
A Study of Modern Linux API Usage and Compatibility:
What to Support When You’re Supporting

Chia-Che Tsai Bhushan Jain Nafees Ahmed Abdul Donald E. Porter
Stony Brook University

{chitsai,bpjain,nabdul,porter}@cs.stonybrook.edu

Abstract
This paper presents a study of Linux API usage across all
applications and libraries in the Ubuntu Linux 15.04 dis-
tribution. We propose metrics for reasoning about the im-
portance of various system APIs, including system calls,
pseudo-files, and libc functions. Our metrics are designed
for evaluating the relative maturity of a prototype system or
compatibility layer, and this paper focuses on compatibility
with Linux applications. This study uses a combination of
static analysis to understand API usage and survey data to
weight the relative importance of applications to end users.

This paper yields several insights for developers and re-
searchers, which are useful for assessing the complexity and
security of Linux APIs. For example, every Ubuntu instal-
lation requires 224 system calls, 208 ioctl, fcntl, and
prctl codes and hundreds of pseudo files. For each API
type, a significant number of APIs are rarely used, if ever.
Moreover, several security-relevant API changes, such as re-
placing access with faccessat, have met with slow
adoption. Finally, hundreds of libc interfaces are effectively
unused, yielding opportunities to improve security and effi-
ciency by restructuring libc.

1. Introduction
Systems engineers and researchers routinely make design
choices based on what they believe to be the common and
uncommon behaviors of a system. For instance, one recent
project optimized the stat and open system calls at the ex-
pense of rename and chmod [52]. In the case of a general-
purpose OS, determining exactly what the common case is
can be challenging. Thus, a developer’s view of what APIs
are important may be skewed heavily towards that devel-
oper’s preferred workloads.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901341

Similarly, developers struggle to evaluate the impact of
a change that affects backward-compatibility, primarily be-
cause of a lack of metrics. Deprecating an API is often a
lengthy process, wherein users are repeatedly warned and
eventually some applications may still be broken. For exam-
ple, a range of security problems arise from the ill-specified
behavior of the signal system call [1, 55]. Despite 15
years of warnings to move to the more secure sigaction
call, signal has not been removed from 32-bit x86 Linux,
because many legacy applications use signal. Eliminat-
ing or replacing needless, problematic APIs can be good for
security, efficiency, and maintainability of OSes, but in prac-
tice this is difficult for OS developers to do without tools to
analyze API usage.

Many experimental operating systems add a rough Unix
or Linux compatibility layer to increase the number of sup-
ported applications [13, 15, 27, 56]. Such systems generally
support a fraction of Linux system calls, often just enough
to run a few target workloads. One metric for compatibility
or completeness of a new feature is the count of supported
system APIs [16, 19, 42, 51]. System call counts do not ac-
curately estimate the fraction of applications or users that
could plausibly use the system. OS researchers would bene-
fit from the ability to translate a set of supported system calls
to the fraction of applications that can be directly supported
without recompilation. Similarly, it is useful to know which
additional APIs would enable the largest range of additional
applications to run on the system. In order to indicate gen-
eral usefulness, a good compatibility metric should factor
in the fraction of users whose choice of applications can be
completely supported on a system.

At the root of these problems is a lack of data sets and
analysis of how system APIs are used in practice. System
APIs are simply not equally important: some APIs are used
by popular libraries and, thus, by essentially every applica-
tion. Other APIs may be used only by applications that are
rarely installed. Evaluating compatibility is fundamentally a
measurement problem.

This paper bridges the gap between data that is easy for
system builders to measure and the metrics they need, con-
tributing a methodology and thorough study of API usage

in x86-64 Ubuntu/Debian Linux. Our study statically an-
alyzes all executable and shared library binaries from all
30,976 packages in the Ubuntu/Debian Linux repository,
in order to identify the system API “footprint” of each bi-
nary. This paper combines the footprint data with data about
how frequently each package is installed, which is measured
from the Ubuntu and Debian “popularity contest” survey
data [2, 7]. By combining these data sources, the paper con-
tributes metrics which weigh the usage of each system API
by estimated usage in real-world installations.

This paper contributes a data set and analysis tool that can
answer several practical questions for systems researchers.
For instance: in a given prototype, which missing APIs
would increase the range of supported applications? Or, if
a given system API is optimized, what widely-used appli-
cations would likely benefit? We expect that the ability to
match evaluation workloads to modified or supported sys-
tem APIs will be particularly useful. Similarly, this data
and toolset can help OS maintainers evaluate the impact of
an API change on applications, and can help users evaluate
whether a prototype system is suitable for their needs.

The contributions of this work are as follows:
• An approach to measuring platform compatibility, suit-

able for evaluating the relative completeness of prototype
systems. Rather than considering compatibility a binary
property (“will something break?”), we use a fractional
metric (“how many programs will not break?”) which is
better suited to measuring the progress of a prototype.

• A comprehensive data set of current API usage in Ubuntu
Linux 15.04.

• Analysis and a range of insights into current API usage
patterns. For instance, we identify an efficient path to im-
plementing a new Linux compatibility layer, maximiz-
ing the additional applications per system call. We also
identify that usage of many APIs is similarily distributed:
some are widely used, and there is a sharp drop with a
very long tail of rarely or never-used APIs. As an exam-
ple, nearly 40% of libc APIs are used by less than one
percent of applications on a typical installation.

2. Some APIs Are More Equal Than Others
We started this study from a research perspective, in search
of a better way to evaluate the completeness of system pro-
totypes with a Unix compatibility layer. In general, compat-
ibility is treated as a binary property (e.g., bug-for-bug com-
patibility), which loses important information when evaluat-
ing a prototype that is almost certainly incomplete. Papers
often appeal to noisy indicators that the prototype probably
covers all important use cases, such as the number of total
supported system or library calls, as well as the variety of
supported applications.

These metrics are easy to quantify, but problematic. Sim-
ply put, not all APIs are equally important: some are indis-
pensable (e.g., read and write), whereas others are very

rarely used (e.g., preadv and delete module). A sim-
ple count of system calls is easily skewed by system calls
that are variations on a theme (e.g., setuid, seteuid,
and setresuid). Moreover, some system calls, such as
ioctl, export widely varying operations—some used by
by all applications and many that are essentially never used
(§3.3). Thus, a system with “partial support” for ioctl is
just as likely to support all or none of the Linux applications
distributed with Ubuntu.

This paper considers system APIs (“APIs”) broadly: this
includes system calls, as well as any other means by which
OS kernel functionality is requested, such as a pseudo-file
system (/proc). This paper also considers libraries like
libc, which are typically responsible for exporting an API,
like POSIX, as well as the primary way application develop-
ers interact with the OS kernel.

One of the ways to understand the importance of a given
interface is to measure its impact on end-users. In other
words, if a given interface were not supported, how many
users would notice its absence? Or, if a prototype added a
given interface, how many more users would be able to use
the system? To answer these questions, we must consider
both the difference in API usage among applications, and
the popularity of applications among end-users. We measure
the former by analyzing application binaries, and determine
the latter from installation statistics collected by Debian and
Ubuntu [2, 7]. An installation is a single system installa-
tion, and can be a physical machine, a virtual machine, a
partition in a multi-boot system, or a chroot environment
created by debootstrap. Our data is drawn from over
2.9 million installations (2,745,304 Ubuntu and 187,795 De-
bian).

We introduce two new metrics: one for each API, and one
for a whole system. For each API, we measure how disrup-
tive its absence would be to applications and end users—a
metric we call API importance. For a system, we compute
a weighted percentage we call weighted completeness. For
simplicity, we define a system as a set of implemented or
translated APIs, and assume an application will work on
a target system if the application’s API footprint is imple-
mented on the system. These metrics can be applied to all
system APIs, or a subset of APIs, such as system calls or
standard library functions.

This paper focuses on Ubuntu/Debian Linux, as it is a
well-managed Linux distribution with a wide array of sup-
ported software, which also collects package installation
statistics. The default package installer on Ubuntu/Debian
Linux is APT. A package is the smallest granularity of in-
stallation, typically matching a common library or applica-
tion. A package may include multiple executables, libraries,
and configuration files. Packages also track dependencies,
such as a package containing Python scripts depending on
the Python interpreter. Ubuntu/Debian Linux installation
statistics are collected at package granularity and collect

several types of statistics. This study is based on data of how
many Ubuntu or Debian installations installed a given target
package.

For each binary in a package—either as a standalone ex-
ecutable or shared library—we use static analysis to identify
all possible APIs the binary could call, or the API footprint.
The APIs can be called from the binaries directly, or indi-
rectly through calling functions exported by other shared li-
braries. A package’s API footprint is the union of the API
footprints of each of its standalone executables. We weight
the API footprint of each package by its installation fre-
quency to approximate the overall importance of each API.
Although our initial focus was on evaluating research, our
resulting metric and data analysis provide insights for the
larger community, such as trends in API usage.

2.1 API Importance: A Metric for Individual APIs
System developers can benefit from an importance metric for
APIs, which can in turn guide optimization efforts, depreca-
tion decisions, and porting efforts. Reflecting the fact that
users install and use different software packages, we define
API importance as the probability that an API will be indis-
pensable to at least one application on a randomly selected
installation. We want a metric that decreases as one identi-
fies and removes instances of a deprecated API, and a metric
that will remain high for an indispensable API, even if only
one ubiquitous application uses the API.

Definition: API Importance.
For a given API, the probability that an installation in-
cludes at least one application requiring the given API.

Intuitively, if an API is used by no packages or installations,
the API importance will be zero, causing no negative effects
if removed. We assume all packages installed in an OS
installation are indispensable. As long as an API is used by
at least one package, the API is considered important for
the installation. Appendix A.1 includes a formal definition
of API importance.

2.2 Weighted Completeness: A System-Wide Metric
We also measure compatibility at the granularity of an OS,
which we call weighted completeness. Weighted complete-
ness is the fraction of applications that are likely to work,
weighted by the likelihood that these applications will be in-
stalled on a system.

The goal of weighted completeness is to measure the
degree to which a new OS prototype or translation layer is
compatible with a baseline OS. In this study, the baseline OS
is Ubuntu/Debian Linux.

Definition: Weighted Completeness.
For a target system, the fraction of applications sup-
ported, weighted by the popularity of these applications.

The methodology for measuring the weighted complete-
ness of a target system’s API subset is summarized as fol-
lows:
1. Start with a list of supported APIs of the target system,

either identified from the system’s source, or as provided
by the developers of the system.

2. Based on the API footprints of packages, the framework
generates a list of supported and unsupported packages.

3. The framework then considers the dependencies of pack-
ages. If a supported package depends on an unsupported
package, both packages are marked as unsupported.

4. Finally, the framework weighs the list of supported pack-
ages based on package installation statistics. As with API
importance, we measure the effected package that is most
installed; weighted completeness instead calculates the
expected fraction of packages in a typical installation that
will work on the target system.

We note that this model of a typical installation is useful
in reducing the metric to a single number, but also does not
capture the distribution of installations. This limitation is the
result of the available package installation statistics, which
do not include correlations among installed packages. This
limitation requires us to assume that package installations
are independent, except when APT identifies a dependency.
For example, if packages foo and bar are both reported as
being installed once, we cannot tell if they were on the same
installation, or if two different installations. If foo and bar
both use an obscure system API, we assume that two instal-
lations would be affected if the obscure API were removed.
If foo depends on bar, we assume the installations overlap.
Appendix A.2 formally defines weighted completeness.

2.3 Data Collection via Static Analysis
We use static binary analysis to identify the system call
footprint of a binary. This approach has the advantages of
not requiring source code or test cases. Dynamic system call
logging using a tool like strace is simpler, but can miss
input-dependent behavior. A limitation of our static analysis
is that we must assume the disassembled binary matches the
expected instruction stream at runtime. In other words, we
assume that the binary isn’t deliberately obfuscating itself,
such as by jumping into the middle of an instruction (from
the perspective of the disassembler). To mitigate this, we
spot check that static analysis returns as superset of strace
results.

We note that, in our experience, things like the system
call number or even operation codes are fairly straightfor-
ward to identify from a binary. These tend to be fixed scalars
in the binary, whereas other arguments, such as the contents
of a write buffer, are input at runtime. We assume that bi-
naries can issue system calls directly with inline system call
instructions, or can call system calls through a library, such
as libc. Our static analysis identifies system call instructions
and constructs a whole-program call graph.

ELF	binary
66,275
60%

Shell	
(dash)
16,508
15%

Python
9,928
9%

Perl
8,376
8%

Shell	
(bash)
6,149
6%

Ruby
1,334
1%

Others
1,695
1%

Static	
binaries
0.38%

Linkable	
shared	
libaries
52%

Dynamically
linked

executables
48%

Types	of
ELF	binaries

Figure 1. Percentage of ELF inaries and applications writ-
ten in interpreted languages among all executables in
the Ubuntu/Debian Linux repository, categorized by in-
terpreters. ELF binaries include static binaries, shared li-
braries and dynamically-linked executables. Interpreters are
detected by shebangs of the files. Higher is more important.

Our study focuses primarily on ELF binaries, which ac-
count for the largest fraction of Linux applications (Fig-
ure 1). For interpreted languages, such as Python or shell
scripts, we assume that the system call footprint of the inter-
preter and major supporting libraries over-approximates the
expected system call footprint of the applications. Libraries
that are dynamically loaded, such as application modules or
language native interface (e.g.,JNI, Perl XS) are not consid-
ered in our study.

2.4 Limitations
Popularity Contest Dataset. The analysis in this paper
is limited by the Ubuntu/Debian Linux’s package installer,
APT, and their package installation statistics. Because most
packages in Ubuntu/Debian Linux are open-source, our ob-
servations on Linux API usage may have a bias toward
open-source development patterns. Commercial applications
that are purchased and distributed through other means are
not included in this survey data, although data from other
sources could, in principle, be incorporated into the analysis
if additional data were available.

We assume that the package installation statistics pro-
vided by Ubuntu/Debian Linux are representative. The pop-
ularity contest dataset is reasonably large (2,935,744 instal-
lations), but reporting is opt-in.

The data does not show how often these packages are
actually used, only how often they are installed. Finally, this
data set does not include sufficient historical data to compare
changes to the API usage over time.

Static Analysis. Because our study only analyzes pre-
compiled binaries, some compile-time customizations may
be missed. Applications that are already ported using macro
like #ifdef LINUX will be considered dependent to
Linux-specific APIs, even though the application can be re-
compiled for other systems.

Our static analysis tool only identifies whether an API is
potentially used, not how frequently the API is used during
the execution. Thus, it is not sufficient to draw inferences
about performance.

We assume that, once a given API (e.g., write) is sup-
ported and works for a reasonable sample of applications,
handling missed edge cases should be straightforward engi-
neering that is unlikely to invalidate the experimental results
of the project. That said, in cases where an input can yield
significantly different behavior, e.g., the path given to open,
we measure the API importance of these arguments. Verify-
ing bug-for-bug compatibility generally requires techniques
largely orthogonal to the ones used in this study, and thus
this is beyond the scope of this work.

We do not do inter-procedural data-flow analysis. As a
result, we were unable to identify system call numbers for
2,454 call sites (4% of the relevant call sites) across all
binaries in the repository. As a result, some system call usage
values may be underestimated, and may go up with a more
sophisticated static analysis.

Metrics. The proposed metrics are intended to be sim-
ple numbers for easy comparison. But this coarseness loses
some nuance. For instance, our metrics cannot distinguish
between APIs that are critical to a small population, such
as those that offer functionality that cannot be provided any
other way, versus APIs that are rarely used because the soft-
ware is unimportant. Similarly, these metrics alone cannot
differentiate a new API that is not yet widely adopted from
an old API with declining usage.

3. A Study of Modern Linux API Usage
This section presents measurements of API usage, as well
as several trends in how APIs are used. Of particular note is
that the OS interface required by essentially all applications
is substantially larger than the roughly 300 Linux system
calls—the required interface also includes several vectored
system call operations, such as ioctl, and special filesys-
tem interfaces like /sys and /proc. We also note that a
number of system calls and other APIs are so rarely used
that they can be deprecated with little disruption or effort.

This section first examines the use of system calls in
Linux applications. Section 3.2 analyzes the most efficient
path to add system calls to a prototype, outlining a path
from the minimal footprint for “hello world”, up through the
most demanding application (qemu), maximizing the num-
ber of supported applications at each step. Section 3.3 an-
alyzes the importance of operations under vectored system
calls, such as ioctl. Section 3.4 evaluates the API im-
portance of pseudo-files, such as those under /proc. Fi-
nally, Section 3.5 examines current usage patterns for libc.
Throughout the section, we identify several points at which
APIs could be gainfully restricted, removed, or refactored,
as well as identifying points where unexpected APIs can be

0%

50%

100%

201 251

AP
I	i
m
po

rt
an

ce
	

lo
w
er
	b
ou

nd

N-most	important	system	calls

224 257 301

10%

Figure 2. The trend of API importance as N-most important
system calls among total 320 system calls of Ubuntu Linux
15.04 with Linux kernel 3.19. Higher is more important;
100% indicates all installations include software that make
the system call.

essential to performance or functionality. We highlight key
insights and recommendations in boxes.

3.1 Spot the Most Valuable System Calls
We begin by looking at the API importance of each system
call, in order to answer the following questions:
• Which system calls are the most important to support

when implementing a new system, or have high costs to
replace, if desired?

• Which system calls are very rarely used and candidates
for deprecation?

• Which system calls are not supported by the OS, but still
attempted by applications?

There are 320 system calls defined in x86-64 Linux 3.19
(as listed in unistd.h). Figure 2 shows the distribution
of system calls by importance. The Figure is ordered by
most important (at 100%) to least important (around 0%)—
similar to inverted CDF. The figure highlights several points
of interest on this line.

Over two-thirds (224 of 320) of system calls on Linux are
indispensable: required by at least one application on every
installation. Among the rest, 33 system calls are important
on more than ten percent of the installations. 44 system calls
have very low API importance: less than ten percent of the
installations include at least one application that uses these
system calls.

Our study also shows the contributors to an API’s impor-
tance. For instance, Table 1 lists system calls that are only
called by one or two particular libraries (e.g., libc). These
system calls are wrapped by library APIs, so applications
depend on them only because the libraries do. To eliminate
the usage of these system calls, developers only have to pay
minimum efforts to re-implement the wrappers in libraries.

Among the 44 system calls with a API importance above
zero but less than ten percent, some are cases where a more
popular alternative is available. For instance, Linux sup-
ports both POSIX and System V message queues. The five
APIs for POSIX message queues have a lower API im-
portance than System V message queues. We believe this

System Calls Imp. Packages

clock settime, iopl,
ioperm, signalfd4

100% libc

mbind 36.0% libnuma, libopenblasp
addkey 27.2% libkeyutils
keyctl 27.2% pam keyutil,

libkeyutils
requestkey 14.4% libkeyutils
preadv, pwritev 11.7% libc

Table 1. System calls which are only directly used by par-
ticular libraries, and their API importance (“Imp.”). Only
system calls with API importance larger than ten percent are
shown. These system calls are wrapped by library APIs, thus
they are easy to deprecate by modifying the libraries.

System Calls Imp. Packages

seccomp, sched setattr,
sched getattr

1% coop-computing-tools

kexec load 1% kexec-tools
clock adjtime 4% systemd
renameat2 4% systemd,

coop-computing-tools
mq timedsend, mq getsetattr 1% qemu-user
io getevent 1% ioping, zfs-fuse
getcpu 4% valgrind, rt-tests

Table 2. System calls with usage dominated by particular
package(s), and their API importance (“Imp.”). This table
excludes system calls that are officially retired.

is attributable to System V message queues being more
portable to other UNIX systems. Similarly, we observed
that epoll wait (100%) has a higher API importance
than epoll pwait (3%), even though epoll pwait is
commonly considered more robust for the same purpose—
waiting on file descriptor events. Table 2 lists system
calls used by only one or two packages—generally special-
purpose utilities, such as kexec load, which is used by
kexec-tools).

In some cases, system calls are effectively offloaded to
a file in /proc or /sys. For instance, some of the infor-
mation that was formerly available via query module can
be obtained from /proc/modules, /proc/kallsyms
and the files under the directory /sys/module. Similarly,
the information that can be obtained from the sysfs system
call is now available in /proc/filesystems.

We also found five system calls uselib, nfsservctl,
afs syscall, vserver and security system calls
that are officially retired, but still have a low, but non-
zero, API importance. For instance nfsservctl is re-
moved from Linux kernel 3.1 but still has API importance
of seven percent, because it is tried by NFS utilities such
as exportfs. These utilities still attempt the old calls for
backward-compatibility with older kernels.

Unused System Calls Reason for Disuse

set thread area, tuxcall,
create module, and 6 more.

Officially retired.

sysfs replaced by
/proc/filesystems.

rt tgsigqueueinfo,
get robust list

Unused by applications.

remap file pages No non-sequential ordered
mapping; repeated calls to
mmap preferred.

mq notify Unused: Asynchronous
message delivery.

lookup dcookie Unused: for profiling.

restart syscall Transparent to applications.

move pages Unused: for NUMA usage.

Table 3. Unused system calls and explanation for disuse.

Among 43 least-used system calls, some are replaceable
by alternatives with higher API importance; 5 are offi-
cially retired but still tried by few applications. System
developers could use this data to identify relevant appli-
cations, accelerating replacement of these system calls.

In total, 18 of 320 system calls in Linux 3.19 are not used
by any application in the Ubuntu/Debian Linux repository.
We list these system calls in Table 3. In addition to the is-
sues discussed above, Ten of these system calls do not have
an entry point, but are still defined in the Linux headers. Five
of the unused system calls such as rt tgsigqueueinfo,
get robust list, remap file pages, mq notify,
lookup dcookie provide an interface that is not used by
the applications. These system calls can be potential can-
didates for deprecation. However, even though restart
syscall is not used by any application, it is internally used
by the kernel.

In addition to ten already retired system calls, we found
seven other candidate system calls for deprecation or in
need of more exposure to developers.

3.2 From “Hello World” to Qemu
Figure 3 shows the optimal path of adding system calls to a
prototype system, using a simple, greedy strategy of imple-
menting the N-most important APIs, which in turns maxi-
mizes weighted completeness. In other words, the leftmost
points on the graph are the most important APIs, but the y
coordinate only increases once enough system calls are sup-
ported that a simple program, such as “hello world” can ex-
ecute. Similar to a CDF, this line continues up to 100% of

40

0.5

145

0.9

2020%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300W
ei
gh

te
d	
co
m
pl
et
en

es
s

N-most	important	system	calls	supported

Figure 3. Accumulated weighted completeness when N
top-ranked system calls are implemented in the OS. Higher
is more compliant.

Ubuntu applications. The graph highlights several points of
interest in this curve.

Essentially, one cannot run even the most simple pro-
grams without at least 40 system calls. After this, the num-
ber of additional applications one can support by adding an-
other system call increases steadily until an inflection point
at 125 system calls, or supporting extended attributes on
files, where weighted completeness jumps to 25%. To sup-
port roughly half of Ubuntu/Debian Linux applications, one
must have 145 system calls, and the curve plateaus around
202 system calls. On the most extreme end, qemu’s MIPS
emulator (on an x86-64 host) requires 270 system calls [18].
A weighted completeness of 100% implies that all Linux ap-
plications ever used are supported by the prototype.

Table 4 breaks down the recommended development
phases by rough categories of required system calls. We
do not provide a complete ordered list here in the in-
terest of brevity, but this list is available as part of our
dataset, at http://oscar.cs.stonybrook.edu/
api-compat-study.

A goal of weighted completeness is to help guide the
process of developing new system prototypes. Section 3.1
showed that 224 out of 320 system calls on Ubuntu/Debian
Linux have 100% API importance. In other words, if one of
these 224 calls is missing, at least one application on a typi-
cal system will not work. Weighted completeness, however,
is more forgiving, as it tries to capture the fraction of a typ-
ical installation that could work. Only 40 system calls are
needed to have weighted completeness more than 1%.

It takes the most effort to support first and last 10% of
any installation (0–10% and 90–100% weighted com-
pleteness). The gain in functionality is precipitous when
adding the 81st–202nd system calls.

For simplicity, Table 4 only includes system calls, but
one can construct a similar path including other APIs, such
as vectored system calls, pseudo-files and library APIs. For
example, developers need not implement every operation

http://oscar.cs.stonybrook.edu/api-compat-study
http://oscar.cs.stonybrook.edu/api-compat-study

Stage Sample System Calls # Weighted
Completeness

I
mmap, vfork, exit, read,
gettid, fcntl, getcwd
sched yield, kill, dup2

40 1.12 %

II
mremap, ioctl, access,
socket, poll, recvmsg,
dup, unlink, wait4,
select, chdir, pipe

+41
(81) 10.68 %

III

sigaltstack, shutdown,
symlink, alarm, listen,
pread64, getxattr,
shmget, epoll wait,
chroot, sync, getrusage

+64
(145) 50.09 %

IV

flock, semget, ppoll,
mount, brk, pause,
clock gettime, getpgid,
settimeofday, capset,
reboot, unshare, tkill

+57
(202) 90.61 %

V All remaining +70
(272) 100 %

Table 4. Five stages of implementing system calls based on
the API importance ranking. For each stage, a set of system
calls is listed, with the work needed to accomplish (# of
system calls) and the weighted completeness that can be
reached.

of ioctl, fcntl and prctl during the early stage of
developing a system prototype.

3.3 Vectored System Call Opcodes
Some system calls, such as ioctl, fcntl, and prctl, es-
sentially export a secondary system call table, using the first
argument as an operation code. These vectored system calls
significantly expand the system API, dramatically increasing
the effort to realize full API compatibility. It is also difficult
to enforce robust security policies on these interfaces, as the
arguments to each operation are highly variable.

The main expansion is from ioctl. Linux defines 635
operation codes, and Linux kernel modules and drivers can
define additional operations. In the case of ioctl, we ob-
verse that there are 52 operations with the 100% API impor-
tance (Figure 4), each of which are as important as the 226
most important system calls. Of these 52 operations, 47 are
frequently used operations for TTY console (e.g., TCGETS)
or generic operations on IO devices (e.g., FIONREAD).

On the narrow end, fcntl and prctl have 18 and
44 operations, respectively, in Linux kernel 3.19. Unlike
ioctl, fcntl and prctl are not extensible by modules
or drivers, and their operations tend to have higher API
importance (Figure 5). For fcntl, eleven out of eighteen
fcntl operations in Linux 3.19 have API importance at
around 100%. For prctl, only nine out of 44 operations

0%

50%

100%

0 50 100 150AP
I	i
m
po

rt
an

ce
	

lo
w
er
	b
ou

nd
	

N-most	important	ioctl	operations

188

52

Figure 4. 188 ioctl operations with highest API importance.
Roughly 447 infrequent operations on the tail are omitted.
Higher is more important; 100% indicates all installations
include software that request the operations.

0%

50%

100%

0 10AP
I	i
m
po

rt
an
ce

lo
w
er
	b
ou

nd
N-most	important
fcntl	operations

11

0%

50%

100%

0 10 20 30 40

AP
I	i
m
po

rt
an

ce
lo
w
er
	b
ou

nd
	

N-most	important	
prctl	operations

9

Figure 5. Ranking of API importance among fcntl and
prctl codes. Higher is more important; 100% indicates all
installations include software that request the operations.

have API importance around 100%, and only eighteen has
API importance larger than 20%.

Thus, developers of a new system prototype should sup-
port these 47 most important ioctl operations, about half
of the fcntl opcodes, and only 9–20 prcntl operations.

In building a prototype system, a relatively small set of
operations in vectored system calls are essential.

Compared to system calls, ioctl has a much longer tail
of infrequently used operations. Out of 635 ioctl opera-
tion codes defined by modules or drivers hosted in Linux
kernel 3.19, only 188 have API importance more than one
percent, and for only 280 we can find usage of the operations
in at least one application binary. Those unused operations
are good targets for deprecation, in the interest of reducing
the system attack surface.

ioctl system call has a very long tail of unused opera-
tions, which may create system security risks.

3.4 Pseudo-Files and Devices
In addition to the main system call table, Linux exports
many additional APIs through pseudo-file systems, such as
/proc, /dev, and /sys. These are called pseudo-file sys-
tems because they are not backed by disk, but rather export

0%

20%

40%

60%

80%

100%

AP
I	i
m
po

rt
an

ce

Figure 6. API importance distribution over files under
/dev and /proc. Higher is more important; 100% indi-
cates all installations include software that accesses the file.

the contents of kernel data structures to an application or
administrator as if they were stored in a file. These pseudo-
file systems are a convenient location to export tuning pa-
rameters, statistics, and other subsystem-specific or device-
specific APIs. Although many of these pseudo-files are used
on the command line or in scripts by an administrator, a few
are routinely used by applications. In order to fully under-
stand usage patterns of the Linux kernel, pseudo-files must
also be considered.

We apply static analysis to find cases where the binary is
hard-coded to use a pseudo-file. Our analysis cannot capture
cases where a path to one of these file systems is passed as
an input to the application, such as dd if=/dev/zero.
However, when a pseudo-file is widely-used as a replace-
ment for a system call, these paths tend to be hard-coded in
the binary as a string or string pattern. A common pattern we
observed was sprintf(‘‘/proc/%d/cmdline’’,
pid); our analysis captured these patterns as well. We
also do not differentiate types of access in this study, such as
separating read versus write of a pseudo-file; rather we only
consider whether the file is accessed or not. Thus, our anal-
ysis is limited to strings stored in the binary, but we believe
this captures an important usage pattern.

Figure 6 shows the API importance of common pseudo-
files under /dev and /proc. These files are ordered from
highest API importance; the long tail of files used rarely or
directly by administrators is omitted.

Some files are essential, such as /dev/null and /proc-
/cpuinfo. These files are widely used in binaries and
scripts. Among 12,039 binaries that use a hard-coded path,
3,324 access /dev/null and 439 access /proc/cpuinfo.
However, it is plausible to provide the same functionality
in simpler ways. For instance, /proc/cpuinfo provides
a formatted wrapper for the cpuinfo instruction, which
one could export directly to userspace using virtualization
hardware, similar to Dune [17]. Similarly, /dev/zero or
/dev/null are convenient for use on the command line,

but it is surprising that a significant number of applications
issue read or write system calls, rather than simply zero-
ing a buffer or skipping the write (e.g., grub-install).
Thus, in implementing a Linux compatibility layer, a small
number of pseudo-files are essential, and perhaps others
could be eliminated with modest application changes.

APIs as pseudo-files or pseudo-devices also have a large
subset of infrequently used or unused APIs. Many of them
are designed to support one specific application or user. For
example, /dev/kvm is only intended for qemu to commu-
nicate with the kernel portion of the KVM hypervisor. Simi-
larly /proc/kallsyms is used primarily to export debug-
ging information to kernel developers.

Because so many files in /proc are accessed from the
command line or by only a single application, it is hard
to conclude that any should be deprecated. Nonetheless,
these files represent large and complex APIs that create an
important attack surface to defend. As noted in other studies,
the permission on /proc tend to be set liberally enough to
leak a significant amount of information [34]. For files used
by a single application, an abstraction like a fine-grained
capability [48] might better capture this need. For files used
primarily by the administrator, carefully setting directory
permissions should be sufficient.

A few pseudo-files are essential and must be imple-
mented by any Linux-emulator. Most serve a specific
purpose, and might benefit from stricter enforcement of
the principle of least privilege.

In the case of the /dev file system, the most commonly
used files are pseudo-devices, such as accessing the virtual
terminal (/dev/tty, /dev/console, and /dev/pts),
or other functionality such as the random number generator
(/dev/urandom). Even among pseudo-devices, features
such as accessing one’s standard in and out, or a process’s
TTY via the /dev/ interface are not heavily used.

Intuitively, one would not expect many device paths to be
hard-coded, and most direct interactions with a device would
be done using administrative tools. For instance, we see
that some applications do hard-code paths like /dev/hda
(commonly used for an IDE hard drive), yet an increasing
number of systems have a root hard drive using SATA, which
would consequently be named /dev/sda. Thus, although
applications may use paths like /dev/hda as a default de-
vice path, modern systems are sufficiently varied that these
generally need to be searched at runtime.

3.5 Reorganizing System Library APIs
In addition to studying kernel interfaces, we also analyze
the API importance of APIs defined in core system libraries,
such as libc. Most programmers don’t directly use the APIs
exported by the kernel, but instead program to more user-
friendly APIs in libc and other libraries. For instance, GNU

0%

50%

100%

0% 17% 33% 50% 67% 84%

AP
I	i
m
po

rt
an

ce

N%-most	important	GNU	libc	API

Figure 7. API importance distribution over the set of GNU
Library C. Higher is more important; 100% indicates all
installations include software that use the libc API.

libc [5] exports APIs for using locks and condition variables,
which internally use the subtle futex system call [28].

Figure 7 shows the API importance of the global func-
tion symbols exported by libc—1,274 in total. Among these
APIs, 42.8% have a API importance of 100%, 50.6% have
a API importance of less than 50%, and 39.7% have a API
importance of less than one percent, including some that are
not used at all. In other words, about 40% of the APIs inside
libc are either not used or only used by few applications.

This result implies that most processes are loading a sig-
nificant amount of unnecessary code into their address space.
By splitting libc into several sub-libraries, based on API im-
portance and common linking patterns, systems could real-
ize a non-trivial space savings.

There are several reasons to avoid loading extra code into
an application. First, there are code reuse attacks, such as
return-oriented programming (ROP) [47], that rely on the
ability to find particular code snippets, called gadgets. Litter-
ing a process with extra gadgets offers needless assistance to
an attacker. Similarly, when important and unimportant APIs
are on the same page, memory is wasted. Finally, the space
overhead of large, unused jump tables is significant. In GNU
libc 2.21, libc-2.21.so essentially has 1274 relocation
entries, occupying 30,576 bytes of virtual memory. By sort-
ing the relocation table according to API usage, most libc in-
stances could load only first few pages of relocation tables,
and leave the remaining relocation entries for lazy loading.

We analyzed the space savings of a GNU libc 2.21 which
removed any APIs with API importance lower than 90%. In
total, libc would retain 889 APIs and the size would be re-
duced to 63% of its original size. The probability an applica-
tion would need a missing function and load it from another
library is less than 9.3%(equivalent to 90.7% weighted com-
pleteness for the stripped libc). Further decomposition is also
possible, such as placing APIs that are commonly accessed
by the same application into the same sub-library.

Decomposing or re-ordering library API can lower
memory costs in typical application processes.

System Calls Libraries

access, arch prctl, mprotect ld.so
clone, execve, getuid, gettid,
kill, getrlimit, setresuid libc

close, exit, exit group, getcwd,
getdents, getpid, lseek, lstat,
mmap, munmap, madvise, mprotect,
mremap, newfsstat, read

libc, ld.so

rt sigreturn, set robust list,
set tid address

libpthread

rt sigprocmask librt
futex libc, ld.so, libpthread

Table 5. Ubiquitous system call usage caused by initializa-
tion or finalization of libc family.

Effects of standard libraries on API importance. Libc and
the dynamic linker (ld.so) also contribute to the system
call footprint of every dynamically-linked executable. This
has a marked effect on the API importance of some system
calls. The APIs used to initialize a program are listed in Ta-
ble 5. In several cases, such as set tid address, how-
ever, libc or libpthread may be the only binaries using these
interfaces directly, indicating that changes to some important
system interfaces would only require changes in one or two
low-level libraries.

GNU Library C and the dynamic linker can have a first-
order effect on the API importance of some system calls.

4. Linux Systems and Emulation Layers
This section uses weighted completeness to evaluate systems
or emulation layers with partial Linux compatibility. We also
evaluate several libc variants for their degree of complete-
ness against the APIs exported by GNU libc 2.21.

4.1 Weighted Completeness of Linux Systems
To evaluate the weighted completeness of Linux systems or
emulation layers, the prerequisite is to identify the supported
APIs of the target systems. Due to the complexity of Linux
APIs and system implementation, it is hard to automate
the process of identification. However, OS developers are
mostly able to maintain such a list based on the internal
knowledge.

We evaluate the weighted completeness of four Linux-
compatible systems or emulation layers: User-Mode-Linux [25],
L4Linux [32], FreeBSD emulation layer [26], and Graphene
library OS [51]. For each system, we explore techniques
to help identifying the supported system calls, based on
how the system is built. For example, User-Mode-Linux
and L4Linux are built by modifying the Linux source code,
or adding a new architecture to Linux. These systems will
define architecture-specific system call tables, and reimple-
ment sys * functions in the Linux source that are origi-

Systems # Suggested APIs to add W.Comp.

UML
3.19

284 name to handle at, iopl,
ioperm, perf event open

93.1%

L4Linux
4.3

286 quotactl, migrate pages,
kexec load

99.3%

FreeBSD-
emu 10.2

225 inotify*, splice,
umount2, timerfd* 62.3%

Graphene 143 sched setscheduler,
sched setparam

0.42%

Graphene¶ 145 statfs, utimes, getxattr,
fallocate, eventfd2 21.1%

Table 6. Weighted completeness of several Linux systems
or emulation layers. For each system, we manually identify
the number of supported system calls (“#”), and calculate
the weighted completeness (“W.Comp.”) . Based on API
importance, we suggest the most important APIs to add.
(*: system call family. ¶: Graphene after adding two more
system calls.)

nally aliases to sys ni syscall (a function that returns
-ENOSYS). Other systems, like FreeBSD and Graphene,
are built from scratch, and often maintain their own system
call table structures, where unsupported systems calls are
redirected to dummy callbacks.

Table 6 shows weighted completeness, considering only
system calls. The results also identify the most important
system calls that the developers should consider adding.
User-Mode-Linux and L4Linux both have a weighted com-
pleteness over 90%, with more than 280 system calls im-
plemented. FreeBSD’s weighted completeness is 62.3% be-
cause it is missing some less important system calls such
as inotify init and timerfd create. Graphene’s
weighted completeness is only 0.42%. We observe that
the primary culprit is scheduling control; by adding two
scheduling system calls, Graphene’s weighted completeness
would be 21.1%.

4.2 Weighted Completeness of Libc
This study also uses weighted completeness to evaluate
the compatibility of several libc variants — eglibc [4],
uClibc [8], musl [6] and dietlibc [3] — against GNU libc,
listed in Table 7. We observe that, if simply matching ex-
ported API symbols, only eglibc is directly compatible to
GNU libc. Both uClibc and musl have a low weighted com-
pleteness, because GNU libc’s headers replace a number of
APIs with safer variants at compile time, using macros. For
example, GNU libc replaces printf with printf chk,
which performs an additional check for stack overflow. Af-
ter normalizing for this compile-time API replacement, both
uClibc and musl are at over 40% weighted completeness. In
contrast, dietlibc is still not compatible with most binaries

Libc variants # Unsupported (samples) W.Comp.
W.Comp.

(normalized)

eglibc 2.19 2198 None 100% 100%

uClibc 0.9.33 1867 uflow, overflow 1.1% 41.9%

musl 1.1.14 1890 secure getenv,
random r

1.1% 43.2%

dietlibc 0.33 962 memalign, stpcpy,
cxa finalize

0% 0%

Table 7. Weighted completeness of libc variants. For each
variant, we calculate weighted completeness based on sym-
bols directly retrieved from the binaries, and the symbols af-
ter reversing variant-specific replacement (e.g.,printf be-
comes printf chk).

linked against GNU libc — if no other approach is taken
to improve its compatibility. The reason of low weighted
completeness is that dietlibc does not implement many ubiq-
uitously used GNU libc APIs such as memalign (used by
8887 packages) and cxa finalize (used by 7443 pack-
ages).

5. Unweighted API Importance
API importance is weighted by the number of installations
of applications that use the API. As a result, one ubiquitous
application can cause the API importance of an API it uses
to be close to 100%. This section observes trends for APIs
with multiple variants, using an additional unweighted API
importance metric. We remove the weighting by installation
frequency to focus on trends in developer behavior.

Once an API has been identified as having a security
risk, and a more secure variant is developed, one might
wish to know how many vulnerable packages are still in the
wild, and how many have moved to less exploit-prone APIs.
Similarly, one might want to know how many applications
have not migrated away from a deprecated API, even if these
applications are not widely used.

Definition: Unweighted API importance.
For a given API, the probability an application (package)
uses that API, irrespective of probability of installation.

We begin by looking at the unweighted API importance
of each system call. Figure 8 shows the distribution of sys-
tem calls across packages. Recall that using API impor-
tance, over two-thirds of system calls on Linux are required
by at least one application on every installation. Using un-
weighted API importance, Figure 8 suggests that only 40
system calls are used by all packages, and 130 system calls
are used by at least 10% of packages. Over half of Linux
system calls are used by less than 10% of packages.

0%

50%

100%

0 50 100 150 200 250

Un
w
ei
gh
te
d	

AP
I	i
m
po

rt
an

ce
lo
w
er
	b
ou

nd
	

N-most	important	system	calls

40 130

10%

Figure 8. The trend of unweighted API importance in N-
most important system calls among total 320 system calls of
Ubuntu Linux 15.04 with Linux kernel 3.19.

One family of APIs prone to security problems are the
set*id API family. Many of the set*id APIs have
subtle semantic differences across different Unix variants.
Chen et al. [22] conclude that setresuid has the clearest
semantics across all Unix flavors. Table 8 shows the un-
weighted API importance of set*id and get*id sys-
tem calls. Most packages have adopted the more clear and
secure interface. System calls setuid, setreuid, and
setresuid have unweighted API importance of 15.67%,
1.88% and 99.68% respectively. However, for get*id sys-
tem calls, the unweighted API importance suggests that the
getres*id system calls are only used by roughly 36% of
packages.

Directory operations have a long history of exploitable
race conditions [20, 21, 54], or time-of-check-to-time-of-
use (TOCTTOU) vulnerabilities. In a privileged application,
one system call (e.g., access) checks the user’s permis-
sion, and a second call operates on the file. There are coun-
termeasures that effectively walk the directory hierarchy in
user space [50]. This approach replaces calls like access
with faccessat, and similar variants. Table 8 shows the
current unweighted API importance of *at system call vari-
ants and their older counterparts. We observed that the un-
weighted API importance of the race-prone access is still
high (74.24%), whereas faccessat is only 0.63%. This
suggests about 75% of the packages use the more vulnerable
access system call instead of the more secure one.

In addition to security-related hints, unweighted API
importance indicates whether obsolete APIs have been re-
placed by newer variants. For instance, wait4 system call
is considered obsolete [9], and the alternative waitid is
preferred, as it more precisely specifies which child state
changes to wait for. However, unweighted API importance
of wait4 and waitid is 60.56% and 0.24%, respectively.
This indicates that 60% of the packages are still using the
older wait4 system call. Table 9 shows similar trend for
some other system calls. Our dataset provides more oppor-
tunity for system developers to actively communicate with
application developers, in order to speed up the process of
retiring problematic APIs.

Insecure API U.API Imp. Secure API U.API Imp.

Unclear vs. Well-defined ID Management Semantics

setuid 15.67%
setresuid 99.68%

setreuid 1.88%

setgid 12.07%
setresgid 99.68%

setregid 1.24%

getuid 99.81%
getresuid 36.19%

geteuid 55.15%

getgid 99.81%
getresgid 36.14%

getegid 48.87%

Nonatomic vs. Atomic Directory operations

access 74.24% faccessat 0.63%

mkdir 52.07% mkdirat 0.34%
rename 43.18% renameat 0.30%
readlink 46.38% readlinkat 0.50%

chown 24.59% fchownat 0.23%
chmod 39.80% fchmodat 0.13%

Table 8. The unweighted API importance (“U. API Imp.”)
of secure and insecure API variations.

Old API U. API Imp. New API U. API Imp.

getdents 99.80% getdents64 0.08%

utime 8.57% utimes 17.90%

fork 0.07%
clone 99.86%

vfork 99.68%

tkill 0.51% tgkill 99.80%

wait4 60.56% waitid 0.24%

Table 9. The unweighted API importance (“U. API Imp”)
of old (generally deprecated) and new (preferred) API vari-
ations. Higher is more important.

Adoption of newer, preferred API variants is often slow,
and kernel developers could benefit from an easy mech-
anism to identify relevant developers.

Some APIs are specific to a particular OS, such as Linux,
and often have more portable variants. Table 10 shows the
comparison between Linux-specific APIs and their generic
variants. The results show most developers prefer portable
or generic APIs more than Linux-specific APIs. Except
pipe2, most API variants that are Linux-specific have un-
weighted API importance lower than 10 percent.

Finally, we consider system calls with multiple variants
where one version has increased functionality. Table 11
shows the difference between these system calls. Interest-
ingly, more developers chose the less powerful variants, such
as using select over pselect6, or dup2 over dup3.
This indicates that more often than not, developers choose
simplicity unless a task demands the functionality of a more
powerful API variant.

Linux Specific U. API Imp. Portable / Generic U. API Imp.

preadv 0.15% readv 62.23%
pwritev 0.16% writev 99.80%

accept4 0.93% accept 29.35%

ppoll 3.90% poll 71.07%

recvmmsg 0.11% recvmsg 68.82%
sendmmsg 5.17% sendmsg 42.49%

pipe2 40.33% pipe 50.33%

Table 10. The unweighted API importance (U. API Imp.)of
more API variants, and comparison between Linux-specific
versions and more portable or generic versions. Higher is
more important.

System Call U. API Imp. System Call U. API Imp.

read 99.88% pread64 27.23%

dup3 8.72%
dup2 99.75%
dup 66.64%

recvmsg 68.82% recvfrom 53.80%
sendmsg 42.49% sendto 71.71%

select 61.53% pselect6 4.13%

chdir 44.61% fchdir 2.20%

Table 11. The unweighted API importance among similar
API variants. Higher is more important.

Developers prefer the most portable or the simplest API
option among variations of same system call.

6. Implications for System Developers
The statistics in Section 3 can inform decisions of applica-
tion developers, library developers, and kernel developers.
Similarly, the ability to easily generate a comprehensive data
set of API footprints has several practical uses.

One practical benefit of this study is the ability to auto-
matically identify a system call profile of every application
distributed with Ubuntu/Debian Linux. In fact, we observed
that the total 31,433 applications have 11,680 different sys-
tem call footprint and 9,133 out of these applications have
a unique system call footprint. We note that these numbers
may vary with dynamic analyses, but the fact that one third
of all Debian/Ubuntu applications have a unique system call
footprint is interesting.

System call footprints have been explored previously for
identifying malware or software compromises [36]. Linux
has recently added seccomp, a Berkeley Packet Filter-based
system call filtering framework [46]; generation of seccomp
policies can be easily automated using our framework, re-
ducing the system’s attack surface in the event of an appli-
cation compromise.

These tools can also help OS developers evaluate when it
is safe to remove a deprecated interface, or when interfaces

appear to be irrelevant to most users (e.g., remap file
pages). In the case of an irrelevant interface, this may ei-
ther indicate something is a candidate for deprecation (e.g.,
lookup dcookie), or that a useful or important feature
(e.g., faccessat) is not getting sufficient traction. Linux
developers currently wait as long as six years to retire an in-
terface, allowing ample time for application and library de-
velopers to change. Our dataset and methodology can allow
more proactive outreach and more rapid system evolution.

The libc function call popularity can similarly help library
developers to remove function calls that are not used (222
functions). Moreover, the function call importance distribu-
tion can also help reduce the library’s memory footprint by
organizing the in-memory layout by importance.

7. Implementation Details
This section provides additional implementation details of
our analysis framework.

Our analysis is based on disassembling binaries inside
each application package, using the standard objdump tool.
This approach eliminates the need for source or recompila-
tion, and can handle closed-source binaries. We implement
a simple call-graph analysis to detect system calls reach-
able from the binary entry point (e entry in ELF head-
ers). We search all binaries, including libraries, for system
call instructions (int $0x80, syscall or sysenter)
or calling the syscall API of libc. We find that the ma-
jority of binaries — either shared libraries or executables —
do not directly choose system calls, but rather use the GNU
C library APIs. Among 66,275 studied binaries, only 7,259
executables and 2,752 shared libraries issue system calls.

Our call-graph analysis allows us to only select system
calls that are actually used by the application, not all the sys-
tem calls that appear in libc. Our analysis takes the following
steps:
• For a target executable or a library, generate a call graph

of internal function usage.
• For each library function that the executable relies on,

identify the code in the library that is reachable from each
entry point called by the executable.

• For each library function that calls another library call,
recursively trace the call graph and aggregate the results.

Precisely determining all possible call-graphs from static
analysis is challenging. Unlike other tools built on call-
graphs, such as control flow integrity (CFI), our framework
can tolerate the error caused by over-approximating the anal-
ysis results. For instance, programs sometimes make func-
tion call based on a function pointer passed as an argument
by the caller of the function. Because the calling target is
dynamic, it is difficult to determine at the call site. Rather,
we track sites where the function pointers are assigned to
a register, such as using the lea instruction with an ad-
dress relative to the current program counter. This is an over-

Evaluation Criteria Size

Source Lines of Code (Python) 3,105

Source Lines of Code (SQL) 2,423

Total Rows in Database 428,634,030

Table 12. Implementation of the analysis framework.

approximation because, rather than trace the data flow, we
assuming that a function pointer assigned to a local variable
will be called. This analysis could be more precise if it in-
cluded a data flow component.

We also hard-code for a few common and problematic
patterns. For instance, we generally assume that the registers
that pass a system call number to a system call, or an opcode
to a vectored system call, are not the result of arithmetic in
the same function. We spot checked this assumption, but did
not do the data flow analysis to detect this case.

Finally, the last mile of the analysis is to recursively
aggregate footprint data. We insert all raw data into a
Postgresql database, and use recursive SQL queries to
generate the results. To scan through all 30,976 packages in
the repository, collect the data, and generate the results takes
roughly three days.

Our implementation is summarized in Table 12. We wrote
3,105 lines of code in Python and 2,423 lines of code in SQL
(Postgresql). The database contains 48 tables with over 428
Million entries.

8. Related Work
Concurrent with our work, Atlidakis et al. [14] conducted
a similar study of POSIX. A particular focus of the POSIX
study is measuring fragmentation across different POSIX-
compliant OSes (Android, OS X, and Ubuntu), as well as
identifying points where higher-level frameworks are driv-
ing this fragmentation, such as the lack of a ubiquitous ab-
straction for graphics. Both studies identify long tails of un-
used or lightly-used functionality in OS APIs. The POSIX
study factors in dynamic tracing, which can yield perfor-
mance insights; our study uses installation metrics, which
can yield insights about the impact of incompatibilities end-
users. Our paper contributes complimentary insights, such
as a metric and incremental path for completeness of an
emulation layer, as well as analysis of the importance of
less commonly-analyzed APIs, such as pseudo-files under
/proc.

A number of previous studies have investigated how other
portions of the Operating System interact, often at large
scale. Kadav and Swift [35] studied the effective API the
Linux kernel exports to device drivers, as well as device
driver interaction with Linux—complementary to our study
of how applications interact with the kernel or core libraries.
Palix et al. study faults in all subsystems of the Linux ker-
nel and identify the most fault-prone subsystems [38]. They

find architecture-specific subsystems have highest fault rate,
followed by file systems. Harter et al. [31] studied the inter-
action of a set of Mac OS X applications with the file system
APIs—identifying a number of surprising I/O patterns. Our
approach is complementary to these studies, with a focus on
overall API usage across an entire Linux distribution.

A number of previous studies have drawn inferences
about user and developer behavior using Debian and Ubuntu
package metadata and popularity contest statistics. Debian
packages have been analyzed to study the evolution of the
software itself [29, 37, 45], to measure the popularity of ap-
plication programming languages [10], to analyze dependen-
cies between the packages [23], to identify trends in package
sizes [12], the number of developers involved in developing
and maintaining a package [44], and estimating the cost of
development [11]. Jain et al. used popularity contest survey
data to prioritize the implementation effort for new system
security policies [33]. This study is unique in using this in-
formation to infer the relative importance of of system APIs
to end users, based on frequency of application installation.

A number of previous projects develop techniques or
tools to identify software incompatibilities, with the goal of
avoiding subtle errors during integration of software compo-
nents. The Linux Standard Base (LSB) [24] predicts whether
an application can run on a given distribution based on the
symbols imported by the application from system libraries.
Other researchers have studied application compatibility
across different versions of same library, creating rules for
library developers to maintain the compatibility across ver-
sions [40]. Previous projects have also developed tools to
verify backward compatibility of libraries, based on check-
ing for any changes in library variable type definitions and
function signatures [41]. Another variation of compatibility
looks at integrating independently-developed components
of a larger software project; solutions examine various at-
tributes of the components’ source code, such as recursive
functions and strong coupling of different classes [49]. In
these studies, compatibility is a binary property, reflecting
a focus on correctness. Moreover, these studies are focused
on the interface between the application and the libraries
or distribution ecosystem. In contrast, this paper proposes a
metric for relative completeness of a prototype system.

Identifying the system call footprint of an application is
useful for a number of reasons; our work contributes data
from studying trends in system API usage in a large set of
application software. The system call footprint of an ap-
plication can be extracted by static or dynamic analysis.
The trade-off is that dynamic analysis is easier to imple-
ment quickly, but the results are input-dependent. Binary
static analysis, as this paper uses, can be thwarted by ob-
fuscated binaries, which can confuse the disassembler [57].
Static binary analysis has been used to automatically gener-
ate application-specific sandboxing policies [36]. Dynamic
analysis has been used to compare system call sequences

of two applications as an indicator of potential intellectual
property theft [53], to identify opportunities to batch sys-
tem calls [43], to model power consumption on mobile de-
vices [39], and to repackage applications to run on different
systems [30]. These projects answer very different questions
than ours, but could, in principle, benefit from the resulting
data set.

9. Conclusion
Based on this study, we can draw several conclusions about
the nature of Linux APIs. First, for any OS installation in our
data set, the required API size is several times larger than the
320 system calls in Linux, once one considers ioctl op-
codes and files under /proc. A solid two-thirds of system
calls are indispensable. We show that a substantial range of
system calls and other APIs are rarely or even never used.
And the paper plots a rough guide for adding system calls to
a Linux emulation layer or research prototype.

We expect that this data set will be of use to researchers
and developers for further analysis, Our methodology and
tools can be easily applied to future releases and other distri-
butions. Our data set, tools, and other information are avail-
able at http://oscar.cs.stonybrook.edu/api-
compat-study.

Acknowledgments
We thank the anonymous reviewers, William Jannen, and our
shepherd, Bianca Schroeder, for their insightful comments
on earlier drafts of the work. This research was supported in
part by NSF grants CNS-1149229, CNS-1161541, CNS-
1228839, CNS-1405641, CNS-1408695, CNS-1526707,
and VMware.

Appendix A Formal Definitions
A.1 API Importance

Definition: API Importance.
For a given API, the probability that an installation in-
cludes at least one application requiring the given API.

A system installation (inst) is a set of packages in-
stalled ({pkg1, pkg2, ..., pkgk ∈ Pkgall}). For each pack-
age (pkg) that can be installed by the installer, we an-
alyze every executable included in the package (pkg =
{exe1, exe2, ..., exej}), and generate the API footprint of
the package as:

Footprintpkg = {api ∈ APIall | ∃exe ∈ pkg,
exe has usage of api}

For a target API, API importance is calculated as the proba-
bility that any installation includes at least one package that
uses the API; i.e., the API belongs to the footprint of at least
one package. Using Ubuntu/Debian Linux’s package instal-

lation statistics, one can calculate the probability that a spe-
cific package is installed as:

Pr{pkg ∈ Inst} = # of installations including pkg

total # of installations
Assuming the packages that use an API are Dependentsapi =
{pkg|api ∈ Footprintpkg}. API importance is the prob-
ability that at least one package from Dependentsapi is
installed on a random installation, which is calculated as
follows:

Importance(api) = Pr{Dependentapi
⋂

Inst 6= ∅}

= 1− Pr{∀pkg ∈ Dependentapi, pkg /∈ Inst}

= 1−
∏

pkg∈Dependentapi

Pr{pkg /∈ Inst}

= 1−
∏

pkg∈Dependentapi

(1− # of installations including pkg

total # of installations
)

A.2 Weighted Completeness — A System-Wide Metric

Definition: Weighted Completeness.
For a target system, the fraction of applications sup-
ported, weighted by the popularity of these applications.

Weighted completeness is used to evaluate the rela-
tive compatibility on a system that supports a set of APIs
(APISupported). For a package on the system, we define it
as supported if if every API that the package uses is in the
supported API set. In other words, a package is supported if
it is a member of the following set:

PkgSupported = {pkg|Footprintpkg ⊆ APISupported}

Using weighted completeness, one can estimate the fraction
of packages in an installation that end-users can expect a tar-
get system to support. For any installation that is an arbitrary
subset of available packages (Inst = {pkg1, pkg2, ..., pkgk} ⊆
Pkgall), weighted completeness is the expected value of the
fraction in any installation (Inst) that overlaps with the sup-
ported packages (PkgSupported):

WeightedCompleteness(APISupported) =

E(
|PkgSupported

⋂
Inst|

|Inst|
)

where E(X) is the expected value of X.
Because we do not know which packages are installed

together, except in the presence of explicit dependencies, we
assume package installation events are independent. Thus,
the approximated value of weighted completeness is:

E(|PkgSupported
⋂
Inst|)

E(|Inst|)

∼

∑
pkg∈PkgSupported

(
of installations including pkg

total # of installations
)∑

pkg∈Pkgall
(

of installations including pkg

total # of installations
)

http://oscar.cs.stonybrook.edu/api-compat-study
http://oscar.cs.stonybrook.edu/api-compat-study

References
[1] Cert c coding standards—signals. https://www.

securecoding.cert.org/confluence/pages/
viewpage.action?pageId=3903. Accessed on
3/21/2016.

[2] Debian popularity contest. http://popcon.debian.
org/by_inst. Accessed on 3/21/2016.

[3] diet libc: A libc optimized for small size. https://www.
fefe.de/dietlibc/. Accessed 3/21/2016.

[4] The embedded GNU Libc. http://www.eglibc.org/.
Accessed on 3/21/2016.

[5] The GNU C library. https://www.gnu.org/
software/libc/. Accessed on 3/21/2016.

[6] musl libc. http://www.musl-libc.org/. Accessed
on 3/21/2016.

[7] Ubuntu popularity contest. http://popcon.ubuntu.
com/by_inst. Accessed on 3/21/2016.

[8] uClibc. https://www.uclibc.org/. Accessed on
3/21/2016.

[9] wait4 man page. http://man7.org/linux/man-
pages/man2/wait4.2.html. Accessed on 3/21/2016.

[10] J. J. Amor, J. M. Gonzalez-Barahona, G. Robles, and I. Her-
raiz. Measuring libre software using debian 3.1 (sarge) as
a case study: Preliminary results. UPGRADE - The Euro-
pean Journal for the Informatics Professional, VI(3):13–16,
06 2005.

[11] J. J. Amor, G. Robles, and J. M. González-Barahona. Measur-
ing Woody: The size of Debian 3.0. CoRR, abs/cs/0506067,
2005.

[12] J. J. Amor, G. Robles, J. M. González-Barahona, and I. Her-
raiz. From pigs to stripes: A travel through Debian. In Pro-
ceedings of the DebConf5 (Debian Annual Developers Meet-
ing), Helsinki, Finland, 07 2005.

[13] J. Appavoo, M. A. Auslander, D. Da Silva, D. Edelsohn,
O. Krieger, M. Ostrowski, B. S. Rosenburg, R. W. Wisniewski,
and J. Xenidis. Providing a Linux API on the scalable K42
kernel. In Proceedings of the USENIX Annual Technical
Conference, pages 323–336, 2003.

[14] V. Atlidakis, J. Andrus, R. Geambasu, D. Mitropoulos, and
J. Nieh. POSIX abstractions in modern operating systems:
The old, the new, and the missing. In Proceedings of the ACM
European Conference on Computer Systems (EuroSys), 2016.

[15] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 1–16, 2010.

[16] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch,
B. Bond, R. Olinsky, and G. C. Hunt. Composing OS ex-
tensions safely and efficiently with Bascule. In Proceedings
of the ACM European Conference on Computer Systems (Eu-
roSys), 2013.

[17] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazières,
and C. Kozyrakis. Dune: Safe user-level access to privileged
CPU features. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages
335–348, 2012.

[18] F. Bellard. QEMU, a fast and portable dynamic translator.
In Proceedings of the USENIX Annual Technical Conference,
pages 41–46, 2005.

[19] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Determin-
istic process groups in dos. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), pages 1–16, 2010.

[20] N. Borisov, R. Johnson, N. Sastry, and D. Wagner. Fixing
races for fun and profit: How to abuse atime. In Proceedings
of the USENIX Security Symposium, pages 303–314, 2005.

[21] X. Cai, Y. Gui, and R. Johnson. Exploiting unix file-system
races via algorithmic complexity attacks. Oakland, pages 27–
41, 2009.

[22] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In
Proceedings of the USENIX Security Symposium, pages 171–
190, 2002.

[23] O. F. de Sousa, M. A. de Menezes, and T. J. P. Penna. Analysis
of the package dependency on Debian GNU/Linux. Journal of
Computational Interdisciplinary Sciences, 1(2):127–133, 03
2009.

[24] S. Denis. Linux distributions and applications analysis during
linux standard base development. Proceedings of the Spring/-
Summer Young Researchers. Colloquium on Software Engi-
neering, 2, 2008.

[25] J. Dike. User Mode Linux. Prentice Hall, 2006.

[26] R. Divacky. Linux emulation in FreeBSD. https:
//www.freebsd.org/doc/en/articles/linux-
emulation/, 03 2015. Accessed on 3/21/2016.

[27] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging
legacy code to deploy desktop applications on the web. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

[28] H. Franke, R. Russel, and M. Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in Linux. In Ottawa Linux
Symposium, 2002.

[29] J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr, J. J.
Amor, and D. M. German. Macro-level software evolution:
a case study of a large software compilation. Empirical Soft-
ware Engineering, 14(3):262–285, 2009.

[30] P. J. Guo and D. Engler. CDE: Using system call interposition
to automatically create portable software packages. In Pro-
ceedings of the USENIX Annual Technical Conference, 2011.

[31] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. A file is not a file: Understanding the
i/o behavior of apple desktop applications. In Proceedings of
the ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pages 71–83, 2011.

[32] H. Härtig, M. Hohmuth, J. Liedtke, J. Wolter, and
S. Schönberg. The performance of µ-kernel-based systems.
SIGOPS Operating System Review, 31(5):66–77, Oct. 1997.

[33] B. Jain, C.-C. Tsai, J. John, and D. E. Porter. Practical tech-
niques to obviate setuid-to-root binaries. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
pages 8:1–8:14, 2014.

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3903
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3903
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3903
http://popcon.debian.org/by_inst
http://popcon.debian.org/by_inst
https://www.fefe.de/dietlibc/
https://www.fefe.de/dietlibc/
http://www.eglibc.org/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
http://www.musl-libc.org/
http://popcon.ubuntu.com/by_inst
http://popcon.ubuntu.com/by_inst
https://www.uclibc.org/
http://man7.org/linux/man-pages/man2/wait4.2.html
http://man7.org/linux/man-pages/man2/wait4.2.html
https://www.freebsd.org/doc/en/articles/linux-emulation/
https://www.freebsd.org/doc/en/articles/linux-emulation/
https://www.freebsd.org/doc/en/articles/linux-emulation/

[34] S. Jana and V. Shmatikov. Memento: Learning secrets from
process footprints. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland), pages 143–157, 2012.

[35] A. Kadav and M. M. Swift. Understanding modern device
drivers. In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 87–98, 2012.

[36] L. Lam and T.-c. Chiueh. Automatic extraction of accu-
rate application-specific sandboxing policy. In E. Jonsson,
A. Valdes, and M. Almgren, editors, Recent Advances in In-
trusion Detection, volume 3224 of Lecture Notes in Computer
Science, pages 1–20. Springer Berlin Heidelberg, 2004.

[37] R. Nguyen and R. Holt. Life and death of software packages:
An evolutionary study of debian. In Proceedings of the 2012
Conference of the Center for Advanced Studies on Collabora-
tive Research, CASCON ’12, pages 192–204, 2012.

[38] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and
G. Muller. Faults in Linux: Ten years later. In Proceedings of
the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 305–318, 2011.

[39] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-grained power modeling for smartphones using system
call tracing. In Proceedings of the ACM European Conference
on Computer Systems (EuroSys), pages 153–168. ACM, 2011.

[40] S. Pavel and S. Denis. Binary compatibility of shared libraries
implemented in C++ on GNU/Linux systems. Proceedings of
the Spring/Summer Young Researchers. Colloquium on Soft-
ware Engineering, 3, 2009.

[41] A. Ponomarenko and V. Rubanov. Automatic backward com-
patibility analysis of software component binary interfaces.
In IEEE International Conference on Computer Science and
Automation Engineering (CSAE), volume 3, pages 167–173,
June 2011.

[42] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and
E. Witchel. Operating system transactions. In Proceedings of
the ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pages 161–176, 2009.

[43] M. Rajagopalan, S. K. Debray, M. A. Hiltunen, and R. D.
Schlichting. System call clustering: A profile directed opti-
mization technique. Technical report, The University of Ari-
zona, May 2003.

[44] G. Robles and J. M. González-Barahona. From toy story to
toy history: A deep analysis of Debian GNU/Linux, 2003.

[45] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and
J. J. Amor. Mining large software compilations over time:

Another perspective of software evolution. In Proceedings of
the International Workshop on Mining Software Repositories,
MSR, pages 3–9, 2006.

[46] SECure COMPuting with Filters (seccomp). https:
//www.kernel.org/doc/Documentation/prctl/
seccomp_filter.txt. Accessed on 3/12/2016.

[47] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Pro-
ceedings of the ACM Conference on Computer and Commu-
nications Security (CCS), pages 552–561, Oct. 2007.

[48] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A fast ca-
pability system. In Proceedings of the Seventeenth ACM Sym-
posium on Operating Systems Principles, SOSP ’99, pages
170–185, 1999.

[49] H. Singh and A. Kaur. Component compatibility in compo-
nent based development. International Journal of Computer
Science and Mobile Computing, 3:535–541, 06 2014.

[50] D. Tsafrir, T. Hertz, D. Wagner, and D. D. Silva. Portably
preventing file race attacks with user-mode path resolution.
Technical report, IBM Research Report, 2008.

[51] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John,
H. A. Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter.
Cooperation and Security Isolation of Library OSes for Multi-
Process Applications. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), pages 9:1–9:14,
2014.

[52] C.-C. Tsai, Y. Zhan, J. Reddy, Y. Jiao, T. Zhang, and D. E.
Porter. How to Get More Value from your File System Direc-
tory Cache. In Proceedings of the ACM SIGOPS Symposium
on Operating Systems Principles (SOSP), 2015.

[53] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. Detecting software
theft via system call based birthmarks. In Proceedings of
the 2009 Annual Computer Security Applications Conference,
ACSAC ’09, pages 149–158, 2009.

[54] J. Wei and C. Pu. TOCTTOU vulnerabilities in UNIX-
style file systems: An anatomical study. In Proceedings of
the USENIX Conference on File and Storage Technologies
(FAST), 2005.

[55] M. Zalewski. Delivering signals for fun and profit. 2001.

[56] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.
Making information flow explicit in HiStar. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 19–19, 2006.

[57] M. Zhang and R. Sekar. Control flow integrity for cots bi-
naries. In Proceedings of the USENIX Security Symposium,
pages 337–352, 2013.

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

	Introduction
	Some APIs Are More Equal Than Others
	API Importance: A Metric for Individual APIs
	Weighted Completeness: A System-Wide Metric
	Data Collection via Static Analysis
	Limitations

	A Study of Modern Linux API Usage
	Spot the Most Valuable System Calls
	From ``Hello World'' to Qemu
	Vectored System Call Opcodes
	Pseudo-Files and Devices
	Reorganizing System Library APIs

	Linux Systems and Emulation Layers
	Weighted Completeness of Linux Systems
	Weighted Completeness of Libc

	Unweighted API Importance
	Implications for System Developers
	Implementation Details
	Related Work
	Conclusion
	Formal Definitions
	API Importance
	Weighted Completeness — A System-Wide Metric

