
SoK: Introspections on Trust and the Semantic Gap

Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter, and Radu Sion
Stony Brook University

{bpjain, mbaig, dozhang, porter, sion}@cs.stonybrook.edu

Abstract—An essential goal of Virtual Machine Introspection
(VMI) is assuring security policy enforcement and overall
functionality in the presence of an untrustworthy OS. A
fundamental obstacle to this goal is the difficulty in accurately
extracting semantic meaning from the hypervisor’s hardware-
level view of a guest OS, called the semantic gap. Over the
twelve years since the semantic gap was identified, immense
progress has been made in developing powerful VMI tools.

Unfortunately, much of this progress has been made at
the cost of reintroducing trust into the guest OS, often in
direct contradiction to the underlying threat model motivating
the introspection. Although this choice is reasonable in some
contexts and has facilitated progress, the ultimate goal of
reducing the trusted computing base of software systems is
best served by a fresh look at the VMI design space.

This paper organizes previous work based on the essential
design considerations when building a VMI system, and then
explains how these design choices dictate the trust model
and security properties of the overall system. The paper then
observes portions of the VMI design space which have been
under-explored, as well as potential adaptations of existing
techniques to bridge the semantic gap without trusting the
guest OS.

Overall, this paper aims to create an essential checkpoint
in the broader quest for meaningful trust in virtualized
environments through VM introspection.

Keywords-VM Introspection, semantic gap, trust.

I. INTRODUCTION

Virtualization has the potential to greatly improve system
security by introducing a sensible layering—separating the
policy enforcement mechanism from the component being
secured.

Most legacy OSes are both monolithic and burdened
with a very wide attack surface. A legacy OS, such as
Linux, executes all security modules in the same address
space and with the same privilege level as the rest of the
kernel [91]. When this is coupled with a porous attack
surface, malicious software can often load code into the
OS kernel which disables security measures, such as virus
scanners and intrusion detection. As a result, users have
generally lost confidence in the ability of the OS to enforce
meaningful security properties. In cloud computing, for
instance, customers’ computations are isolated using virtual
machines rather than OS processes.

In contrast, hypervisors generally have a much narrower
interface. Moreover, bare metal, or Type I [76], hypervisors
generally have orders of magnitude fewer lines of code
than a legacy OS. Table I summarizes the relative size of a

representative legacy OS (Linux 3.13.5), and a representative
bare-metal hypervisor (Xen 4.4), as well as comparing the
number of reported exploits in both systems over the last 8
years. Perhaps unsurprisingly, the size of the code base and
API complexity are strongly correlated with the number of
reported vulnerabilities [85]. Thus, hypervisors are a much
more appealing foundation for the trusted computing base
of modern software systems.

This paper focuses on systems that aim to assure the func-
tionality required by applications using a legacy software
stack, secured through techniques such as virtual machine
introspection (VMI) [46]. A number of valuable research
projects observe that a sensitive application component, such
as a random number generator or authentication module,
requires little functionality, if any, from the OS, yet are
vulnerable to failures of the OS [68, 69]. These projects are
beyond the scope of this paper, which instead focuses on
systems that leverage virtualization to ensure security prop-
erties for applications that require legacy OS functionality.

VMI has become a relatively mature research topic, with
numerous projects. This paper distills key design points
from previous work on VMI—providing readers and system
designers with a framework for evaluating design choices.

Moreover, we observe an unfortunate trend in the lit-
erature: many papers do not explicate their assumptions
about the system, trusted computing base, or threat models.
Although an attentive reader can often discern these facts,
this trend can create confusion within the field. Thus, this
survey carefully explicates the connection between certain
design choices and the fundamental trust assumptions un-
derlying these designs. One particularly salient observation
is that all current solutions to the semantic gap problem [34]
implicitly assume the guest OS is benign. Although this is
a reasonable assumption in many contexts, it can become a
stumbling block to the larger goal of reducing the size of
the trusted computing base.

Finally, after identifying key design facets in previous
work, this paper identifies promising under-explored regions
of the design space. The paper discusses initial work in these
areas, as well as the applicability of existing techniques and
more challenging threat models.

The contributions and insights of this work are as follows:
• A thorough survey of research on VMI, and a distillation

of the principal VMI design choices.
• An analysis of the relationship between design choices

Codebase Lines of code
Xen hypervisor 4.4 0.50 Million
Linux kernel 3.13.5 12.01 Million

Codebase No. of CVE
Xen hypervisor 24
Linux kernel 903

Table I
SIZE AND DOCUMENTED VULNERABILITIES OF A REPRESENTATIVE
BARE-METAL HYPERVISOR (XEN) AND LEGACY OS (LINUX). CODE
SIZES WERE CALCULATED BASED ON XEN 4.4 AND LINUX 3.13.5.

CVES WERE COLLECTED FOR ALL VERSIONS OF THESE CODE BASES
OVER THE PERIOD FROM 01/01/2006 TO 03/03/2014.

and implicit assumptions and trust. We observe that ex-
isting solutions to the semantic gap problem inherently
trust the guest OS, often in direct contradiction to the
underlying motivation for using VM introspection.

• The observation that the semantic gap problem has
evolved into two separate issues: an engineering challenge
and a security challenge. Existing solutions address the
engineering challenge.

• Identifying a connection between techniques that protect
memory and prevent attacks.

• Exploring the applicability of current techniques to new
problems, such as removing the guest OS from the trusted
computing base without removing OS functionality.

• Identifying additional points in the design space that
are under-explored, such as hardware-support for mutual
distrust among system layers and dynamic learning from
an untrusted OS.

II. BACKGROUND

The specific goals of VM introspection systems vary, but
commonly include identifying if a malicious loadable kernel
module, or rootkit, has compromised the integrity of the
guest OS [75]; identifying malicious applications running
on the system [65]; or ensuring the integrity or secrecy of
sensitive files [51]. In these systems, a monitor tracks the
behavior of each guest OS and either detects or prevents
policy violations. Such a monitor may be placed in the
hypervisor, a sibling VM, in the guest itself, or in the
hardware, as illustrated in Figure 1. This process of looking
into a VM is Virtual Machine Introspection (VMI).

A fundamental challenge to using VMI for security pol-
icy enforcement is that many desirable security policies
are expressed in high-level, OS abstractions, such as files
and processes, yet the hypervisor only has direct visibility
into hardware-level abstractions, such as physical memory
contents and hardware device operations. This disparity in
abstractions is known as the semantic gap.

As an example of how the semantic gap creates chal-
lenges for introspection, consider how a hypervisor might
go about listing the processes running in a guest OS. The
hypervisor can access only hardware-level abstractions, such
as the CPU registers and contents of guest memory pages.
The hypervisor must identify specific regions of guest OS

Sibling
VM

 Hardware

 Hypervisor

App

Guest OS

App App
VM

Figure 1. Monitor placement options in VMI: in a sibling VM, the
hypervisor, in the guest OS itself, or in hardware. In-guest and hardware
solutions require some assistance from the hypervisor.

memory that include process descriptors, and interpret the
raw bytes to reconstruct semantic information, such as the
command line, user id, and scheduling priorities.

As a result of the semantic gap, much of the VMI devel-
opment effort goes into reconstructing high-level semantic
information from low-level sources. VMI tools attempt to
reconstruct a range of information, including the set of run-
ning processes, sensitive file contents, and network sockets.
For brevity, we limit this paper to memory introspection,
where the hypervisor draws inferences about guest behavior
from the contents of memory and CPU registers. A range
of work has also introspected disk contents [54, 87, 93] and
network traffic [48, 56]; at this boundary, we limit discussion
to in-memory data structures, such as those representing file
metadata (inode) or a socket (sk_buff).

As we discuss in the next section, many of these semantic
reconstruction techniques rely on fragile assumptions or are
best-effort. Unfortunately, errors in reconstructing seman-
tic information can be exploited by malware to trick an
introspection-based security monitor.

Continuing our example of listing processes in a guest
OS, a typical introspection strategy would be to identify the
definition of a process descriptor (e.g., a task_struct
on Linux) from the source code, and then walk the list
of runnable processes by following the global root of the
process list init_task, overlaying this structure definition
over the relevant memory addresses. This strategy faces a
number of challenges. First, one must either assume all
process descriptors are in this list—even in a compromised
or malicious OS—or one must detect hidden processes,
using techniques such as scanning all of guest memory
looking for potential process descriptors or detecting incon-
sistencies between the currently loaded page tables and the
purported process descriptor [55]. Hidden process detection
faces additional challenges, such as false positives from
scanning memory during a critical section which temporarily

violates some internal invariant the introspection tool is
checking. In order to prevent the guest OS from using a
hidden process descriptor, the introspection must identify
all context switching code in the kernel, possibly including
dynamically loaded code which manually context switches
a hidden process. Finally, a rootkit might hide itself in a
subtle and unexpected manner, such as loading itself as a
thread in the address space of a benign system process, or
placing its code in the memory image of a common library
and scheduling itself by changing the address of a signal
handling function.

These subtleties make robustly bridging the semantic
gap quite a challenge. The next section organizes current
strategies to solve this problem.

III. BRIDGES ACROSS THE SEMANTIC GAP

Modern OSes are complex systems consisting of thou-
sands of data structure types, and many instances of each
type. A typical running instance of the Linux kernel was
found to have a core set of 29,488 data structure instances
belonging to 231 different types that enable scheduling,
memory management, and I/O [77]. Each of these structures
consists of many fields. For instance, a task struct in Linux
3.10 contains more than 50 fields [14], many of which are
pointers to other structures. A key ingredient to any solution
to the semantic gap problem is reconstruction of kernel data
structures from memory contents.

This section begins with explaining techniques to recon-
struct kernel data structures (III-A), followed by additional
introspection techniques that do not directly reconstruct data
structures (§III-B–III-C), and then techniques that assure
the integrity of the kernel binary (§III-D). As the section
explains each technique, it highlights the underlying trust
assumption(s)—most commonly that the guest OS is benign.
We will revisit these trust assumptions as we explain VMI
attacks and defenses (§V). as well as discussing how one
might adapt VMI to a stronger threat model where these
assumptions do not hold (§VI).

A. Learning and Reconstruction

Data structure reconstruction generally relies on a learn
and search methodology. A learning phase is used to extract
information relevant to data structures, generally a data
structure signature. A signature can be used to identify and
reconstruct data structure instances within kernel memory
contents. Signatures are created using techniques such as
expert knowledge, source analysis, or dynamic analysis—
each described in this subsection (§III-A1–III-A3).

A second search phase identifies instances of the data
structure. The two most common search strategies are to
either linearly scan kernel memory or to traverse data struc-
ture pointers, starting with public symbols. Depending on the
OS, public symbols may include debugging symbols or the
dynamic linking tables exposed to loadable kernel modules.

It is arguable which approach is more efficient, since many
kernel data structures can have cyclic or invalid pointers, but
may require traversing less total memory. However, the lin-
ear scan of kernel memory has the advantage that it is robust
to “disconnected” structures or other attempts to obfuscate
pointers. Both techniques can observe transient states when
searching concurrently with OS operation, discussed further
in §IV-A.

Several linear scanning techniques limit the search space
by introspecting on the kernel memory allocators—either
by interpreting allocator data structures [51] or by placing
debugging breakpoints on the allocator [77]. OS kernels
commonly use a different slab or memory pool for each
object type; this information can be used to further infer data
structure types. An advantage of leveraging heap-internal
information for search is more easily identifying transient
data structures which have been freed but may be pointed
to—a challenge for other search approaches. An inherent
risk of this approach is missing data structures allocated in
an unorthodox manner.

Searching overheads: In practice, searching for data
structures in a kernel memory snapshot can take from tens of
milliseconds [51] up to to several minutes [31]. Thus, most
systems reduce overheads by searching periodically and
asynchronously (§IV-A). Periodic searches fundamentally
limit these approaches to detecting compromises after the
fact, rather than preventing policy violations. Moreover,
these approaches can only reliably detect compromises that
make persistent changes to a data structure. Transient mal-
ware can slip through the cracks between two searches of
kernel memory.

The rest of this subsection describes the three major
approaches to learning data structure signatures.

1) Hand-crafted data structure signatures: Introspection
and forensic analysis tools initially used hand-crafted signa-
tures, based on expert knowledge of the internal workings
of an OS. For instance, such a tool might generate the
list of running processes, similar to ps, by walking a
global task list in Linux. Examples of this approach include
Memparser [11], KNTLIST [9], GREPEXEC [4] and many
others [1, 2, 3, 5, 10, 12, 13, 16, 17, 81, 82].

The most sophisticated frameworks for hand-crafted re-
construction use a wide range of subtle invariants and allow
users to develop customized extensions. FACE/Ramparser
[37] is a scanner that leverages invariants on values within
a data structure, such as enumerated values and pointers
that cannot be null. Ramparser can identify running pro-
cesses (task struct), open network sockets (struct sock),
in-kernel socket buffers (sk buff), loaded kernel modules
(struct module), and memory-mapped and open files for any
given process (vm area struct). Similarly, Volatility [15]
is a framework for developing forensics tools that analyze
memory snapshots, with a focus on helping end-users to
write extensions. Currently, Volatility includes tools that

extract a list of running processes, open network sockets
and network connections, DLLs loaded for each process,
OS kernel modules, system call tables, and the contents of
a given process’s memory.

Hand-crafting signatures and data structure reconstruction
tools creates an inherent limitation: each change to an OS
kernel requires an expert to update the tools. For instance,
a new version of the Linux kernel is released every 2–
3 months; bugfix updates to a range of older kernels are
released as frequently as every few weeks. Each of these
releases may change a data structure layout or invariant.
Similarly, different compilers or versions of the same com-
piler can change the layout of a data structure in memory,
frustrating hand-written tools. Hand-written tools cannot
keep pace with this release schedule and variety of OS
kernels and compilers; thus, most introspection research has
instead moved toward automated techniques.

2) Source code analysis: Automated reconstruction tools
may rely on source code analysis or debugging information
to extract data structures definitions, as well as leverage
sophisticated static analysis and source invariants to reduce
false positives during the search phase. Examples of source
code analysis tools include SigGraph [64], KOP [31], and
MAS [38].

One basic approach to source analysis is to identify
all kernel object types, and leverage points-to analysis to
identify the graph of kernel object types. Kernel Object
Pinpointer (KOP) [31] extended a fast aliasing analysis
developed for non-security purposes [49], with several ad-
ditional features, including: field-sensitivity, allowing KOP
to differentiate accesses made to different fields within the
same struct; context-sensitivity, differentiating different uses
of union types and void pointers based on type infor-
mation in code at the call sites; as well as inter-procedural
and flow-insensitive analysis, rendering the analysis robust
to conditional control flow, e.g., if statements. In applying
the static analysis to a memory snapshot, KOP begins with
global symbols and traverses all pointers in the identified
data structures to generate a graph of kernel data structures.

A key challenge in creating this graph of data structures
is that not all of the pointers in a data structure point to valid
data. As a simple example, the Linux dcache uses deferred
memory reclamation of a directory entry structure, called a
dentry, in order to avoid synchronization with readers.
When a dentry is on a to-be-freed list, it may point to
memory that has already been freed and reallocated for
another purpose; an implicit invariant is that these pointers
will no longer be followed once the dentry is on this list.
Unfortunately, these implicit invariants can thwart simple
pointer traversal. MAS [38] addresses the issue of invalid
pointers by extending the static analysis to incorporate value
and memory alias checks.

Systems like MAS [38], KOP [31] and LiveDM [77] also
improve the accuracy of type discovery by leveraging the

fact that most OSes create object pools or slabs for each
object type. Thus, if one knows which pages are assigned
to each memory pool, one can reliably infer the type of any
dynamically allocated object. We hasten to note that this
assumption can be easily violated by a rootkit or malicious
OS, either by the rootkit creating a custom allocator, or
allocating objects of greater or equal size from a different
pool and repurposing the memory. Thus, additional effort is
required to detect unexpected memory allocation strategies.

SigGraph [64] contributed the idea that the graph structure
of the pointers in a set of data structures can be used as a
signature. As a simple example, the relationships of pointers
among task_struct structures in Linux is fundamentally
different than among inode structures. SigGraph represents
graph signatures in a grammar where each symbol represents
a pointer to a sub-structure. This signature grammar can be
extended to encode arbitrary pointer graphs or encode sub-
structures of interest. SigGraph is designed to work with a
linear scan of memory, rather than relying on reachability
from kernel symbols.

3) Dynamic Learning: Rather than identifying code in-
variants from kernel source code, VMI based on dynamic
analysis learns data structure invariants based on observing
an OS instance [24, 41, 64].

By analogy to supervised machine learning, the VMI
tool trains on a trusted OS instance, and then classifies
the data structures of potentially untrusted OS instances.
During the training phase, these systems often control the
stimuli, by running programs that will manipulate a data
structure of interest, or incorporating debugging symbols to
more quickly discern which memory regions might include
a structure of interest. Tools such as Daikon [43] are used
to generate constraints based on observed values in fields of
a given data structure.

Several dynamic systems have created robust signatures,
which are immune to malicious changes to live data structure
instances [41]. More formally, a robust signature identifies
any memory location that could be used as a given structure
type without false negatives. A robust signature can have
false positives. Robust signatures are constructed through
fuzz testing during the training phase to identify invariants
which, if violated, will crash the kernel [41, 64]. For
instance, RSFKDS begins its training phase with a guest
in a clean state, and then attempts to change different data
structure fields. If the guest OS crashes, this value is used
to generate a new constraint on the potential values of that
field. The primary utility of robust signatures is detecting
when a rootkit attempts to hide persistent data by modifying
data structures in ways that the kernel doesn’t expect. The
key insight is that these attempts are only fruitful inasmuch
as they do not crash the OS kernel. Thus, robust signatures
leverage invariants an attacker cannot safely violate.

B. Code Implanting

A simpler approach to bridging the semantic gap is to
simply inject code into the guest OS that reports semantic
information back to the hypervisor. For example, Process
implanting [47] implants and executes a monitoring process
within a randomly-selected process already present in the
VM. Any malicious agent inside the VM is unable to
predict which guest process has been replaced and thus the
injected code can run without detection. Rather than implant
a complete process, SYRINGE [30] implants functions into
the kernel, which can be called from the VM.

A challenge to implanting code is ensuring that the
implanted code is not tampered with, actually executes,
and that the guest OS components it uses report correct
information. SIM [84] uses page table protections to isolate
an implanted process’s address space from the guest OS
kernel. Section III-D discusses techniques to ensure the in-
tegrity of the OS kernel. Most of these implanting techniques
ultimately rely on the guest kernel to faithfully represent
information such as its own process tree to the injected code.

C. Process Outgrafting

In order to overcome the challenges with running a trusted
process inside of an untrusted VM, process outgrafting [86]
relocates a monitoring process from the monitored VM to
a second, trusted VM. The trusted VM has some visibility
into the kernel memory of the monitored VM, allowing a
VMI tools to access any kernel data structure without any
direct interference from an adversary in the monitored VM.

Virtuoso [40] automatically generates introspection pro-
grams based on dynamic learning from a trusted VM,
and then runs these tools in an outgrafted VM. Similarly,
OSck [51] generates introspection tools from Linux source
which execute in a monitoring VM with a read-only view
of a monitored guest.

VMST [44] generalizes this approach by eliminating the
need for dynamic analysis or customized tools; rather, a
trusted, clean copy of the OS runs with a roughly copy-on-
write view of the monitored guest. Monitoring applications,
such as ps, simply execute in a complete OS environment on
the monitoring VM; each system call executed actually reads
state from the monitored VM. VMST has been extended
with an out-of-VM shell with both execute and write capa-
bilities [45], as well as accelerated by using memoization,
trading some accuracy for performance [80]. This approach
bridges the semantic gap by repurposing existing OS code.

The out-grafting approach has several open problems.
First, if the monitoring VM treats kernel data as copy-
on-write, the monitoring VM must be able to reconcile
divergences in the kernel views. For example, each time the
kernel accesses a file, the kernel may update the inode’s
atime. These atime updates will copy the kernel data,
which must be discarded for future introspection or view
of the file system will diverge. VMST does not address

this problem, although it might be addressed by an expert
identifying portions of the kernel which may safely diverge,
or resetting the VM after an unsafe divergence. Similar to
the limitations of hand-crafted introspection tools, each new
OS variant may require hand-updates to divergent state; thus,
automating divergence analysis is a useful topic for future
work. Finally, this approach cannot handle policies that
require visibility into data on disk—either files or swapped
memory pages.

D. Kernel executable integrity

The introspection approaches described above assume
that the executable kernel code does not change between
creation of the introspection tools and monitoring the guest
OS. Table II lists additional assumptions made by these
techniques.

In order to uphold the assumption that the kernel has not
changed, most hypervisor-based security systems must also
prevent or limit the ability of the guest OS to modify its
own executable code, e.g., by overwriting executable pages
or loading modules. This subsection summarizes the major
approaches to ensuring kernel binary integrity.

1) The (Write ⊕ Execute) principle: The W ⊕ X prin-
ciple prevents attacks that write the text segment by en-
forcing a property where all the pages are either writable
or executable, but not both at the same time. For instance,
SecVisor [83] and NICKLE [79] are hypervisors that enforce
the W ⊕ X principle by setting page table permissions on
kernel memory. SecVisor will only set executable permission
on kernel code and loadable modules that are approved by
an administrator, and prevent modification of this code.

Although non-executable (NX) page table bits are ubiq-
uitous on modern x86 systems, lack of NX support compli-
cated the designs of early systems that enforced the W ⊕ X
principle. Similarly, compilers can mix code and data within
the same page, although security-conscious developers can
also restrict this with linker directives.

2) Whitelisting code: As discussed above, SecVisor and
NICKLE policies require a notion of approved code, which
is represented by a whitelist of code hashes created by the
administrator.

Patagonix [65] extends this property to application bina-
ries, without the need to understand the structure of pro-
cesses and memory maps. Patagonix leverages no-execute
page table support to receive a trap the first time data
from a page of memory is loaded into the CPU instruction
cache. These pages are then compared against a database of
whitelisted application binary pages.

Although whitelisting code can prevent loading unknown
modules which are the most likely to be malicious, the
approach is limited by the administrator’s ability to judge
whether a driver or OS kernel is malicious a priori.

3) Object code hooks: A practical limitation of the W ⊕
X principle is that many kernels place function pointers in

Technique Assumptions Monitor Placement Systems

Hand-crafted data structure signatures
(Expert knowledge)

• Expert knowledge of OS internals for known kernel version
• Guest OS is not actively malicious Sibling VM,

hypervisor, or
hardware

[1, 2, 3, 4, 5,
9, 10, 11, 12,
13, 16, 17,
81, 82]

Automated learning and reconstruction
(Source analysis or offline training)

• Benign copy of OS for training
• OS will behave similarly during learning phase and moni-

toring
• Security-sensitive invariants can be automatically learned
• Attacks will persist long enough for periodic scans

Sibling VM,
hypervisor, or
hardware

[24, 31, 38,
41, 64, 77]

Code implanting
(VMM protects monitoring agent inside
guest OS)

• Malicious guest schedules monitoring tool and reports
information accurately Guest with hypervisor

protection
[30, 47, 84]

Process outgrafting
(Reuse monitoring tools from sibling VM
with shared kernel memory)

• Live, benign copy of OS behaves identically to monitored
OS Sibling VM [40, 44, 45,

86]

Kernel executable integrity
(Protect executable pages and other code
hooks)

• Initial benign version of monitored OS
• Administrator can white-list safe modules Hypervisor [65, 73, 79,

83, 89]

Table II
VMI TECHNIQUES, MONITOR PLACEMENT (AS ILLUSTRATED IN FIGURE 1, AND THEIR UNDERLYING TRUST ASSUMPTIONS.

data objects that must be writable. These function pointers
are used to implement a crude form of object orientation.
For instance, the Linux VFS allows a low-level file system
to extend generic routines for operations such as reading a
file or following a symbolic link.

Lares [73] implemented a simple page-protection mech-
anism on kernel object hooks, but incurred substantial per-
formance penalties because these executable pointers are in
the same page as fields which the guest kernel must be
able to write, such as the file size and modification time.
HookSafe [89] addresses this problem by modifying OS
kernel code to relocate all hooks to a read-only, shadow
memory space. All code that calls a hook must also check
that the requested hook is in the shadow memory space, and
some policy must also be applied to approve which code
can be added to the hook section. The hook redirection
and checking code is in the kernel’s binary text, and is
read-only. HookSafe identifies locations where hooks are
called through dynamic learning (§III-A); this could likely
be extended with static analysis for more complete coverage.

Ultimately, these techniques are approximating the larger
property of ensuring control flow integrity (CFI) of the
kernel [18]. Ensuring CFI is a broad problem with a range of
techniques. For instance, Program Shepherding [59] protects
the integrity of implanted functions [30] (§III-B), using a
machine code interpreter to monitor all control transfers
and guarantee that each transfer satisfies a given security
policy. Discovering efficient CFI mechanisms is a relevant,
but complimentary problem to VMI.

IV. PREVENTION VS. DETECTION

Some introspection tools prevent certain security policy
violations, such as execution of unauthorized code, whereas
others only detect a compromise after the fact. Clearly,
prevention is a more desirable goal, but many designs accept
detection to lower performance overheads. This section
discusses how certain design choices fundamentally dictate
whether a system can provide detection or prevention.

Prevention requires a mechanism to identify and inter-
pose on a low-level operation within a VM which violates
a system security policy. Certain goals map naturally onto
hardware mechanisms, such as page protections on kernel
code or hooks [73, 79, 83, 89]. Other goals, such as
upholding data structure invariants the kernel code relies
upon, are open questions.

As a result, violations of more challenging properties are
currently only detected after the fact by VMI tools [24,
39, 40, 44, 51, 64, 65, 74, 75, 77, 80, 84]. In general,
there is a strong connection between approaches that peri-
odically search memory and detection. Periodic searching
is a good fit for malware that persistently modifies data
structures, but can miss transient modifications. To convert
these approaches to prevention techniques would require
interposing on every store, which is prohibitively expensive.
Moreover, because some invariants span multiple writes,
even this strawman approach would likely yield false nega-
tives without even deeper analysis of the code behavior.

Current detection systems usually just power off a com-
promised VM and alert an administrator. Several research
projects identify how systems can recover from an intrusion
or other security violation [32, 42, 57, 58] In general,

general-purpose solutions either incur relatively high over-
heads to track update dependencies (35% for the most recent
general-purpose, single-machine recovery system [58]), or
leverage application-specific properties. Improving perfor-
mance and generality of recovery systems is an important
direction for future work.

A. Asynchronous Vs Synchronous Mechanisms

Synchronous mechanisms mediate guest operations inline
to prevent security policy violations, or receive very low
latency notification of changes. All prevention systems we
surveyed [73, 79, 83, 84, 89] use synchronous mechanisms,
such as page protection or code implanting. Several low-
latency detection systems use customized hardware, dis-
cussed further in §IV-B. A few systems also use syn-
chronous mechanisms on commodity hardware for detec-
tion [60, 65, 77], but could likely lower their overheads with
an asynchronous mechanism.

Asynchronous mechanisms execute concurrently with a
running guest and inspect its memory. These systems gener-
ally introspect into a snapshot of memory [24, 39, 64, 74] or
a read-only or copy-on-write view of guest memory [40, 44,
51, 53, 75, 80]. All surveyed asynchronous systems detect
rootkits after infection through passive monitoring.

On one hand, the synchronous systems gain a vantage
point over their counterparts against transient attacks but
increase the overhead for the guest OS being protected.
On the other hand, asynchronous systems introduce lower
monitoring overhead but miss cleverly built transient attacks;
they are also limited due to the inherent race condition
between the attacker and the detection cycle.

Synchronous and asynchronous mechanisms make fun-
damental trade-offs across the performance, frequency of
policy-relevant events, risk, and assumptions about the be-
havior of the system. Synchronous mechanisms tend to
be more expensive, and are generally only effective when
the monitored events are infrequent, such as a change in
the access pattern to a given virtual page. The cost of an
asynchronous search of memory can also be quite high
(ranging from milliseconds [51] to minutes [31]), but the
frequency can be adjusted to an acceptable rate—trading
risk for performance. Both synchronous and asynchronous
systems make potentially fragile assumptions about the
system to improve performance, such as knowing all hook
locations or assuming all objects of a given type are allocated
from the same slab. These risks could be reduced in future
work by identifying low-frequency events that indicate a
policy violation, are monitorable without making fragile
assumptions about the system, and introduce little-to-no
overheads in the common case.

A final issue with executing introspection concurrently
with the execution of an OS is false positives arising because
of transient states. In general, an OS may violate its own
invariants temporarily while executing inside of a critical

section. A correct OS will, of course, restore the invari-
ants before exiting the critical section. If an introspection
agent searches memory during a kernel critical section, it
may observe benign violations of these invariants, which
will resolve quickly. Current approaches to this problem
include simply looking for repeated violations of an invariant
(leaving the system vulnerable to race conditions with an
attacker), or only taking memory snapshots when the OS
cannot be in any critical sections (e.g., by preempting each
CPU while out of the guest kernel).

Current VMI systems face fundamental trade-offs between
performance and risk, often making fragile assumptions
about the guest OS.

B. Hardware-Assisted Introspection

Several research prototypes have employed customized
hardware for introspection [60, 67, 71], or applied existing
hardware in novel ways [22, 74, 88]. The primary divi-
sion within the current design space of hardware-assisted
introspection is whether the introspection tool uses memory
snapshots or snoops on a bus. Snooping can monitor memory
regions at finer granularity than page protections, reducing
overheads.

1) Snapshotting: One strategy for hardware-assisted in-
trospection is using a PCI device to take RAM snapshots,
which are sent to a second machine for introspection (mon-
itored and monitor, respectively). For instance, Copilot [74]
adds an Intel StrongARM EBSA-285 Evaluation Board
on the monitored machine’s PCI bus. The PCI device on
the monitored machine uses DMA requests to retrieve a
snapshot of host RAM, which is sent to the monitor machine
upon request over an independent communication link. The
monitor periodically requests snapshots and primarily checks
that the hash of the kernel binary text and certain code
pointers, such as the system call table, have not changed
from known-good values.

Unfortunately, a memory snapshot alone isn’t sufficient to
robustly reconstruct and interpret a snapshot. Of particular
importance is the value of the cr3 register, which gives the
physical address of the root of the page tables. Without this
CPU register value, one cannot reliably reconstruct the vir-
tual memory mapping. Similarly, a system can block access
to regions of physical memory using an IOMMU [20, 27].

HyperCheck [88] augments physical memory snapshots
with the contents of the cr3 register, using the CPU System
Management Mode (SMM) [6]. SMM is an x86 CPU
mode designed primarily for firmware, power management,
and other system functions. SMM has the advantage of
protecting the introspection code from the running system
as well as giving access to the CPU registers, but must also
preempt the system while running (i.e., this is a synchronous
mechanism). The processor enters SMM when the SMM
interrupt pin (SMI) is raised, generally by the Advanced

Programmable Interrupt Controller (APIC). The hypervisor
is required to create SMI interrupts to switch the CPU to
SMM mode. Upon entering SMM, the processor will launch
a program stored in system management RAM (SMRAM).
SMRAM is either a locked region of system DRAM, or a
separate chip, and ranges in size from 32 KB to 4 GB [6]
Outside of SMM, SMRAM may not be read or written.
Within SMM, the integrity checking agent has unfettered
access to all RAM and devices, and is not limited by a
IOMMU or other attacks discussed previously. Unfortu-
nately, SMM mode also has the limitation that Windows
and Linux will hang if any software spends too much time
in SMM, bounding the time introspection code can take.

HyperSentry [22] further refines this model by triggering
an SMI handler from an Intelligent Platform Management
Interface (IPMI) device. IPMI devices generally execute
system management code, such as powering the system on
or off over the network, on a device hidden from the system
software.

A limitation of any SMM-based solution, including the
ones above, is that a malicious hypervisor could block SMI
interrupts on every CPU in the APIC, effectively starving the
introspection tool. For VMI, trusting the hypervisor is not a
problem, but the hardware isolation from the hypervisor is
incomplete.

Each of these systems focus on measuring the integrity
of system software—e.g., checking that the executable pages
have a known-good hash value. At least in SMM mode, more
computationally expensive introspection may be impractical.
Because all of these operations operate on periodic snap-
shots, which may visibly perturb memory access timings, a
concern is that an adversary could predict the snapshotting
interval and race with the introspection agent. In order to
ensure that transient attacks cannot race with the snapshot
creation, more recent systems have turned to snooping,
which can continuously monitor memory changes.

2) Snooping: A number of recent projects have developed
prototype security hardware that snoops on the memory
bus [60, 67, 71]. These systems have the useful function of
efficiently monitoring writes to sensitive code regions; unlike
page protections, snooping systems can monitor writes at
the finer granularity of cache lines, reducing the number
of needless checks triggered by memory accesses adjacent
to the structure being monitored. These systems can also
detect updates to memory from a malicious device or driver
by DMA, which page-level protections cannot detect.

Although most prototypes have focused on detecting mod-
ifications to the kernel binary itself, KI-Mon also watches
for updates to object hooks [60], and there is likely no
fundamental reason other solutions could not implement this.

Because these snooping devices aim to be very
lightweight, they cannot then check data structure invariants
or code integrity, but instead signal a companion snap-
shotting device (as discussed above) to do these checks.

However, a specific memory event triggering asynchronous
checks is a clear improvement over periodic snapshots,
in both efficiency and risk of races with the attacker. A
small complication with snooping-triggered introspection
is that invariants often span multiple cache lines, such
as next.prev == next in a doubly-linked list. If an
invariant check is triggered on the first write in a critical
section, the system will see many false positives. KI-Mon
addresses this by waiting until the system quiesces.

We note that these systems do not use commodity hard-
ware, but are implemented in simulators or FPGAs. Sec-
tion VI-B argues that this is a promising area of research
that deserves more attention, but more work has to be done
to demonstrate the utility of the approach before it will
be widely available. Similarly, these systems have initially
focused on attack detection, but it would be interesting to
extend these systems to recovering from a detected attack.

Snooping is useful for finer-grained memory monitoring.

C. Memory Protection: A necessary property for prevention

We end this section by observing that all prevention
systems employ some form of memory protection to syn-
chronously interpose on sensitive data writes. For example,
HookSafe [89] and Lares [73] use memory protection to
guard against unexpected updates to function pointers. In
contrast, it isn’t clear how to convert an asynchronous
memory search from a detection into a prevention tool. The
most likely candidate is with selective, fine-grained hardware
memory bus snooping, described above. Thus, if attack
prevention is a more desirable goal than detection after-the-
fact, the community should focus more effort on discovering
lightweight, synchronous monitoring mechanisms.

All current prevention systems rely on synchronous mem-
ory protection.

V. ATTACKS, DEFENSE, AND TRUST

This section explains the three major classes of attacks
against VMI, known defenses against those attacks, and
explains how these attacks relate to an underlying trust
placed in the guest OS. These issues are summarized in
Table III.

A. Kernel Object Hooking

A Kernel Object Hooking (KOH) attack [8] attempts to
modify function pointers (hooks) located in the kernel text or
data sections. An attacker overwrites a function pointer with
the address of a function provided by the attacker, which
will then allow the attacker to interpose on a desired set of
kernel operations. In some sense, Linux Security Modules
provide similar hooks for security enhancements [91]; the
primary difference is that KOH repurposes other hooks used
for purposes such as implementing an extensible virtual file

system (VFS) model. The defenses against KOH attacks
generally depend on whether the hook is located in the text
or data segment.

1) Text section hooks: The primary text section hooks
are the system call table and interrupt descriptor table.
For instance, an attacker could interpose on all file open
calls simply by replacing the pointer to the sys_open()
function in the system call table.

In older OSes, these hooks were in the data segment
despite not being dynamically changed by most OSes. In
order to prevent malware from overwriting these hooks, most
kernels now place these hooks in the read-only text segment.
As discussed in §III-D1, a sufficient defense is hypervisor-
imposed, page-level Write ⊕ Execute permissions.

2) Data section hooks: Kernel data section hooks are
more difficult to protect than text section hooks. Data
section hooks place function pointers in objects, facilitating
extensibility. For instance, Linux implements a range of dif-
ferent socket types behind a generic API; each instantiation
overrides certain hooks in the file descriptor for a given
socket handle.

The fundamental challenge is that, although these hooks
generally do not change during the lifetime of the object,
they are often placed in the same page or even cache
line with fields that do change. Because most kernels mix
hooks which should be immutable with changing data, most
hardware-based protection mechanisms are thwarted.

In practice, these hooks are very useful for rootkits to
hide themselves from anti-malware tools inside the VM. For
instance, the Adore-ng [36] rootkit overrides the lookup()
and readdir() functions on the /proc file system di-
rectory. Process listing utilities work by reading the sub-
directories for each running process under /proc; a rootkit
that overrides these functions can filter itself from the
readdir() system call issued by ps.

In order to defend against such attacks, the function point-
ers need to be protected from modification once initialized.
Because of the high-cost of moderating all writes to these
data structures, most defenses either move the hooks to
different locations which can be write-protected [89], or
augment hooks in the kernel with checks against a whitelist
of trusted functions [75].

Trust: Protecting the kernel code from unexpected
modifications at runtime is clearly sensible. Underlying these
defenses is the assumption that the kernel is initially trusted,
but may be compromised later. The more subtle point,
however, is that all of the VMI tools discussed in §III assume
that the kernel text will not change. Thus, preventing text
section modification is effectively a prerequisite for current
VMI techniques.

Defenses against KOH on data hooks generally posit
trust in the ability of an administrator to correctly identify
trustworthy and untrustworthy kernel modules. As explained
in Section III-D, KOH defenses assume that kernel modules

are benign in order to provide some meaningful protections
without solving the significantly harder problem of kernel
control flow integrity in the presence of untrusted modules.

KOH defenses generally assume benign kernel modules.

Finally, we note that some published solutions to the
KOH data section problem are based on best-effort dynamic
analysis, which can miss hooks that are not exercised. There
is no fundamental reason this analysis should be dynamic,
other than the unavailability of source code. In fact, some
systems do use static analysis to identify code hooks [51],
which can identify all possible data section hooks.

B. Dynamic Kernel Object Manipulation

Manipulating the kernel text and code hooks are the
easiest attack vector against VMI; once KOH defenses
were developed, attackers turned their attention to attacks
on the kernel heap. Dynamic Kernel Object Manipulation
(DKOM) [28] attacks modify the kernel heap through a
loaded module or an application accessing /dev/mem or
/proc/kcore on Linux. DKOM attacks only modify data
values, and thus are distinct from modifying the control flow
through function hooks (KOH).

A DKOM attack works by invalidating latent assumptions
in unmodified kernel code. A classic example of a DKOM
attack is hiding a malicious process from a process listing
tools, such as ps. The Linux kernel tracks processes in two
separate data structures: a linked list for process listing and
a tree for scheduling. A rootkit can hide malicious processes
by taking the process out of the linked list, but leaving
the malicious process in the scheduler tree. The interesting
property is that loading a module can be sufficient to alter
the behavior of unrelated, unmodified kernel code.

DKOM attacks are hard to prevent because they are
a metaphorical needle in a haystack of expected kernel
heap writes. As a result, most practical defenses attempt
to identify data structure invariants, either by hand, static,
or dynamic analysis, and then detect data structure invariant
violations asynchronously. Because an attacker can create
objects from any memory, not just the kernel heap allocator,
data structure detection is also a salient issue for detect-
ing DKOM attacks (§III-A). Thus, a robust, asynchronous
DKOM detector must search all guest memory, increasing
overheads, and tolerate attempts to obfuscate a structure.

Trust: DKOM defenses introduce additional trust in the
guest beyond a KOH defense, and make several assumptions
which an attacker can could be violated by an attacker.
Most DKOM defenses work by identifying security-related
data structure invariants. Because it is difficult for the
defender to ever have confidence that all security-relevant
invariants have been identified, this approach will generally
be best-effort and reactive in nature. Deeper source analysis
tools could yield more comprehensive invariant results, but
more research is needed on this topic. Many papers on the

topic focus on a few troublesome data structures, such as
the task_struct, yet Linux has several hundred data
structure types. It is unclear whether any automated analysis
will scale to the number of hiding places afforded to rootkits
by monolithic kernels, or whether detection tools will always
be one step behind attackers. That said, even a best-effort
defense has value in making rootkits harder to write.

Another problematic assumption is that all security-
sensitive fields of kernel data structures have invariants that
can be easily checked in a memory snapshot. For instance,
one might assume that any outgoing packets come from a
socket that appears in the output of a tool such as netstat
(or a VMI-based equivalent). Yet a malicious Linux kernel
module could copy packets from the heap of an application
to the outgoing IP queue—a point in the networking stack
which doesn’t maintain any information about the origi-
nating socket or process. Thus, memory snapshots alone
couldn’t easily identify an inconsistency between outgoing
packets and open sockets, especially if the packet could have
been sent by a different process, such as a process with
an open raw socket. Although the problem in this example
could be mitigated with continuous monitoring, such mon-
itoring would substantially increase runtime overheads; in
contrast, most DKOM defenses rely on infrequent scanning
to minimize overheads. In this example, the data structure
invariant spans a sequence of operations, which can’t be
captured with one snapshot.

A single snapshot cannot capture data structure invariants
that span multiple operations.

Third, DKOM defenses cement trust that the guest kernel
is benign. These defenses train data structure classifiers
on a clean kernel instance or derive the classifiers from
source code, which is assumed to only demonstrate desirable
behavior during the training phase. Although we hasten to
note that this assumption may be generally reasonable, it
is not beyond question that an OS vendor might include
a backdoor that such a classifier would learn to treat as
expected behavior.

In order to ensure that the guest kernel is benign, DKOM
defenses generally posit a KOH defense. Learning code
invariants is of little use when an attacker can effectively
replace the code. The interesting contrast between KOH and
DKOM defenses is that DKOM defenses can detect invalid
data modifications even in the presence of an untrustworthy
module, whereas common KOH defenses rely on module
whitelisting. Thus, if a DKOM defense intends to tolerate
untrusted modules, it must build on a KOH defense that
is robust to untrusted modules as well, which may require
substantially stronger control flow integrity protection.

KOH defenses are a building block for DKOM defenses,
but often make different trust assumptions about modules.

Finally, these detection systems explicitly assume mal-

ware will leave persistent, detectable modifications and im-
plicitly assume malware cannot win races with the detector.
DKOM detectors rely on invariant violations being present
in the view of memory they analyze—either a snapshot or
a concurrent search using a read-only view of memory. Be-
cause DKOM detectors run in increments of seconds, short-
lived malware can easily evade detection. Even for persistent
rootkits, a reasonably strong adversary may also have access
to similar data structure classifiers and aggressively search
for invariants missed by the classifier.

If a rootkit can reliably predict when a DKOM detector
will view kernel memory, the rootkit has the opportunity to
temporarily repair data structure invariants—racing with the
detector. Reading a substantial portion of guest memory can
be is highly disruptive to cache timings—stalling subsequent
writes on coherence misses. Similarly, solutions based on
preempting the guest OS will leave telltale “lost ticks” on
the system clock. Even proposed hardware solutions can
be probed by making benign writes to potentially sensitive
addresses and then observing disruptions to unrelated I/O
timings. Given the long history of TOCTTOU and other
concurrency-based attacks [29, 92], combined with a likely
timing channel induced by the search mechanism and recent
successes exploiting VM-level side channels [94], the risk of
an attacker successfully racing with a detector is concerning.

DKOM defenses are potentially vulnerable to race condi-
tions within their threat model.

C. Direct Kernel Structure Manipulation

Direct Kernel Structure Manipulation (DKSM) attacks
[23] change the interpretation of a data structure between
training a VMI tool and its application to classify memory
regions into data structures. Simple examples of a DKSM
attack include swapping two fields within a data structure
or padding the structure with garbage fields so that relative
offsets differ from the expectation of the VMI tool.

Because most VMI tools assume a benign kernel, a
successful DKSM attack hinges on changing kernel con-
trol flow. The two previously proposed mechanisms are
KOH attacks and return-oriented programming [66]. As
discussed above, a number of successful countermeasures
for KOH attacks have been developed, as have effective
countermeasures to return-oriented programming, including
G-Free [72], “Return-Less” kernels [62], and STIR [90].

Trust: DKSM is somewhat of an oddity in the literature
because it is effectively precluded by a generous threat
model. However, a realistic threat model might allow an
adversarial OS to demonstrate different behavior during the
data structure training and classification phases—analogous
to “split-personality” malware that behaves differently when
it detects that it is under analysis.

DKSM is a reasonable concern obviated by generous
threat models.

Attack Defense Trust Assumption

Write text
Segment

Hypervisor-enforced W
⊕ X. Initial text segment benign.

KOH
(code and
hooks)

Memory protect hooks
from text section modifi-
cation, or whitelist load-
able modules.

Pristine initial OS copy
and administrator’s ability
to discern trustworthy ker-
nel modules.

DKOM
(heap)

Identify data structure
invariants, detect viola-
tions by scanning mem-
ory snapshots.

• Guest kernel exhibits
only desirable behavior
during training, or
source is trustworthy.

• All security-relevant
data structure invariants
can be identified a
priori.

• All malware will leave
persistent modifications
that violate an invariant.

• All invariants can be
checked in a single
search.

• Attackers cannot win
races with the monitor.

DKSM Prevent Bootstrapping
through KOH or ROP.

OS is benign; behaves iden-
tically during training and
classification.

Table III
VMI ATTACKS, DEFENSES, AND UNDERLYING TRUST ASSUMPTIONS.

D. The semantic gap is really two problems

Under a stronger threat model, the DKSM attack effec-
tively leverages the semantic gap to thwart security mea-
sures. Under DKSM, a malicious OS actively misleads VMI
tools in order to violate a security policy.

In the literature on VM introspection, the semantic gap
problem evolved to refer to two distinct issues: (1) the
engineering challenges of generating introspection tools,
possibly without source code [40, 44, 80], and (2) the
ability of a malicious or compromised OS to exploit fragile
assumptions underlying many introspection designs in order
to evade a security measure [51, 64, 77, 83, 89]. These
assumptions include:
• Trusting that the guest OS is benign during the training

phase, and will not behave differently under monitoring.
• All security-sensitive invariants and hooks can be auto-

matically learned.
• Attacks will persist long enough to be detected by periodic

searches.
• Administrators can whitelist trustworthy kernel modules.

Most papers on introspection focus on the first problem,
which has arguably been solved [40, 44, 80], yet interesting
attacks leverage the second issue, which is still an open
problem, as is reliable introspection under stronger threat
models.

Unfortunately, the literature has not clearly distinguished
these problem variations, and only a close reading will indi-
cate which one a given paper is addressing. This confusion
is only exacerbated when one attempts to place these papers

next to each other in the context of attacks and defenses.
That said, we do believe that the overall path of starting
with a weak attacker and iteratively strengthening the threat
model is a pragmatic approach to research in this area; the
issue is ambiguous nomenclature.

We therefore suggest a clearer nomenclature for the two
sub-problems: the weak and strong semantic gap problems.
The weak semantic gap is the largely solved engineering
challenge of generating VMI tools, and the strong semantic
gap refers to the challenge of defending against an adver-
sarial, untrusted guest OS. A solution to the open strong
semantic gap problem would not make any assumptions
about the guest OS being benign during a training phase or
accept inferences from guest source code as reliable without
runtime validation. The strong semantic gap problem is, to
our knowledge, unsolved, and the ability to review future
work in this space relies on clearer delineation of the level
of trust placed in the guest OS. A solution to the strong
semantic gap problem would also prevent or detect DKSM
attacks.

The weak semantic gap is a solved engineering problem.
The strong semantic gap is an open security problem.

VI. TOWARD AN UNTRUSTED OS

Any solution to the strong semantic gap problem may
need to remove assumptions that the guest OS can be
trusted to help train an introspection tool. As illustrated
in Section III, most existing introspection tools rely on the
assumption that the guest OS begins in a benign state and its
source code or initial state can be trusted. Over time, several
designs have reduced the degree to which they rely on the
guest OS. It is not clear, however, that continued iterative
refinement will converge on techniques that eliminate trust
in the guest.

Table IV illustrates the space of reasonable trust models
in virtualization-based security. Although a lot of effort in
VMI has gone into the first row (the weak semantic gap), the
community should focus on new directions likely to bridge
the strong semantic gap (second row), as well as adopt useful
techniques from research into the other rows.

This section identifies promising approaches to the strong
semantic gap, based on insights from the literature.

A. Paraverification

Many VMI systems have the implicit design goal of
working with an unmodified OS, or limiting modifications to
the module loader and hooks. The goal of introspecting on an
unmodified guest OS often induces trust in the guest OS to
simplify this difficult problem. Specifically, most VMI tools
assume the guest OS is not actively malicious and adheres
to the behavior exhibited during the learning phase.

This subsection observes that, rather than relax the threat
model for VMI, relaxing the requirement of an unmodified

App Guest OS Hypervisor Challenge Solutions
√ √

Weak Semantic Gap Layered Security, VMI. Incrementally reduce trust in the guest OS.
√

Strong Semantic Gap Difficult to solve. Need techniques that can learn from untrusted
sources and detect inconsistencies during VMI.

√ √
Untrusted guest OS Paraverification. Application trust bridges the semantic gap.

√ √
Untrusted cloud hypervisor Support from trusted hardware like SGX [7, 70].

√
Untrusted guest OS and hypervisor Fine grained support from trusted hardware needed.

Table IV
TRUST MODELS. (

√
INDICATES THE LAYERS THAT ARE TRUSTED.)

OS may be a more useful stepping stone toward an untrusted
OS. By analogy, although initial hypervisors went through
heroic efforts to virtualize unmodified legacy OSes on an
ISA very unsuitable for virtualization [26], most modern
OSes now implement paravirtualization support [25]. Es-
sentially, paravirtualization makes small modifications to
the guest OS that eliminate the most onerous features to
emulate. For instance, Xen allowed the guest OS to observe
that there were inaccessible physical pages, substantially
reducing the overheads of virtualizing physical memory.
The reason paravirtualization was a success is that it was
easy to adopt, introduced little or no overheads when the
system executes on bare metal, and dramatically improved
performance in a VM.

Thus, we expect that light modifications to a guest OS
to aid in introspection could be a promising direction.
Specifically, we observe that the recent InkTag [52] system
introduced the idea of paraverification, in which the guest
OS provides the hypervisor with evidence that it is servicing
an application’s request correctly. The evidence offered by
the guest OS is easily checked by the hypervisor without
trusting the guest OS. For instance, a trusted application
may request a memory mapping of a file, and, in addition
to issuing an mmap system call, also reports the request
to the hypervisor. When the OS modifies the application’s
page tables to implement the mmap system call, the OS also
notifies the hypervisor that this modification is in response
to a particular application request. The hypervisor can then
do an end-to-end check that (1) the page table changes are
applied to an appropriate region of the application’s virtual
memory, (2) that the CPU register values used to return
to the application are sensible, and (3) that the contents of
these pages match the expected values read from disk, using
additional metadata storing hashes of file contents.

We hasten to note that the goals of InkTag are different
from VMI—ensuring a trusted application can safely use
functionality from a malicious OS. This problem has also
been explored in a number of other papers [35, 63]. More-
over, InkTag leverages the trusted application to bridge the
semantic gap—a strategy that would not be suitable for the
types of problems VMI aims to solve. Nonetheless, forcing
an untrusted OS to aid in its own introspection could be
fruitful if the techniques were simple enough to adopt.

Rather than relaxing the threat model for VMI, relax strict
limits on guest modifications.

B. Hardware support for security

As we observe in §IV-C, Memory protection or other
synchronous notification mechanisms appear to be a require-
ment to move from detection to prevention. Unfortunately,
the coarseness of mechanisms in commodity hardware intro-
duce substantial overheads. §IV-B summarizes recent work
on memory monitoring at cache line granularity—a valuable
approach meriting further research.

An interesting direction recently taken by Intel is develop-
ing a mutual distrust model for hardware memory protection,
called Software Guard Extensions (SGX) [21, 50, 70]. SGX
allows an OS or hypervisor to manage virtual-to-physical OS
mappings for an application, but the lower-level software
cannot access memory contents. SGX provides memory
isolation of a trusted application from an untrustworthy soft-
ware stack. Similar memory isolation has been provided by
several software-only systems [35, 52], but at a substantial
performance cost attributable to frequent traps to a trusted
hypervisor. Finally, we note that in order for an application
to safely use system calls on an untrusted OS, a number of
other problems must be addressed [33, 52].

In the context of introspection or the strong semantic
gap, hardware like SGX can also be useful for creating a
finer-grained protection domain for code implanted in the
guest OS III-B. More fine-grained memory protection and
monitoring tools are needed from hardware manufacturers.

Fine-grained memory protection and monitoring hardware
can reduce overheads and trust.

C. Reconstruction from untrusted sources

Current tools that automatically learn data structure sig-
natures assume the OS will behave similarly during training
and classification (§V-B). Among the assumptions made in
current VMI tools, this is one that potentially has the best
chance of being incrementally removed. For example, one
approach might train the VMI classifiers on the live OS, and
continue incrementally training as the guest OS runs.

Another approach would be to detect inconsistencies
between the training and classification stages of VMI. By

analogy, distributed fault tolerance systems are often built
around the abstraction of a proof of misbehavior, where
a faulty participant in the protocol generates signed mes-
sages to different participants that contradict one another
[19, 61]. Similarly, one approach to assuring learning-based
systems is to look for proof of misbehavior in the guest
OS. For instance, Lycosid detected inconsistencies between
the cr3 register and the purported process descriptor’s
cr3 value [55]. A proof of misbehavior may also include
inconsistencies in code paths or data access patterns between
the training and classification phases of introspection.

VMI should detect inconsistent behavior over the life of
an OS, not just between training and classification.

VII. UNDER-EXPLORED ISSUES

Based on our survey of the literature on VMI, we identify
a few issues that deserve more consideration in future work.

A. Scalability

Many VMI designs are fairly expensive, especially de-
signs that run a sibling VM on a dedicated core for analysis.
For example, one state-of-the-art system reports overheads
ranging from 9.3—500× [44]. There is a reasonable argu-
ment why high VMI overheads might be acceptable: the
average desktop has idle cores anyway, which could be
fruitfully employed to improve system security. However,
this argument does not hold in a cloud environment, where
all cores can be utilized to service additional clients. In a
cloud, customers will not be pleased with doubling their bill,
nor would a provider be pleased with halving revenue.

It is reasonable to expect that VMI would be particularly
useful on a cloud or other multi-VM system. Thus, future
work on VMI must focus not only on novel techniques
or threat models, but also on managing overheads and
scalability with increasing numbers of VMs.

VMI research must measure multi-tenant scalability.

Another strategy to mitigate the costs of asynchronous
scanning is to adjust the frequency of the scans—trading
risk for performance. For instance, a recent system measured
scanning time at 50ms, and could keep overheads at 1%
by only scanning every 5s [51]. Similarly, one may cache
and reuse introspection results to trade risk of stale data
for better scalability [80]. An interesting direction for future
work is identifying techniques that minimize both overheads
and risk.

B. Privacy

VMI has the potential to create new side-channels in cloud
systems. For instance, after reading application binaries,
Patagonix [65] queries the NSRL database with the binary
hash to determine the type of binary that is running on the

system. This effectively leaks information about the pro-
grams run within a VM to an outside observer, undermining
user privacy.

More generally, VMI has the potential for one guest
to observe different cache timings based on the behavior
of another guest. Consider a VMI tool that does periodic
memory scans of multiple VMs on a cloud system, one
after another. The memory scan or snapshot will disrupt
cache timings of the guest under observation by forcing
exclusive cache lines to transition back to a shared, read-
only mode §V-B. Based on its own cache timings, the VM
can observe the frequency of its periodic scans. Because the
length of a scan of another VM can also be a function of
what the VM is doing, changes in time between scans of
one VM can indicate what is happening in another VM on
the same system.

Although it is unclear whether this example side channel
is exploitable in practice, the example raises the larger issue
that VMI projects should be cognizant of potential side
channels in a multi-VM system. Richter et al. [78] present
initial work on privacy-preserving introspection, but more
work is needed. An ideal system would not force the user
to choose between integrity or privacy risks.

VMI designs should evaluate risks of new side channels.

VIII. CONCLUSION

Virtual machine introspection is a relatively mature re-
search topic that has made substantial advances over the last
twelve years since the semantic gap problem was posed.
However, efforts in this space should be refocused on
removing trust from the guest OS in service of the larger
goal of reducing the system’s TCB. Moreover, future VMI
solutions should balance innovative techniques and security
properties with scalability and privacy concerns. We expect
that the lessons from previous work will guide future efforts
to adapt existing techniques or develop new techniques to
bridge the strong semantic gap.

ACKNOWLEDGEMENTS

We thank our shepherd, Virgil Gligor, and the anonymous
reviewers for their insightful comments on earlier versions
of this paper. This research was supported in part by
NSF grants CNS-1149229, NSF CNS-1161541, NSF CNS-
1228839, NSF CNS-1318572, NSF CNS-1223239, NSF
CCF-0937833, by the US ARMY award W911NF-13-1-
0142, the Office of the Vice President for Research at Stony
Brook University, and by gifts from Northrop Grumman
Corporation, Parc/Xerox, Microsoft Research, and CA.

REFERENCES

[1] Draugr. Online at https://code.google.com/p/draugr/.
[2] FatKit. Online at http://4tphi.net/fatkit/.
[3] Foriana. Online at http://hysteria.sk/∼niekt0/foriana/.

[4] GREPEXEC: Grepping Executive Objects from Pool
Memory). Online at http://uninformed.org/?v=4&a=
2&t=pdf.

[5] idetect. Online at http://forensic.seccure.net/.
[6] Intel 64 and IA-32 Architectures Developer’s Manual:

Vol. 3B.
[7] Intel Software Guard Extensions (Intel SGX) Program-

ming Reference.
[8] Kernel object hooking rootkits (koh rootkits).

http://my.opera.com/330205811004483jash520/blog/
show.dml/314125.

[9] Kntlist. Online at http://www.dfrws.org/2005/
challenge/kntlist.shtml.

[10] lsproc. Online at http://windowsir.blogspot.com/2006/
04/lsproc-released.html.

[11] Memparser. Online at http://www.dfrws.org/2005/
challenge/memparser.shtml.

[12] PROCENUM. Online at http://forensic.seccure.net/.
[13] Red Hat Crash Utility. Online at http://people.redhat.

com/anderson/.
[14] The Linux Cross Reference. Online at http://lxr.linux.

no/.
[15] The Volatility framework. Online at https://code.

google.com/p/volatility/.
[16] Volatilitux. Online at https://code.google.com/p/

volatilitux/.
[17] Windows Memory Forensic Toolkit. Online at http:

//forensic.seccure.net/.
[18] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity. In CCS, pages 340–353, 2005.
[19] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-

P. Martin, and C. Porth. BAR Fault Tolerance for
Cooperative Services. In SOSP, pages 45–58, 2005.

[20] AMD. AMD I/O Virtualization Technology (IOMMU)
Specification Revision 1.26. White Paper, AMD:
http://support.amd.com/us/Processor TechDocs/
34434-IOMMU-Rev 1.26 2-11-09.pdf, Nov 2009.

[21] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.
Innovative technology for cpu based attestation and
sealing. HASP ’13, 2013.

[22] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,
and N. C. Skalsky. Hypersentry: enabling stealthy in-
context measurement of hypervisor integrity. In CCS,
pages 38–49, 2010.

[23] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li,
D. Srinivasan, J. Rhee, and D. Xu. Dksm: Subverting
virtual machine introspection for fun and profit. In
SRDS, pages 82–91, 2010.

[24] A. Baliga, V. Ganapathy, and L. Iftode. Automatic
inference and enforcement of kernel data structure
invariants. In ACSAC, pages 77–86, 2008.

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP, pages 164–177,

2003.
[26] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman,

and E. Y. Wang. Bringing virtualization to the x86 ar-
chitecture with the original vmware workstation. ACM
TOCS, 30(4):12:1–12:51, Nov. 2012.

[27] T. W. Burger. Intel Virtualization Technology for
Directed I/O (VT-d): Enhancing Intel platforms
for efficient virtualization of I/O devices. http:
//software.intel.com/en-us/articles/intel-virtualization-
technology-for-directed-io-vt-d-enhancing-intel-
platforms-for-efficient-virtualization-of-io-devices/,
February 2009.

[28] J. Butler and G. Hoglund. Vice - catch the hookers!
In Black Hat USA 2004, Las Vegas, USA, 2004.

[29] X. Cai, Y. Gui, and R. Johnson. Exploiting unix file-
system races via algorithmic complexity attacks. In
Oakland, pages 27–41, 2009.

[30] M. Carbone, M. Conover, B. Montague, and W. Lee.
Secure and robust monitoring of virtual machines
through guest-assisted introspection. In RAID, pages
22–41, 2012.

[31] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic
integrity checking. In CCS, pages 555–565, 2009.

[32] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zel-
dovich. Intrusion recovery for database-backed web
applications. In SOSP, pages 101–114, 2011.

[33] S. Checkoway and H. Shacham. Iago attacks: Why
the system call api is a bad untrusted rpc interface. In
ASPLOS, 2013.

[34] P. M. Chen and B. D. Noble. When virtual is better
than real. In HotOS, pages 133–, 2001.

[35] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems.
In ASPLOS, pages 2–13, 2008.

[36] J. Corbet. A new adore root kit. LWN, March 2004.
http://lwn.net/Articles/75990/.

[37] A. Cristina, L. Marziale, G. G. R. Iii, and V. Rous-
sev. Face: Automated digital evidence discovery and
correlation. In Digital Forensics, 2005.

[38] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking
rootkit footprints with a practical memory analysis
system. In USENIX Security, pages 42–42, 2012.

[39] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization exten-
sions. In CCS, pages 51–62, 2008.

[40] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. In Oakland, pages 297–
312, 2011.

[41] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Gif-
fin. Robust signatures for kernel data structures. In

CCS, pages 566–577, 2009.
[42] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and

P. M. Chen. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. In OSDI, 2002.

[43] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon
system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, Dec. 2007.

[44] Y. Fu and Z. Lin. Space traveling across vm: Auto-
matically bridging the semantic gap in virtual machine
introspection via online kernel data redirection. In
Oakland, pages 586–600, 2012.

[45] Y. Fu and Z. Lin. Exterior: using a dual-vm based
external shell for guest-os introspection, configuration,
and recovery. In VEE, pages 97–110, 2013.

[46] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detection.
In NDSS, pages 191–206, 2003.

[47] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process
implanting: A new active introspection framework for
virtualization. In SRDS, pages 147–156, 2011.

[48] R. T. Hall and J. Taylor. A framework for network-
wide semantic event correlation, 2013.

[49] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis
using cla: a million lines of c code in a second. In
PLDI, pages 254–263, 2001.

[50] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In HASP, 2013.

[51] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and
E. Witchel. Ensuring operating system kernel integrity
with OSck. In ASPLOS, pages 279–290, 2011.

[52] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. Inktag: secure applications on an untrusted
operating system. In ASPLOS, pages 265–278, 2013.

[53] X. Jiang, X. Wang, and D. Xu. Stealthy malware de-
tection through vmm-based ”out-of-the-box” semantic
view reconstruction. In CCS, pages 128–138, 2007.

[54] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Geiger: Monitoring the buffer cache in a
virtual machine environment. In ASPLOS, ASPLOS
XII, pages 14–24, 2006.

[55] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. VMM-based Hidden Process Detection and
Identification Using Lycosid. In VEE, pages 91–100,
2008.

[56] D. Kienzle, N. Evans, and M. Elder. NICE: Network
Introspection by Collaborating Endpoints. In Commu-
nications and Network Security, pages 411–412, 2013.

[57] T. Kim, R. Chandra, and N. Zeldovich. Recovering
from intrusions in distributed systems with DARE. In
APSYS, pages 10:1–10:7, 2012.

[58] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Intrusion recovery using selective re-execution. In

OSDI, pages 1–9, 2010.
[59] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.

Secure execution via program shepherding. In USENIX
Security, pages 191–206, 2002.

[60] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek,
and B. B. Kang. Ki-mon: a hardware-assisted event-
triggered monitoring platform for mutable kernel ob-
ject. In USENIX Security, pages 511–526, 2013.

[61] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In OSDI, pages
9–9, 2004.

[62] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram.
Defeating return-oriented rootkits with ”return-less”
kernels. In EuroSys, pages 195–208, 2010.

[63] D. Lie, C. A. Thekkath, and M. Horowitz. Implement-
ing an untrusted operating system on trusted hardware.
In SOSP, pages 178–192, 2003.

[64] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang.
Siggraph: Brute force scanning of kernel data structure
instances using graph-based signatures. In NDSS, 2011.

[65] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
support for identifying covertly executing binaries. In
SS, pages 243–258, 2008.

[66] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha. Launching
return-oriented programming attacks against random-
ized relocatable executables. In TRUSTCOM, pages
37–44, 2011.

[67] Z. Liu, J. Lee, J. Zeng, Y. Wen, Z. Lin, and W. Shi.
Cpu transparent protection of os kernel and hypervisor
integrity with programmable dram. In ISCA, pages
392–403, 2013.

[68] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. Trustvisor: Efficient tcb
reduction and attestation. In Oakland, pages 143–158,
2010.

[69] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
and H. Isozaki. Flicker: An execution infrastructure for
tcb minimization. In EuroSys, pages 315–328, 2008.

[70] F. McKeen, I. Alexandrovich, A. Berenzon, C. V.
Rozas, H. Shafi, V. Shanbhogue, and U. R. Sava-
gaonkar. Innovative instructions and software model
for isolated execution. In HASP, 2013.

[71] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B.
Kang. Vigilare: toward snoop-based kernel integrity
monitor. In CCS, pages 28–37, 2012.

[72] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-free: defeating return-oriented program-
ming through gadget-less binaries. In ACSAC, pages
49–58, 2010.

[73] B. D. Payne, M. Carbone, M. Sharif, and W. Lee.
Lares: An architecture for secure active monitoring
using virtualization. In Oakland, pages 233–247, 2008.

[74] N. L. Petroni, Jr., T. Fraser, J. Molina, and W. A.
Arbaugh. Copilot - a coprocessor-based kernel runtime

integrity monitor. In USENIX Security, pages 13–13,
2004.

[75] N. L. Petroni, Jr. and M. Hicks. Automated detection
of persistent kernel control-flow attacks. In CCS, pages
103–115, 2007.

[76] G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures. CACM,
17(7):412–421, July 1974.

[77] J. Rhee, R. Riley, D. Xu, and X. Jiang. Kernel
malware analysis with un-tampered and temporal views
of dynamic kernel memory. In RAID, pages 178–197,
2010.

[78] W. Richter, G. Ammons, J. Harkes, A. Goode, N. Bila,
E. De Lara, V. Bala, and M. Satyanarayanan. Privacy-
sensitive VM Retrospection. In HotCloud, pages 10–
10, 2011.

[79] R. Riley, X. Jiang, and D. Xu. Guest-transparent
prevention of kernel rootkits with VMM-based memory
shadowing. In RAID, pages 1–20, 2008.

[80] A. Saberi, Y. Fu, and Z. Lin. HYBRID-BRIDGE: Effi-
ciently Bridging the Semantic Gap in Virtual Machine
Introspection via Decoupled Execution and Training
Memoization. In NDSS, 2014.

[81] A. Schuster. Pool allocations as an information source
in Windows memory forensics. In IMF, pages 104–
115, 2006.

[82] A. Schuster. The impact of Microsoft Windows pool
allocation strategies on memory forensics. Digital
Investigation, 5:S58–S64, 2008.

[83] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A
tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In SOSP, pages 335–350, 2007.

[84] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-
VM monitoring using hardware virtualization. In CCS,

pages 477–487, 2009.
[85] Y. Shin and L. Williams. An Empirical Model to Pre-

dict Security Vulnerabilities Using Code Complexity
Metrics. In ESEM, pages 315–317, 2008.

[86] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process
out-grafting: An efficient ”out-of-VM” approach for
fine-grained process execution monitoring. In CCS,
pages 363–374, 2011.

[87] V. Tarasov, D. Jain, D. Hildebrand, R. Tewari, G. Kuen-
ning, and E. Zadok. Improving I/O performance using
virtual disk introspection. In HotStorage, pages 11–11,
2013.

[88] J. Wang, A. Stavrou, and A. Ghosh. Hypercheck: A
hardware-assisted integrity monitor. In RAID, pages
158–177, 2010.

[89] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering
kernel rootkits with lightweight hook protection. In
CCS, pages 545–554, 2009.

[90] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: Self-randomizing instruction addresses
of legacy x86 binary code. In CCS, pages 157–168,
2012.

[91] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. K.
Hartman. Linux security modules: General security
support for the Linux kernel. In USENIX Security
Symposium, 2002.

[92] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan.
Concurrency attacks. In HotPar, pages 15–15, 2012.

[93] Y. Zhang, Y. Gu, H. Wang, and D. Wang. Virtual-
machine-based intrusion detection on file-aware block
level storage. In SBAC-PAD, pages 185–192, 2006.

[94] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-VM side channels and their use to extract private
keys. In CCS, pages 305–316, 2012.

