
• Functionality & Security equivalent to VM
– Insert kernel modules in a Container
– Contain a rootkit attack

• Overheads equivalent to Containers
– Small startup time and memory footprint

Operating Systems,

Security, Concurrency and

Architecture Research

Hardware Assisted OS Virtualization
Bhushan Jain, Donald E. Porter

{bpjain, porter} @cs.stonybrook.edu

Problem Our Vision

Conclusion

Host OS

struct kref
kref;

struct mount 
*root;

kgid_t
pid_gid;

C
o

n
ta

in
e

r App

C
o

n
ta

in
e

r App

Physically 
isolated address 
space, Isolated

vulnerability

Host OS

struct kref
kref;

struct mount 
*root;

kgid_t
pid_gid;

C
o

n
ta

in
e

r App

C
o

n
ta

in
e

r App

Load device drivers 
without affecting Host

Extended Page Tables

Hardware Page Tables

Shared OS

Host OS

struct kref
kref;

struct mount 
*root;

kgid_t
pid_gid;

C
o

n
ta

in
e

r App

C
o

n
ta

in
e

r

Shared address space 
and heap, Shared 

vulnerability

App

Huge
System Call 

Interface

Hypervisor

G
u

e
st

 O
SV
M

App

Complete 
Legacy OS

Narrow 
Hypercall
Interface

V
M

G
u

e
st

 O
S

App

Isolated
Vulnerability

• Containers are a poor security isolation layer
– Trade efficiency for security risks
– Shared host OS but shared vulnerability

• VM-like hardware isolation for Containers
– Make Container a first class kernel object

• Best of both VMs and Containers
– Efficiency and low overhead of Containers
– Security and functionality of VMs

• Work in progress
– Can provide exciting features for Containers

Benign

Malicious / Infected

• VMs necessary for security isolation
– Trade functionality, security for high overhead
– Isolated vulnerability but new OS instance

Our Solution

• Create heap’s physical and logical isolation

VMs and Containers make trade-offs 
between security and overheads

Goal : Get both security and low overheads

• Isolate Container specific kernel objects
– Repurpose hardware designed for VMs
– Redesign the OS to be EPT protection friendly

• Share host OS to keep overheads low
– Map OS copy-on-write in Container context
– Map Container objects only in its context
– Container context OS handles safe interrupts

Logically 
isolated 

heap


