overheads
We measure the performance cost of Protego policy enforce-
ment on applications that do not require any privilege on
Linux with both application benchmarks and the lmbench
microbenchmark suite, version 3.0-a9. We note that within
a run, we use the standard lmbench configuration, which in-
cludes a number of iterations scaled appropriately to the test
case. We report the mean and 95% confidence intervals. We
also measure Linux kernel 3.6.6 compilation time and net-
work performance using the ApacheBench benchmark, ver-
sion 2.3, exercising an Apache web server, version 2.2.16.

We note that most applications which use the setuid
bit are interactive, and thus difficult to meaningfully bench-
mark. The most interesting exception to this are the mail
servers, so we include measurements of exim4 server using
the Postal [17] benchmark. We also extend lmbench with 5
additional tests that exercise the system calls we modified.

In general, the overheads of Protego are low, ranging
from 0–7.4%. Table 5 lists the measurements of Protego,
as well as overhead relative to Linux. For many system
calls, Protego has no effect on the behavior and perfor-
mance is comparable. In the case of exec, for instance, Pro-
tego adds 5.78% overhead to enforce setuid policies. A few
microbenchmarks show small performance improvements
commensurate with the confidence intervals, which we be-
lieve are noise. At the macro-benchmark level, such as a
Linux kernel compile, Protego overhead is only 1.44%.

In order to enforce policies on raw network packets, we
add additional netfilter rules on all outgoing packets. To
measure the impact on unprivileged applications, we com-
pare to netfilter with no rules configured, and the overhead
ranges from 2–4% for the standard ApacheBench web ser-
vice benchmark. These results indicate that the performance
overheads are acceptable.

5.2 Security Evaluation
It is difficult to quantify the change in risk of any change to
a system interface and enforcement mechanism. To evaluate
Protego we consider two rough indicators: the net change in
the trusted computing base and whether historical vulnera-
bilities in setuid binaries would occur in code that is now
de-privileged, or in code that moved into the OS kernel.

Utilities Total Priv. CVE Identifiers
CVEs Esc.

ping 84 4 1999-1208, 2000-1213,
2000-1214, 2001-0499

traceroute 26 2 2005-2071, 2011-0765
mount,umount 114 2 2006-2183, 2007-5191
mtr 4 3 2000-0172, 2002-0497,

2004-1224
sendmail 84 2 1999-0130, 1999-0203
exim 21 2 2010-2023, 2010-2024
sudo 61 5 2001-0279, 2002-0043,

2002-0184, 2009-0034,
2010-2956

sudoedit 3 1 2004-1689
newgrp 7 6 1999-0050, 2000-0730,

2000-0755, 2001-0379,
2004-1328, 2005-0816

passwd 87 1 2006-3378
passwd, su - 1 2003-0784
su 31 2 2000-0996, 2002-0816
chsh, chfn, su, passwd - 1 2002-1616
chsh, chfn 10 2 2005-1335, 2011-0721
dbus 22 1 2012-3524
pkexec, policykit 24 2 2011-1485, 2011-4945
X 33 2 2002-0517, 2006-4447
capabilities 7 1 2000-0506

Table 6. Historical vulnerabilities in setuid-to-root binaries
(total, and those that lead to privilege escalation). In Protego,
these utilities and the vulnerable code would be deprivileged
and would not lead to a privilege escalation. Dashes are
placed in the “Total” column for a CVE that spans multiple
packages; the package totals are reported in other rows.

Trusted Computing Base. We first carefully measure the
change in privileged lines of code in the previously setuid
binaries. At a high level, Protego adds 715 lines of pol-
icy checking code to the Linux kernel, 400 lines of code
in Python which monitors certain configuration files for
changes, and a 1,200 line authentication utility. The authen-
tication utility is refactored from existing trusted code in
login and newgrp. To balance this number, we also mea-
sure the lines of trusted binary code that no longer execute
with privilege—a total of 15,047. We are careful to report
a conservative estimate—ignoring whitespace, comments,
standard libraries, and any code that would have executed
after dropping privilege in the original code. Thus, Protego
decreases the lines of trusted code by at least 12,732.

One potential concern is that Protego (conceptually) mi-
grates policy enforcement code from applications to the ker-
nel. We hasten to note that the policy enforcement code in
the kernel is only 200 lines of straightforward C code. Pro-
tego also expands the purview of policies enforced in the
kernel; these concerns are localized to our LSM, and gener-
ally make existing kernel policies more precise.

Similarly, one might be concerned about adding the user-
level authentication service and monitoring daemon to the
trusted computing base. We note that authentication code is
trusted in both systems, the only difference is how it is in-
voked. Parsing configuration files can introduce new vulner-



Binary Coverage % Binary Coverage %
chfn 94.4 sudo 90.1
chsh 92.7 sudoedit 90.9
gpasswd 91.3 mount 94.1
newgrp 93.5 umount 92.5
passwd 91.0 ping 96.2
su 92.2

Table 7. Gcov coverage of command-line setuid binaries

abilities, but the risk is small, as the files are simple. This
daemon is written in a managed language with regular ex-
pressions (Python) to minimize the risks commonly asso-
ciated with input parsing. The monitoring service could be
eliminated by changing additional legacy code. The code we
add to the TCB is short, simple, and easily audited.

A more subtle issue in selecting a configuration format is
the risk of misconfiguration. Whenever possible, we chose
to use legacy configuration files administrators would find
familiar. This choice is debatable and largely incidental to
the Protego design; one could just as easily have a single
policy file, as SELinux does, and perhaps manage this with
some application to assist the administrator, all using the
same underlying /proc interfaces to the Protego LSM.

Historical Vulnerabilities. We surveyed the Common Vul-
nerabilities Database [35] entries for the 28 binaries this pa-
per studies. We found 618 total vulnerabilities over the lifes-
pan of these utilities—40 of which led to acquisition of root
privilege, summarized in Table 6.

We manually analyzed these 40 privilege escalation vul-
nerabilities and determined that these executed in code that
now runs without privilege in Protego. Most of these vul-
nerabilities exploit buffer overflows, format strings, or envi-
ronment variables. Moreover, these vulnerabilities are not in
code substantially similar to the parsing, policy checking, or
authentication code that we have added to Protego’s TCB.

This data indicates that the probability of new privilege
escalation vulnerabilities is relatively low, but the overall
risk is still substantial. Most of the credit for the low prob-
ability of privilege escalation belongs to efforts to drop
privilege after the privileged system calls have executed.
Nonetheless, our analysis indicates that kernel support in
Protego can further reduce the risk of privilege escalation.

As code matures the probability of exploitable bugs de-
creases. Although the most popular packages are generally
quite old, Ubuntu has added 21 setuid-to-root binaries based
on new code over the last 3 years, despite a net reduction in
setuid binaries. The long-term goal of this project is to com-
pletely obviate the need for new setuid-to-root binaries, and
their considerably higher risk of exploitable bugs.

5.3 Functional Testing
In addition to manual functionality tests, we validate that
Protego behaves equivalently to unmodified Linux with ex-
haustive test scripts for setuid command line utilities. We
validate that the utilities have the same output and effects

Interface No. of Setuid Binaries
socket 14
bind 23
mount 3
setuid,setgid 24
Video driver control state 13
chroot/namespace 6

miscellaneous 8

Table 8. System abstractions used by setuid binaries in
packages not included in the Section 4 study. Abstractions
below the double line need to be addressed in future work.

on both systems. We also use gcov [24] to measure the test
coverage for the command-line utilities in Table 7, which
is always above 90%. Although exercising nearly all code
paths does not necessarily mean all inputs are handled equiv-
alently on both systems, one can infer that the functionality
and policy enforcement is very likely to be equivalent.

5.4 Toward Zero Setuid-To-Root Binaries
This subsection surveys the remaining 67 packages (91 bi-
naries) in Ubuntu Linux to assess how many can likely be
deprivileged on Protego and how many will require different
approaches. We note that this survey is preliminary, based on
the documentation, and we have not tested these on Protego.

Table 8 groups the remaining binaries by the underlying
interfaces that require privilege. We observe that 77 use
interfaces already addressed by Protego, but may require
refinement to the policies currently enforced. The remaining
14 binaries require privilege for:
• Namespaces (6). §4.6 explains that namespaces no longer

require privilege in Linux kernel versions 3.8 and higher.
• System administration (3). Three binaries use privilege

to reboot the system, load kernel modules, or configure
the network. Some may be able to use PolicyKit or sudo
(§4.3), but others may require additional consideration.

• Open a custom device (5). Virtualbox includes a kernel-
level virtual machine monitor, which exports a custom de-
vice to 5 setuid binaries. These applications and the ker-
nel module are tightly coupled, and additional work will
be required to identify a sensible policy for this device.

Thus, we are optimistic that a few additional policy abstrac-
tions can complete our ongoing effort to obviate the need for
all setuid-to-root binaries.

6. Related Work
This section surveys related efforts to reduce the privilege
of setuid binaries, which generally speaking, either enforce
least privilege on the administrator, but not regular user, or
simply remove functionality from users.

Much related work on setuid binaries attempts to mitigate
the risk of privilege escalation attacks by allocating privilege
only to portions of a program (also known as privilege brack-
eting or privilege separation). Systrace [37] mitigates privi-
lege escalation attacks by localizing privilege in setuid bina-



ries to a single system call (e.g., the socket call in ping).
Executable based access control [14] specifies which files a
trusted binary may open; this design cannot prevent an errant
passwd utility from changing other users’ passwords, nor
does it restrict privileged system calls unrelated to files. Pro-
tection domains within a setuid binary have also been pro-
posed to preventing exploits in unprivileged operations from
leaking into privileged code [41].

Secure Xenix [23, 25], and other secure Unix vari-
ants [13, 29, 46, 47] developed modern best practices for
enforcing least privilege on the administrator: fragmenting
administrative privilege into roles or capabilities, restricting
the ability to create more setuid binaries, and removing the
setuid bit if a binary is overwritten. Limiting the risk of ex-
ploiting a setuid binary is complimentary to Protego’s goal
of eliminating the need for setuid binaries.

Plan 9 eliminates setuid binaries by making every OS
resource a file or file system, and by prolific use of fine-
grained capabilities [20]. For instance, Plan 9 represents all
networking abstractions as files with capabilities, whereas
Protego enforces finer-grained network security policies.

Although Windows has a richer access control model than
Linux users and groups [42], Windows adopts similar prac-
tices for some resources, such as requiring Administrator
privilege to create a raw socket [34].

Finally, Bastille [12] simply removes the setuid flag
and supported functionality from many utilities. For in-
stance, non-privileged users cannot mount a USB drive, ping
another computer, or use the traceroute command—
functionality that could be safely reinstated on Protego.

Namespaces. Linux 3.8 allows unprivileged sandboxing
applications, such as chromium, to create sandboxed net-
work, mount, user, and process namespaces [28].

Namespaces are designed for isolating untrusted binaries,
and are simply the wrong tool for enforcing least privilege
when accessing shared system abstractions. Inside of a sand-
box, a process can appear to have any capability, but any ex-
ternally visible operations are subject to the original user’s
privilege. For instance, network namespaces allow an un-
privileged process to access a fake network interface, and
send ICMP packets within a fake network with no routes to
the outside world. The major caveat is that any connection
to the outside world requires an agent outside of the sandbox
with the appropriate capabilities. In our network example,
the agent would still need the CAP NET RAW capability to
send ICMP packets out of the sandbox. In contrast, names-
paces cannot safely allow access to shared system resources,
such as passwd updating the password database.

7. Conclusion
This paper presents a study of setuid-to-root binaries on
modern systems, yielding insights into the nature of least
privilege, especially that one should consider the adminis-
trator and user separately. There is an interplay between the

division of labor between the kernel and userspace that di-
rectly impacts the need for trust; trusted binaries are often
compensating for a design flaw in the system interface. Pro-
tego demonstrates techniques that can eliminate this long-
standing attack surface without sacrificing functionality.
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