
x86-64 Instruction Usage among C/C++
Applications

Amogh Akshintala
University of North Carolina at

Chapel Hill
aakshintala@cs.unc.edu

Bhushan Jain
University of North Carolina at

Chapel Hill
bhushan@cs.unc.edu

Chia-Che Tsai
Texas A&M University

chiache@tamu.edu

Michael Ferdman
Stony Brook University

mferdman@cs.stonybrook.edu

Donald E. Porter
University of North Carolina at

Chapel Hill
porter@cs.unc.edu

Abstract
This paper presents a study of x86-64 instruction usage

across 9,337 C/C++ applications and libraries in the Ubuntu
16.04 GNU/Linux distribution. We present metrics for reason-
ing about the relative importance of instructions weighted by
the popularity of applications that contain them. From this
data, we systematize and empirically ground conventional
wisdom regarding the relative importance of various com-
ponents of an ISA, with particular focus on building binary
translation tools. We also verify the representativity of two
commonly used benchmark suites, and highlight areas for
improvement.

CCS Concepts
• General and reference -> Empirical studies; • Soft-

ware and its engineering -> Assembly languages;

ACM Reference Format:
Amogh Akshintala, Bhushan Jain, Chia-Che Tsai, Michael Ferdman,
and Donald E. Porter. 2019. x86-64 Instruction Usage among C/C++
Applications. In The 12th ACM International Systems and Storage
Conference (SYSTOR ’19), June 3–5, 2019, Haifa, Israel. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3319647.3325833

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’19, June 3–5, 2019, Haifa, Israel
© 2019 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-6749-3/19/06. . . $15.00
https://doi.org/10.1145/3319647.3325833

1 Introduction
Instruction Set Architectures (ISAs) specify the interface of

the CPU. In particular, the ISA dictates what instructions the
CPU supports and the exact semantics of those instructions.
Although performance and energy characteristics of different
implementations of an ISA can vary, binary compatibility is
guaranteed across all implementations: software written for a
specific ISA is guaranteed to execute on all implementations
of that ISA.

Various software tools operate on the ISA: CPU emula-
tors [1, 4] and simulators [6], symbolic execution engines [12],
binary translation software [9, 13, 14, 26] (including those
used in hypervisors on non-virtualizable ISAs), binary analy-
sis software [28, 32, 36], compilers [15, 23], and bug finding
tools [17, 30], among others.

In order for these ISA-level tools to understand their bi-
nary inputs, they must implement a model of the ISA, which
is a staggering challenge due to the sheer size of today’s
dominant ISAs. To wit, the Intel x86-64 ISA has 981 unique
mnemonics—loosely, a group of instructions that all perform
the same operation—and a whopping 3,684 binary instruc-
tions [17]. The second most popular ISA, ARM, is similarly
gargantuan: the 64-bit variant A64 has 821 mnemonics [3].

In practice, tool developers prioritize development effort
on the most “important” instructions — trading completeness
for simplicity and a quicker development cycle. For instance,
the authors of VMware workstation describe an “on-demand
implementation” process, where the x86 binary translator
focused on just the instructions needed for a target OS; the
entire ISA was never supported, and guest OSes such as OS/2
did not work [11]. Similarly, Amit et al. [2] showed that KVM
cannot correctly implement certain obscure x86 behaviors in
a guest OS.

https://doi.org/10.1145/3319647.3325833
https://doi.org/10.1145/3319647.3325833

SYSTOR ’19, June 3–5, 2019, Haifa, Israel A. Akshintala, B. Jain, C. Tsai, M. Ferdman, D. E. Porter

Prioritizing instruction support is a natural and ubiquitous
engineering trade-off. Some instructions appear in program
binaries more frequently than others, e.g., the MOV instruction
(used to move data) is the most common x86-64 instruction.
On the contrary, the VFMADDSD instruction, used to express
a fused multiplication and addition operation, is relatively
rare. Further, many instructions perform similar operations,
albeit with subtle distinctions.

The question, then, is what is the basis for assigning prior-
ity to instructions? Common approaches include analyzing
benchmark suites [5, 10, 16], or execution traces collected in
target environments [20]. The ad-hoc nature of this approach
leaves many useful questions unanswered: Is the chosen test
suite actually representative? What is the path of least effort
to support a new ISA in a software tool? What minimum
set of instructions must be implemented to run at least one
application? What instruction sub-set is sufficient to run the
majority of deployed applications?

To paraphrase Hennessy and Patterson [27], the best thing
to measure is what actually runs on the user’s system. This
paper presents and analyzes a dataset collected from static
analysis of all x86-64 ELF binaries in the Ubuntu Linux 16.04
GNU/Linux distribution. We leverage package installation
frequency, an approximation of a package’s importance to
users, from Ubuntu and Debian popularity contest data [29,
33], to infer the relative importance of an instruction from
the percentage of binaries on a given system that contain that
instruction.

We adapt metrics from a prior study of OS API compatibil-
ity [34], specifically, instruction importance — the relative
importance of a given instruction, and weighted completeness
— the completeness of a system that implements a subset of
the ISA. Although this paper focuses on x86-64 and Ubuntu,
the methodology and tools used in this study can be general-
ized to other architectures or operating systems with minimal
effort. Overall, we believe our measurements are reasonably
representative for deriving insights about modern desktop and
server applications.
Our contributions include:
• An instruction occurrence dataset gathered using static anal-
ysis of 9,337 open-source applications in the Ubuntu Linux
16.04 repositories.
• Evaluation of conventional wisdom about ISA usage.
• An iterative plan for developing new tools that use the
x86-64 ISA.
• Empirical validation of standard benchmarks.
• An instruction occurrence data visualization tool, and the
analysis framework used in this study are available at http:
//x86instructionpop.com/.

2 Data Collection
To answer questions about the relative importance of in-

structions and other components of an ISA, we collect instruc-
tion occurrence frequency from all the ELF binaries in the
Ubuntu Linux 16.04 repositories. We begin with a refresher
on x86-64 instruction encoding, then explain our methodol-
ogy and its limitations.

2.1 x86-64 Instruction Encoding

Instruction
Prefixes

1/2/3/4 bytes
(optional)

Opcode

1/2/3 bytes

Mod
R/M

1 byte
(if req)

SIB

1 byte
(if req)

Displacement

0, 1, 2, 4 or
8 Bytes

Immediate

0, 1, 2, 4 or
8 Bytes

1 15 bytes

Figure 1: x86-64 instruction encoding format

Figure 1 depicts an overview of the x86-64 instruction
encoding scheme, as explained in the Intel manual [19]. In-
structions can be 1 to 15 bytes long and must contain an
opcode. Opcodes indicate the operation that the instruction
performs and may be 1 to 3 bytes long. Programmers usually
think of instructions in terms of assembly mnemonics, such
as ADD, MOV or RET, which can be encoded by multiple op-
codes in x86-64 (e.g., at least 26 different opcodes correspond
to the ubiquitous MOV instruction.)

Each opcode may also be paired with multiple prefixes that
change its semantics. For example, in our corpus, the data
movement instruction, MOV appears with 61 different pre-
fixes. Some prefixes override the default operand and address
sizes: e.g., 0x66 and 0x67 toggle between 16-bit and 32-bit
operands, REX denotes 64-bit operands, and VEX denotes
vector operands. A prefix can also indicate special behav-
ior for an instruction, such as atomicity (LOCK), repetition
(REPNE/REPE), overriding segment registers (e.g., 0x64 to
override the FS segment), etc. Prefixes are generally optional,
but may be mandatory for certain instructions. For instance,
REP is a mandatory prefix for POPCNT, an instruction that
counts the number of bits that are set in its operand.

The ModR/M byte indicates the registers the instruction
operates on, the addressing mode used, and if the SIB byte is
present. The SIB byte contains the scale, index and base to
use in case the instruction the memory operand is addressed
using the indexed or scaled addressing modes (see § ref-
sub:addressing). The last two portions of the instruction are
used to encode displacement or immediate values, as neces-
sary. Instructions with the same prefixes and opcodes may
be of different length, as a result of different operands, and
addressing modes: e.g., the most common encoding of the
MOV mnemonic (0x488b) occurs in 5 different sizes — 3,
4, 5, 7, and 8 bytes.

http://x86instructionpop.com/
http://x86instructionpop.com/

x86-64 Instruction Usage SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Probability #Packages Examples

90 — 100 127 coreutils, bash
80 — 90 52 firefox, apparmor
70 — 80 36 compiz-core, gimp
60 — 70 25 cups, mtools
50 — 60 27 ethtool, diffutils
40 — 50 44 unrar, pidgin
30 — 40 32 gawk, mplayer
20 — 30 72 libreoffice-core
10 — 20 127 inkscape, libkdecore5
1 — 10 917 git, texlive-binaries
0 — 1 6722 openjdk-8-jre-headless

Table 1: Ubuntu packages grouped by probability of be-
ing installed in an arbitrary installation of Ubuntu Linux
16.04, along with examples from each group. A package
in the 90—100 row is almost always installed, whereas a
package in the 0—1 row is installed on, at most, 1% of
systems.

2.2 Methodology
Our analysis operates at the granularity of a package, the

unit of distribution in APT. A package typically includes a
common library or application. Of the 30,976 packages in
the Ubuntu Linux 16.04 repositories, our analysis covered the
9,337 packages that contained ELF binaries. The remaining
packages either only contained interpreted code, documen-
tation, were drivers or otherwise LINUX kernel related, or
were cross-compiled for a different ISA.

For each package, we calculated its instruction footprint,
i.e., the set of instructions that occur in the package and
their frequencies, by unioning the instruction footprints of the
package’s constituent executables, libraries, and other depen-
dencies. For each constituent ELF binary, we extracted the
start and end of all symbols in the binary, using the readelf
tool. Each sequence was then linearly disassembled and ana-
lyzed: we recorded the opcode, any prefixes, the size of the
disassembled instruction, and the mnemonic assigned by the
disassembler. For each function or section of code, we also
recorded all out-going function calls, operand sizes (aggre-
gated), and the modes in which instructions addressed data
(aggregated). In order to appropriately weight library calls
in executables, we recursively applied the instruction foot-
print of any library functions the binary (or library) calls
to the instruction footprint of the executable. We obtained
this information from the function call data collected during
disassembly.

We approximate the importance of an instruction by the
popularity of the packages that instruction appears in. Intu-
itively, this is akin to asking: “if this instruction were missing
on an ISA implementation, what percent of end-user sys-
tems would stop working?”. Specifically, we weighted each

package’s instruction footprint is by its popularity, i.e., the
probability of the package being installed on an arbitrary in-
stallation of Ubuntu Linux 16.04 (shown in Table 1). Each
package’s popularity was derived from package installation
data collected by the Ubuntu [33] and Debian [29] distribu-
tions.

To facilitate easy exploration of this data, we built a web-
based visualization tool that features filtering among dimen-
sions such as size, mnemonics, opcodes, type of instruction,
prefixes, and package installation probability to understand
the occurrence of instructions in the packages that we ana-
lyzed. This tool and the analysis framework used to gather
the data are available at http://x86instructionpop.com/.

2.3 Limitations
Static Analysis applies to a binary at rest, and, in this case,
operates on a disassembled instruction stream. In contrast,
dynamic analysis observes an executing application using
hardware traps and debug instructions, or analyzes an in-
struction trace gathered during prior execution. The quality
of a dynamic analysis depends on representativity of inputs
provided to the application. Obtaining such a set of represen-
tative inputs for all of the packages in the Ubuntu Linux 16.04
repositories is impossible. This effectively rules out dynamic
analysis. All data presented in this study was collected using
static analysis.

Static analysis has its limitations: it can not account for
loops and other code repetition constructs, and also overesti-
mates the importance of rarely executed code blocks, such as
error-handling routines. Therefore, it is possible to determine
the number of times an instruction occurs in a binary, but not
the frequency with which that instruction would be executed
at run-time. In recognition of these limitations, our dataset
cannot be used to draw conclusions about performance or
energy, both of which can only be assessed based on dynamic
execution traces.
Linear disassembly. Disassembly may be linear—from the
point of entry till the end of a section of code, or recursive—
by following the flow of control within the section. Linear
static analysis can’t identify and avoid gaps in the code, such
as data in the text section, or alignment-related padding. Re-
cursive disassembly skirts the issue of gaps, by following
the flow of control in the binary, typically resulting in higher
fidelity data. However, as Zhang and Sekar [37] point out,
tracking control flow in binaries is non-trivial. Jump targets
are often calculated at execution time, and are incredibly hard
to determine during disassembly. Worse, control flow in a pro-
gram frequently depends on input (e.g., checking the number
of arguments provided). Implementing control flow tracking
poorly results in incomplete analysis of binaries: parts of the
binary are never encountered during analysis, leading to an

http://x86instructionpop.com/

SYSTOR ’19, June 3–5, 2019, Haifa, Israel A. Akshintala, B. Jain, C. Tsai, M. Ferdman, D. E. Porter

incomplete instruction footprint. We used linear disassembly
in order to ensure that all code in a binary is visited at least
once.
Availability of symbols. When symbol offsets are available,
our analysis is able to generate instruction footprints at func-
tion granularity. However, when the symbol offset table or
the dynamic symbol table are unavailable, the tool computes
the instruction footprint and call targets at section granularity.
This approach potentially over-estimates the importance of
instructions in the binary when the disassembler can not di-
vide the section into its constituent functions—i.e., it assumes
any call into the section executes every instruction and outgo-
ing call from the section. We believe this is preferable to the
alternative, where one may incorrectly conclude a portion of
the binary code is not reachable.
Obfuscated binaries. We assume the binaries in the APT
repositories are not intentionally obfuscated, and do not in-
clude data in text sections.
Binary distribution. APT distributes applications as binary,
unlike in source-based distributions. This necessitates avoid-
ing optimizations that rely on specific (often newer) hardware
features. However, our methodology can be applied to any
GNU/Linux distribution.
Popularity Contest data. The Ubuntu and Debian Linux
Popularity Contest [29, 33] datasets only include information
about software distributed via the APT package distribution
software. Although APT is the primary software distribu-
tion mechanism on both of these Linux distributions, some
software, often commercial closed-source software, isn’t dis-
tributed via APT and, hence, are omitted from the study. Both
Ubuntu and Debian only collect data about package installa-
tion, which prevents insight into the usage patterns among
the packages, i.e., actual utilization of installed packages.
Moreover, the collection of installation data is purely opt-in.
However, given that the data draws on a reasonably large num-
ber of installations (685,534), we believe it is representative.
ELF binaries only. Our framework considers only ELF bi-
naries. Applications written in interpreted languages are not
considered in our study. Rather, the static analysis results
of the interpreters (and the dynamic libraries the interpreter
uses) are used in place of the application, and weighted ac-
cording to the application’s popularity, on the assumption that
the application will not issue instructions that are not in the
interpreter binary. We do not consider dynamically-generated
code, such as extensions or loadable modules, unless they are
distributed in binary form and appear in the application’s ELF
headers.
Desktop and server applications only. The dominant mo-
bile platforms of the day, Android and iOS, both distribute
applications in byte-code formats and do not provide an easy

MOV
37.8

ADD

12.6

CALL

8.0
LEA

4.8JE

4.5
TEST

4.0

JMP 3.8

NOP 3.7

CMP
3.3

JNE

3.0

XOR

2.4

AND

1.0

Others

11.0

Figure 2: Popularity of instructions, grouped by
mnemonic. 89% of the instructions in all of our applica-
tion binary samples consist of 12 most frequently occur-
ring mnemonics, out of 843 mnemonics in total.

method to access installation data. Our analysis focuses solely
on desktop and server platforms.
System software. Our dataset excludes the GNU/Linux ker-
nel and all associated drivers and kernel modules, as we do
not have a good mechanism to determine the popularity or
importance of a given module or kernel configuration.

3 Instruction Occurrence Trends
This section presents the data on instruction frequency,

grouped by mnemonics, or the human-readable name (e.g.,
MOV) for one or more binary encodings. Figure 2 shows the
top 12 mnemonics, with the remaining 831 mnemonics aggre-
gated under “Others”. The MOV and ADD mnemonics make
up about ~50% of all instructions that occur in our binary
samples. Unsurprisingly, the top 12 mnemonics are used to
express Data Movement (MOV), Control Flow (CALL, JE,
JMP, CMP, JNE, TEST) or Binary Arithmetic (AND, ADD,
XOR). The two remaining mnemonics are NOP (no-op) and
LEA; the former occurs widely because it is typically used
by compilers as padding to ensure that branch (call/jump)
targets are aligned to cache-line boundaries, while the latter is
pervasively used by compilers to calculate memory addresses
or for simple arithmetic operations.

Observation: The most common mnemonics are data
movement and control flow instructions.

3.1 Distribution by CPU Feature Sets
We also categorize the data using the feature set categories

defined in Chapter 5 of the Intel ® 64 and IA-32 Archi-
tectures Software Developer’s Manual [19]. These results
are depicted in Figure 3. The fourth-most frequently occur-
ring category, MISC, contains instructions for tasks including
flushing the cache (CLFLUSH), issuing performance hints

x86-64 Instruction Usage SYSTOR ’19, June 3–5, 2019, Haifa, Israel

0 10 20 30 40
Percentage of Instructions Disassembled

DATA
CONTROL FLOW

BINARY ARITH
MISC

BITWISE
LOGICAL

SHIFT/ROTATE
SSE

STRING
MMX
AVX

FLAG REG INSN
X87 FPU

I/O
BMI1/BMI2

AES
SYSTEM
CLMUL

ATOMIC
3DNOW

RAND NUM GEN
TSX

VMX
SMX

11,215,701,766 (40.100%)
6,184,297,232 (22.110%)
4,854,984,381 (17.360%)
2,412,028,636 (8.620%)
1,270,886,817 (4.540%)
1,054,483,656 (3.770%)

372,241,417 (1.330%)
344,788,013 (1.230%)
211,990,754 (0.760%)
36,676,732 (0.130%)
4,831,034 (0.017%)
3,893,162 (0.013%)
2,733,870 (0.009%)
1,153,386 (0.004%)
1,046,586 (0.003%)

444,074 (0.001%)
92,774 (0.000%)
8,636 (0.000%)
2,460 (0.000%)
1,118 (0.000%)

82 (0.000%)
26 (0.000%)
2 (0.000%)
1 (0.000%)

Figure 3: Instruction occurrence categorized by feature
sets (raw counts).

(PREFETCH) to the processor, detecting available CPU fea-
tures (CPUID), loading an address into a register (LEA), and
to aligning/padding binary code to cache-line size (NOP). The
next two most frequently occurring categories are bitwise
assignments and comparisons (BITWISE), and logical op-
erations, such as AND and XOR (LOGICAL). In total, these
categories account for over 96% of instruction instances.

The long tail of rarely occurring instruction types include
hyper-specialized instructions (e.g., CLMUL — Carry-Less
MULtiplication instructions, which occur in 35 packages),
older instructions that are not widely used or supported (e.g.,
3DNOW — vector instructions introduced by AMD that have
since been deprecated), or newly introduced instructions that
are not yet widely adopted (e.g., TSX — Transactional Syn-
chronization Instructions.)

3.2 Fraction of Unused x86-64 Instructions
No instructions from the following categories were ob-

served in our data (Figure 3): AVX-512, DECIMAL ARITH,
FMA, MPX, SEGMENT, SGX, SHA, XOP. Some of these cat-
egories correspond to instructions that were recently intro-
duced or are privileged instructions, such as MPX, SGX, and
AVX-512). Other instruction are not used because they are
invalid in 64-bit mode, including DECIMAL ARITH and
SEGMENT.

Table 2 shows the number of used and unused mnemonics
in each CPU feature set category. A mnemonic is labeled

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Instruction Size

0

5

10

15

20

%
of

In
st

ru
ct

io
n

s
D

is
as

se
m

b
le

d

1.5%

17.8%

23.1%

15.9%

20.3%

7.1%
8.0%

3.7%

1.4%
0.7%0.3%0.2%0.0%

Figure 4: Distribution of instruction sizes.

“unused” if it does not occur once in any package in our
corpus. Conversely, a mnemonic is “used” if it occurs in
at least one of the packages. We find that the vast major-
ity of unused instructions are either deprecated mnemonics
(e.g., 3DNOW, XOP), newly added mnemonics (e.g., SGX,
SHA, AVX-512), or aliases to other mnemonics (e.g., the
conditional control flow instruction mnemonics JE,JZ are
encoded by the same prefix-opcode pairs, and the disassem-
bler emits the JE mnemonic, but not the JZ mnemonic).
Specifically, 3DNOW, FMA3, and XOP are vector instruction
extensions that were introduced by AMD and subsequently
deprecated; although they occasionally occur among the bi-
naries we analyzed, they are usually guarded by code that
checks for the availability of these feature sets on the CPU.
We present Decimal Arithmetic as a category in Table 2 for
completeness, although these instructions are illegal on x86-
64.

3.3 Instruction Length
This section evaluates the distribution of instruction lengths

in our corpus. The x86-64 ISA has instructions that vary from
1 to 15 bytes. One may wish to understand common and
uncommon cases, variable instruction length complicates the
CPU’s instruction decoder. as the decoder must determine the
size of the instruction before it can proceed to other steps or
decode the next instruction.

Figure 4 shows the distribution of instructions by length.
3-byte, 4-byte, and 5-byte instructions make up ~60% of the
instructions disassembled. Only ~4.63% of the instructions in
our corpus are longer than 8-bytes. On the other end, only ~1%
of instructions are of length 1-byte. In part, this is because
1-byte opcodes do not have room for operands, and may only
contain an opcode, such as PUSHF (push the eflags register
onto the stack) and CBW (extend the sign bit of AL into AH).
Although 14-byte and 15-byte instructions are theoretically
possible, they did not occur in our dataset. The data seems

SYSTOR ’19, June 3–5, 2019, Haifa, Israel A. Akshintala, B. Jain, C. Tsai, M. Ferdman, D. E. Porter

Instruction Type Description Total No. of Insts Used Insts Unused Insts

DATA Data movement/manipulation 63 58 5
CONTROL FLOW Control Flow Instructions 55 53 2
BINARY ARITH Binary Arithmetic Instructions 25 22 3
MISC e.g. LEA CLFLUSH NOP 21 16 5
BITWISE Bitwise Operations TEST SET POPCNT 40 40 0
LOGICAL Boolean Logic Instructions 10 10 0
SAR Shift and Rotate 12 12 0
SSE Vector Instructions 235 185 50
STRING String processing 30 12 18
MMX Multimedia Extensions (64-80 bit vector) 49 49 0
AVX Advanced Vector Extensions 266 236 30
FLAG INSN Instructions that deal with Flags Register 22 18 4
X87 FPU Floating Point Unit Instructions 105 94 11
I/O Input and Ouput instruction 16 8 8
BMI1/BMI2 Bit Manipulation Instructions 15 7 8
SYSTEM System related instructions 48 17 31
AES Advanced Encryption Standard 6 6 0
CLMUL Carry-less Multiplication Instructions 8 4 4
ATOMIC Atomic Instructions 1 1 0
3DNOW Vector instructions introduced by AMD (deprecated) 3 2 1
AVX-512 512-bit Advanced Vector Extensions 260 3 257
DECIMAL ARITH Data movement and manipulation Instructions 6 0 6
FMA 128-bit and 256-bit Fused Multiply Add instructions 60 25 35
MPX Memory Protection Extensions 7 0 7
RNG Random Number Generation 2 2 0
SEGMENT Segment Register Operations 5 0 5
SGX Software Guard Extensions 18 0 18
SHA Hashing related Instructions 7 0 7
SMX Safer Mode Extensions 6 6 0
TSX Transactional Synchronization Instructions 6 5 1
VMX Virtul Machine Extensions 13 1 12
XOP AMD-specific vector instructions (deprecated) 59 3 56

Table 2: Used and unused mnemonics, grouped by CPU feature set category. An instruction is labeled used if it occurs
at least once in any application in the corpus. Conversely, an instruction is said to be unused if never appears in any of
the applications.

to be skewed towards smaller instructions, but also seems to
follow a power law distribution.

We calculated the variance of instruction sizes across each
CPU feature set, as well as, in the entire data set. We observe
that instructions are distributed across all lengths, and that
new instructions are also spread across multiple parts of the
encoding space. A table showing this data is available at
http://x86instructionpop.com/length.

Observation: 77% of observed instructions are 2–6 bytes
in length. The average instruction is 4.25 bytes long.

3.4 Occurrence of Registers and Memory
Operands

The binary encodings for a mnemonic can be of a wide
variety of lengths, because x86-64 instructions may operate
on values encoded in the instruction itself (immediate), values
stored in a register (register), on values stored in memory, or
may have implicit operands, e.g., ret. In order to access val-
ues stored in memory, the location of the value in memory, i.e.,
its address, must be made available to the processor through
the instruction encoding. x86-64 supports several different

ways of representing addresses (i.e., addressing schemes),
some of which are described below:
• Absolute, where the address is specified in the instruction

encoding (e.g., je 0xdeadbeef)
• Register-indirect, where the address is stored in a register

(e.g., sub [rax], rcx)
• Displacement, where the address is computed by adding

a displacement to a value in a register (e.g., mov ecx,
[rip + 0xdeadbeef])

• Indexed, where the address is obtained by adding a com-
puted displacement (or index) to a base address stored in a
different register (e.g, mov r8, [r9 + rax*8]).

• Scaled, which is similar to indexed with an additional
displacement specified as an immediate (e.g., lea rcx,
[r15 + rcx*1 + 8]).
Appendix A3, Hennessy and Patterson [27] states “regis-

ter modes ... account for one-half of the operand references,
while memory addressing modes (including immediate) ac-
count for the other half.” This data was drawn from analysis
of 3 applications encoded for the VAX ISA. Our data (shown
in Figure 5), however, shows that only ~30% of the instruc-
tions operate solely on registers; ~70% of instructions access

http://x86instructionpop.com/length

x86-64 Instruction Usage SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Displacement,
32.5%

Absolute,
21.07%

Register-Indirect,
7.28%

Indexed, 0.85%

Scaled, 0.44%

Register Only,
25.39%

Immediate,
8.21%

No Operands,
4.25%

Non-Memory
Access, 37.85%

Figure 5: Relative popularity of addressing modes.

Operand Pair Percentage

Register-Register 19.19
Register-Displacement 28.98
Absolute 18.86
Register-Immediate 8.05
Register 6.19
None 4.25
Register-RegisterIndirect 6.69
Displacement-Immediate 2.46
Register-Absolute 1.79
Displacement-Absolute 0.75
Register-Indexed 0.72
Displacement 0.68
RegisterIndirect-Immediate 0.45
Register-Scaled 0.27
Scaled-Register 0.15
Immediate 0.11

Table 3: Combinations of operands among raw data (%)

memory (we follow the same convention used in the afore-
mentioned reference and include immediate with memory
access). Most instructions that access memory either contain
the memory address in the binary encoding (absolute ad-
dressing), or use the simpler register-indirect or displacement
addressing modes.

Most instructions operate on more than one operand: some
operands are sources of data, some are destinations to store the
computed results, and some are both source and destination.
These operands are encoded in the instruction using one of
the methods described above. Table 3 presents the same data
as Figure 5 in terms of the possible combinations of the ways
of specifying operands an instruction operates on.

Observation: Instructions operate on memory and reg-
isters together more often than on just registers or just
memory. The simpler addressing modes (Absolute, Dis-
placement, and Register-indirect) are the most common.

3.5 Vector Instructions
Vector instructions have seen the most churn in the x86-

64 ISA. MMX instructions, which operated on 80-bit MMX
registers, were the first vector instructions to be added to
the x86-64 ISA. Then came 6 generations of SSE — SSE,

SSE2, SSE3, SSSE3, SSE4.1, and SSE4.2, all of which
operate on 128-bit XMM registers. This was followed by the
AVX instructions, which operate on 256-bit YMM registers.
The newest member of the x86-64 vector instruction fam-
ily, AVX-512, operates on 512-bit ZMM registers and was
primarily introduced for the Intel Xeon-Phi platform and is
otherwise only available on select Xeon processors.

To understand the adoption of the x86-64 vector extensions,
we calculated the number of packages that would be able to
run with just a baseline consisting of all non-vector instruc-
tions. We then added each of the vector extensions in the order
they were introduced to the x86-64 ISA and computed the
number of supported packages and the weighted complete-
ness in each case. Our findings are presented in Table 4.

A very small percentage of all packages studied (~0.9%)
do not use any vector instructions at all. The older vector
extensions, MMX and SSE (a catch-all category for all 6 SSE
versions), are most-widely used. The newest vector instruc-
tions have minimal adoption: AVX and AVX-512 instructions
occur in only ~50 and 14 packages respectively. This might
be an artifact of conservative compilation by APT package
maintainers.

The most popular MMX instructions are PXOR (Logical
Exclusive OR) used by 94% of packages, PCMPEQB (Com-
pare Packaged Data for Equal) used by ~89% of all packages,
and MOVQ (Move Quadword) used by ~35% of all pack-
ages. The most popular SSE instructions are MOVAPS (Move
Aligned Packed Single-Precision Floating-Point), which oc-
curs in ~98% of packages, MOVDQU (Move Unaligned Dou-
ble Quadword), which occurs in ~92.3% of all packages, and
MOVDQA (Move Aligned Double Quadword), which occurs in
~91.4%. These instruction are used to implement the memory
copying function memcpy where available, because they can
read in or write out 128 bytes of memory in one operation.
Of the 74 SSE instruction used in at least 1% of all packages,
62 operate on floating point data, 10 operate on integer data,
and the remaining 2 store and load MXCSR Control/Status
Register — STMXCSR (2.65%), and LDMXCSR (2.4%). Inter-
estingly, of the top 10 AVX instructions, only 1 operates on
floating point data. The other 9 are vector integer operations.

While vector instructions are ubiquitous—they occur in
more than 99% of packages—the same small number of vec-
tor instructions are used everywhere. This may be an artifact
of Ubuntu Linux 16.04 being a binary distribution, i.e., APT
maintainers tend to compile packages for the most general
subset of the x86-64 ISA, instead of using special/newer in-
structions.

Observation: Vector instructions are indispensable, espe-
cially for memcpy, but adoption of newer vector instruc-
tions is slow.

SYSTOR ’19, June 3–5, 2019, Haifa, Israel A. Akshintala, B. Jain, C. Tsai, M. Ferdman, D. E. Porter

Description No. of Mnemonics No. of Packages Supported Weighted Completeness

Baseline 340 85 1.553
Baseline + MMX 387 85 1.553
Baseline + SSE 523 483 5.818
Baseline + SSE + MMX 572 9260 99.351
Baseline + SSE + MMX + XOP 575 9260 99.351
Baseline + SSE + MMX + XOP + 3DNOW 577 9265 99.524
Baseline + SSE + MMX + XOP + 3DNOW + AVX 812 9280 99.586
Baseline + SSE + MMX + XOP + 3DNOW + AVX + AVX-512 813 9282 99.587

Table 4: Adoption of vector instructions represented as number of packages supported, and weighted complete-
ness of the system. Baseline includes all non-vector instructions in the following categories: DATA, CONTROL FLOW,
BINARY ARITHMETIC, MISC, BITWISE, LOGICAL, SHIFT AND ROTATE, STRING, FLAG REG INSN, X87 FPU, I/O,
BMI1/BMI2, SYTEM, AES, SYSTEM, CLMUL, ATOMIC, RAND NUM GEN, TSX, VMX, SMX. Even though implementing all
the MMX instructions does not support more packages than Baseline, additionally implementing just SSE instructions
brings the weighted completeness above 0.99.

4 Development and Testing of New Tools
We use the data presented earlier to help developers design

and test new binary tools. Given that x86-64 instructions
are not used equally in practice, we look at the question
of iterative development and testing. In other words, what
order of implementing instruction support would have the
largest return on effort, in terms of maximizing the number
of packages that work for the minimal effort. Or, if one were
to implement support for one more instruction, which new
instruction would do the most to improve compatibility? In
order to answer these questions, we adapt two metrics from
Tsai et al. [34]:

Instruction importance estimates the probability of an
arbitrary installation of Ubuntu Linux 16.04 including at least
one package whose constituent binaries use a given instruc-
tion. This metric can help developers understand the relative
importance of instructions to end-users. Intuitively, a ubiqui-
tous instruction — one that is found in all applications or in
packages that are installed on every Ubuntu Linux 16.04 sys-
tem — has a very high instruction importance score (~100%).
We assume all packages in an installation are indispensable,
as the Ubuntu Popcon dataset only captures installation rates,
not utilization.

Weighted Completeness measures the completeness of a
binary tool, i.e., the percentage of packages from the base-
line Ubuntu/Debian Linux distribution the tool can support,
weighted by package popularity.

4.1 Developing x86-64 ISA Tools
Binary tools, such as emulators, binary translators, binary

instrumentation tools, and decompilers, all operate on ISAs.
While x86-64 is extremely complicated, as shown in the prior
section, implementing every esoteric feature in the ISA isn’t
necessary to run common applications. We leverage instruc-
tion importance to determine which instructions are essential
(Figure 6-top). We find that a small number of instructions,

0 200 400 600 800
0

25

50

75

100

In
st

ru
ct

io
n

Im
p

or
ta

n
ce

0 200 400 600 800
Instructions — in order of importance

0

25

50

75

100

W
ei

gh
te

d
C

om
p

le
te

n
es

s

230
in

sn
s

90% of packages

Figure 6: Instruction Importance (top): Distribution of
instructions by percent of packages that need the instruc-
tion. Weighted completeness(bottom): What percent of
packages can execute on a system that follows a greedy
implementation strategy?

about 30, are indispensable to all packages. The top 100 most
important instructions are used by ~88% of all packages. Im-
portance drops to 10% by the 200 th instruction, and 1% by
the 240 th instruction.

Table 5 shows a sample path for the developers to reach
100% completeness, by supporting most of the important
packages greedily. Sixty-four instructions (available at ht
tp://x86instructionpop.com/mostused.csv), including RET,
LEA, CALL, ADD are required by more than 90% of pack-
ages; however, only 1% of packages use only these instruc-
tions. Adding another 55 instructions brings the number of
supported packages to 27% and another 65 gets us to 80%.
An educational or proof-of-concept x86-64 emulator (or some
other binary tool) only needs to implement ~230 out of 841
instructions to support 90% of the packages. The long tail of

http://x86instructionpop.com/mostused.csv
http://x86instructionpop.com/mostused.csv

x86-64 Instruction Usage SYSTOR ’19, June 3–5, 2019, Haifa, Israel

Stage Sample Instructions # Instructions Added (total) Weighted Completeness(%)

1 RET LEA CALL ADD TEST SUB MOV JNE CMP XOR SHL JE NOP JMP 69 1
2 MUL PMINUB FSTP FLD REPNZ SCAS CMOVLE REP MOVS CMOVBE BT +55 (124) 27
3 FCHS SETNP BSR SQRTSD SETP MOVD CWDE PMAXUB JNP MFENCE INT3 +65 (189) 80
4 MOVUPD FSUBP PCMPEQD PADDQ FDIV SHLD SHUFPS PANDN MOVS IN +41 (230) 90
5 everything else +611 (841) 100

Table 5: Grouping of instructions, optimizing the path to implementation, based on instruction importance.

0 10 20 30 40
Percentage of Instructions Disassembled

DATA

CONTROL FLOW

BINARY ARITH

SSE

MISC

BITWISE

LOGICAL

STRING

MMX

SHIFT/ROTATE

X87 FPU

SYSTEM

FLAG REGISTER INSN

3DNOW

TSX

34808008 (43.34373%)

13565687 (16.89231%)

9929489 (12.36443%)

7434056 (9.25706%)

5996298 (7.46673%)

3117790 (3.88234%)

2255883 (2.80908%)

1285135 (1.60028%)

1104684 (1.37558%)

776439 (0.96684%)

30394 (0.03785%)

2676 (0.00333%)

341 (0.00042%)

16 (2e-05%)

4 (0.0%)

Figure 7: Distribution of Instructions by Category (Raw
Data), from the PARSEC and SPEC Benchmarks

instructions after that is needed for completeness. Figure 6-
bottom shows the weighted completeness of a system built
using this order of implementation.

4.2 Testing x86-64 ISA Tools
Another question of interest to developers is how to com-

prehensively test their tool with the minimum number of
packages, or which package to start with. Our analysis shows
that developers only need to evaluate against 55 Ubuntu Linux
16.04 packages, which use all the 894 instructions observed
in the Ubuntu dataset. We also observed the ngetty package
has the smallest instruction footprint, making it a viable first
test case while developing a new binary tool, as opposed to
the 69 instructions in Stage 1 in Table 5.

5 Instruction distribution Fidelity Of CPU
Benchmarks

Developers typically use applications from benchmark
suites, such as SPEC or PARSEC, as test cases when de-
veloping binary tools. Benchmark suites generally contain ap-
plications that are representative of emerging and established
workloads. We analyze the SPEC and PARSEC benchmark
suites using the same methodology described in Section 2 in
order to verify their representativity. These benchmarks were
compiled using GCC 5.4.0.

MOV

34.4

ADD

7.3

LEA

5.1

CALL

5.0

JE

4.1

TEST

3.5

PUSH

3.4

CMP

2.9
JMP

2.7
XOR

2.2NOP
2.1JNE 2.0

Others

25.2

Figure 8: Assembly mnemonics among SPEC and PAR-
SEC benchmarks (%). Total number of instructions: 281.

0 50 100 150 200 250 300
Mnemonics ranked by total number of occurrences in SPEC and PARSEC

0

25

50

75

100

In
st

ru
ct

io
n

Im
p

or
ta

n
ce

(U
b

u
n
tu

d
at

as
et

)

Figure 9: Instruction Importance (in the Ubuntu dataset)
of instructions in SPEC and PARSEC (sorted by total
number of occurrences in the benhcmarks)

0 200 400 600 800
Instructions ranked by importance in the Ubuntu dataset

0

25

50

75

100
Importance to Benchmarks

Zero Importance to Benchmarks

Ubuntu Importance

Figure 10: Importance of instructions in the Ubuntu
dataset to the SPEC and PARSEC benchmark suites

Figure 7 shows instructions disassembled from SPEC and
PARSEC, categorized by CPU feature set. Nine of the twenty-
four categories of instructions in our dataset derived from
Ubuntu applications (Figure 3) do not occur among the SPEC
and PARSEC applications: AES, ATOMIC, AVX, BMI1/BMI2,

SYSTOR ’19, June 3–5, 2019, Haifa, Israel A. Akshintala, B. Jain, C. Tsai, M. Ferdman, D. E. Porter

CLMUL, I/O, RAND NUM GEN, SMX, and VMX. Some of
these are newer vector instructions, cryptography-related,
privileged, or just too new to reasonably expect to see among
the benchmark applications. What is particularly surprising is
that ATOMIC instructions are missing.

5.1 Instruction Distribution
Figure 8 shows the most popular instruction mnemonics in

the SPEC and PARSEC suites. The general trends from the
larger dataset (Figure 2) hold. The distribution of instruction
lengths for benchmarks also adheres to the general trend
observed in the larger dataset (Figure 4). The total number
of mnemonics observed among the benchmark applications
is smaller than in the Ubuntu dataset: we see 281 distinct
instruction mnemonics among the benchmark applications,
compared to the 841 instructions seen among the Ubuntu
applications.

Figure 9 shows how the instruction importance in these
benchmarks compares to Ubuntu in general. In other words,
we show the same left-to-right ordering of instructions as
Figure 6, but plot the importance just within these suites.
These results are somewhat skewed. The bottom left corner of
Figure shows that some instructions of low global importance
are used more often in the benchmarks: there is a long tail of
instructions used in the benchmarks that are of low importance
in our dataset (the dots at 0 importance on the right side).
These are mostly vector instructions, which makes sense as
these benchmarks are designed to stress the CPU. In addition,
we found 4 vector instructions —PMOVZXWD, PHSUBW,
PFADD, PMOVZXBW — used in the benchmarks that we
had not seen in the Ubuntu dataset. This may be an artifact of
the benchmarks being optimized for our test system.

Figure 10 further juxtaposes the Ubuntu instruction impor-
tance with the benchmark instruction importance. The crosses
in the figure below the line represent instructions that are
missing from the benchmarks, but are important to Ubuntu
Linux 16.04 applications. The most prominent of these are
floating-point control-flow instructions, such as LOOP, JO,
and JRCXZ. The dots below the line are instructions under-
represented in the benchmark, and those above the line are
over-represented in the benchmarks (mostly vector instruc-
tions).

Observation: Vector instructions are over-represented
among benchmarks, but important floating-point instruc-
tions are missing.

6 Related Work
While others [18, 22, 25] have previously studied the rela-

tive popularity of instructions in the x86 ISA, their datasets
were drawn from a much smaller set of applications. Our

dataset is drawn from a large number of applications, and is
more representative. Lopes et al. [24] performed a chronolog-
ical analysis of the x86 ISA usage in Windows and Ubuntu
versions released over two decades (1995-2015), and found
that many instructions were not used in the default instal-
lation. Although we see many low-importance instructions,
we observe that almost every instruction is used by at least
one package. Their dataset was derived from static analysis
of each OS, but did not account for user-installed packages,
only those installed by default. Blem et al. [7, 8] studied the
differences and similarities between the ARM and x86 ISAs
using dynamic analysis on the traces of benchmark work-
loads. They observed that x86 instruction lengths had low
variance, and thus claimed that x86 decode is optimized for
common instructions. However, based on our static analysis
of all packages in the Ubuntu repository, we see that the in-
struction lengths vary over a normal distribution as discussed
in §3.3. Wiecek et al. [35] studied many of the same trends
discussed in §3 for the VAX-11 architecture: Most of our
observations on x86-64 are similar to their findings. Rigger
et al. [31] examined the usage of in-line assembly among
open source projects on GitHub. While our analysis doesn’t
differentiate between compiler-generated and hand-written
assembly, we observe that our findings are complementary to
theirs: the relative importance of instructions in the x86-64
ISA is skewed.

Using the Ubuntu and Debian Popularity Contest data to
prioritize implementation efforts has been a common theme [21,
34] in prior work; we use the same popularity data to weight
instruction occurrence data.

7 Conclusions
This paper contributes a methodology and framework for

understanding the relative importance of various components
of the x86-64 ISA to applications. We present insights derived
from the data we collected by analyzing 9,337 packages from
Ubuntu Linux 16.04 APT repositories, and illustrate how
developers can leverage this data to iteratively develop new
binary tools.

Acknowledgments
We thank the anonymous reviewers for their insightful

comments. This work was supported in part by NSF grants
CCF-1452904, CNS-1149229, CNS-1700512, and a gift from
VMware. This work was completed in part while Akshintala,
Jain, Tsai, and Porter were at Stony Brook University, and
while Tsai was at The University of California at Berkeley.

References
[1] Keith Adams and Ole Agesen. 2006. A Comparison of Software and

Hardware Techniques for x86 Virtualization. SIGARCH Comput. Ar-
chit. News 34, 5 (Oct. 2006), 2–13. https://doi.org/10.1145/1168919.

https://doi.org/10.1145/1168919.1168860
https://doi.org/10.1145/1168919.1168860
https://doi.org/10.1145/1168919.1168860

x86-64 Instruction Usage SYSTOR ’19, June 3–5, 2019, Haifa, Israel

1168860

[2] Nadav Amit, Dan Tsafrir, Assaf Schuster, Ahmad Ayoub, and Eran
Shlomo. 2015. Virtual CPU Validation. In ACM Symposium on Operat-
ing Systems Principles (SOSP).

[3] Arm Ltd. [n. d.]. ARM® Architecture Reference Manual ARMv8,
for ARMv8-A architecture profile | ARM® Architecture Ref-
erence Manual ARMv8, for ARMv8-A architecture profile –
Arm Developer. https://developer.arm.com/products/architect
ure/cpu-architecture/r-profile/docs/ddi0487/latest/arm-architect
ure-reference-manual-armv8-for-armv8-a-architecture-profile.
https://developer.arm.com/products/architecture/cpu-architecture/r-p
rofile/docs/ddi0487/latest/arm-architecture-reference-manual-arm
v8-for-armv8-a-architecture-profile Accessed: 2018-12-11.

[4] Fabrice Bellard and the QEMU team. [n. d.]. QEMU. https://www.qe
mu.org/. Accessed: 2018-12-18.

[5] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D Hill, and David A Wood. 2011. The gem5
simulator. ACM SIGARCH Computer Architecture News 39, 2 (May
2011), 1–7. https://doi.org/10.1145/2024716.2024718

[7] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. 2013.
Power Struggles: Revisiting the RISC vs. CISC Debate on Contempo-
rary ARM and x86 Architectures. In Proceedings of the 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA) (HPCA ’13). IEEE Computer Society, Washington, DC, USA,
1–12. https://doi.org/10.1109/HPCA.2013.6522302

[8] Emily Blem, Jaikrishnan Menon, Thiruvengadam Vijayaraghavan, and
Karthikeyan Sankaralingam. 2015. ISA Wars: Understanding the Rele-
vance of ISA Being RISC or CISC to Performance, Power, and Energy
on Modern Architectures. ACM Transactions on Computer Systems 33,
1 (March 2015), 3:1–3:34. https://doi.org/10.1145/2699682

[9] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. 2001.
Design and implementation of a dynamic optimization framework for
Windows. In 4th ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-4).

[10] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018.
SPEC CPU2017: Next-Generation Compute Benchmark. In Companion
of the 2018 ACM/SPEC International Conference on Performance
Engineering (ICPE ’18). ACM, New York, NY, USA, 41–42. https:
//doi.org/10.1145/3185768.3185771

[11] Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sug-
erman, and Edward Y. Wang. 2012. Bringing Virtualization to the
x86 Architecture with the Original VMware Workstation. ACM
Trans. Comput. Syst. 30, 4, Article 12 (Nov. 2012), 51 pages. https:
//doi.org/10.1145/2382553.2382554

[12] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for Com-
plex Systems Programs.. In OSDI, Vol. 8. 209–224.

[13] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman
Rubin, Tony Tye, S Bharadwaj Yadavalli, and John Yates. 1998. FX!
32: A profile-directed binary translator. IEEE Micro 2 (1998), 56–64.

[14] Kemal Ebcioğlu and Erik R Altman. 1997. DAISY: Dynamic compila-
tion for 100% architectural compatibility. ACM SIGARCH Computer
Architecture News 25, 2 (1997), 26–37.

[15] Free Software Foundation (FSF). [n. d.]. GCC, the GNU Compiler
Collection. https://gcc.gnu.org/. https://gcc.gnu.org/ Accessed: 2019-
4-26.

[16] John L Henning. 2006. SPEC CPU2006 benchmark descriptions.
SIGARCH Comput. Archit. News 34, 4 (2006), 1–17. https://doi.org/
10.1145/1186736.1186737

[17] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016.
Stratified Synthesis: Automatically Learning the x86-64 Instruction Set.
SIGPLAN Not. 51, 6 (June 2016), 237–250. https://doi.org/10.1145/
2980983.2908121

[18] Amr Hussam Ibrahim, Mohamed Bakr Abdelhalim, Hanadi Hussein,
and Ahmed Fahmy. 2011. An Analysis of x86-64 Instruction Set for
Optimization of System Softwares. Planning perspectives: PP 152
(2011), 162. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.407.5071&rep=rep1&type=pdf

[19] Intel Corporation. 2017. Intel® 64 and IA-32 Architectures Software
Developer’s Manual. Intel Corporation. https://www.intel.com/conten
t/dam/www/public/us/en/documents/manuals/64-ia-32-architectures
-software-developer-instruction-set-reference-manual-325383.pdf

[20] R. Jagtap, S. Diestelhorst, A. Hansson, M. Jung, and N. When. 2016.
Exploring system performance using elastic traces: Fast, accurate and
portable. In 2016 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS). 96–105.
https://doi.org/10.1109/SAMOS.2016.7818336

[21] Bhushan Jain, Chia-Che Tsai, Jitin John, and Donald E Porter. 2014.
Practical Techniques to Obviate Setuid-to-Root Binaries. In Proceed-
ings of the ACM European Conference on Computer Systems (EuroSys).

[22] P Kankowski. 2004. x86 Machine Code Statistics. strchr. com: website.
https://www.strchr.com/x86_machine_code_statistics Accessed: 2019-
3-6.

[23] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (CGO ’04). IEEE Com-
puter Society, Washington, DC, USA, 75–. http://dl.acm.org/citation.
cfm?id=977395.977673

[24] Bruno Cardoso Lopes, Rafael Auler, Luiz Ramos, Edson Borin, and
Rodolfo Azevedo. 2015. SHRINK: Reducing the ISA Complexity via
Instruction Recycling. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture (ISCA ’15). ACM, New York,
NY, USA, 311–322. https://doi.org/10.1145/2749469.2750391

[25] Charles Mutigwe, Johnson Kinyua, and Farhad Aghdasi. 2013.
Instruction set usage analysis for application-specific systems design.
Int’l Journal of Information Technology and Computer Science 7, 2
(2013). http://people.umass.edu/cmutigwe/research/ICETCIT-2013/In
struction%20Set%20Usage%20Analysis%20for%20Application-Spe
cific%20Systems%20Design.pdf

[26] Trek Palmer, DD Zovi, and Darko Stefanovic. 2001. SIND: A frame-
work for binary translation. Department of Computer Science, Univer-
sity of New Mexico (2001).

[27] David A. Patterson and John L. Hennessy. 2013. Computer Organiza-
tion and Design, Fifth Edition: The Hardware/Software Interface (5th
ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[28] Mathias Payer, Tobias Hartmann, and Thomas R Gross. 2012. Safe
loading-a foundation for secure execution of untrusted programs. In
Security and Privacy (SP), 2012 IEEE Symposium on. IEEE, 18–32.

[29] Avery Pennarun, Bill Allombert, and Petter Reinholdtsen. 2018. Debian
Popularity Contest. http://popcon.debian.org.

https://doi.org/10.1145/1168919.1168860
https://doi.org/10.1145/1168919.1168860
https://developer.arm.com/products/architecture/cpu-architecture/r-profile/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/products/architecture/cpu-architecture/r-profile/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/products/architecture/cpu-architecture/r-profile/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/products/architecture/cpu-architecture/r-profile/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/products/architecture/cpu-architecture/r-profile/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://developer.arm.com/products/architecture/cpu-architecture/r-profile/docs/ddi0487/latest/arm-architecture-reference-manual-armv8-for-armv8-a-architecture-profile
https://www.qemu.org/
https://www.qemu.org/
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/HPCA.2013.6522302
https://doi.org/10.1145/2699682
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/2382553.2382554
https://doi.org/10.1145/2382553.2382554
https://gcc.gnu.org/
https://gcc.gnu.org/
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/2980983.2908121
https://doi.org/10.1145/2980983.2908121
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.5071&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.5071&rep=rep1&type=pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://doi.org/10.1109/SAMOS.2016.7818336
https://www.strchr.com/x86_machine_code_statistics
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
https://doi.org/10.1145/2749469.2750391
http://people.umass.edu/cmutigwe/research/ICETCIT-2013/Instruction%20Set%20Usage%20Analysis%20for%20Application-Specific%20Systems%20Design.pdf
http://people.umass.edu/cmutigwe/research/ICETCIT-2013/Instruction%20Set%20Usage%20Analysis%20for%20Application-Specific%20Systems%20Design.pdf
http://people.umass.edu/cmutigwe/research/ICETCIT-2013/Instruction%20Set%20Usage%20Analysis%20for%20Application-Specific%20Systems%20Design.pdf
http://popcon.debian.org

SYSTOR ’19, June 3–5, 2019, Haifa, Israel A. Akshintala, B. Jain, C. Tsai, M. Ferdman, D. E. Porter

[30] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David
Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel,
and Ali Zaidi. 2016. End-to-End Verification of Processors with ISA-
Formal. In Computer Aided Verification, Swarat Chaudhuri and Azadeh
Farzan (Eds.). Springer International Publishing, Cham, 42–58.

[31] Manuel Rigger, Stefan Marr, Stephen Kell, David Leopoldseder, and
Hanspeter Mössenböck. 2018. An Analysis of x86-64 Inline Assembly
in C Programs. In Proceedings of the 14th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’18).
ACM, New York, NY, USA, 84–99. https://doi.org/10.1145/3186411.
3186418

[32] Prateek Saxena, R Sekar, and Varun Puranik. 2008. Efficient fine-
grained binary instrumentationwith applications to taint-tracking. In
Proceedings of the 6th annual IEEE/ACM international symposium on
Code generation and optimization. ACM, 74–83.

[33] The Ubuntu Web Team, Avery Pennarun, Bill Allombert, and Petter
Reinholdtsen. 2018. Ubuntu Popularity Contest. http://popcon.ubuntu.
com.

[34] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E
Porter. 2016. A Study of Modern Linux API Usage and Compatibility:
What to Support when You’Re Supporting. In Proceedings of the ACM
European Conference on Computer Systems (EuroSys). London, United
Kingdom.

[35] Cheryl A Wiecek. 1982. A case study of VAX-11 instruction set usage
for compiler execution. In ACM SIGARCH Computer Architecture
News, Vol. 10. ACM, 177–184.

[36] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for COTS
Binaries.. In USENIX Security Symposium. 337–352.

[37] Mingwei Zhang and R Sekar. 2013. Control Flow Integrity for COTS
Binaries. In Proceedings of the USENIX Security Symposium. 337–352.

https://doi.org/10.1145/3186411.3186418
https://doi.org/10.1145/3186411.3186418
http://popcon.ubuntu.com
http://popcon.ubuntu.com

	Abstract
	1 Introduction
	2 Data Collection
	2.1 x86-64 Instruction Encoding
	2.2 Methodology
	2.3 Limitations

	3 Instruction Occurrence Trends
	3.1 Distribution by CPU Feature Sets
	3.2 Fraction of Unused x86-64 Instructions
	3.3 Instruction Length
	3.4 Occurrence of Registers and Memory Operands
	3.5 Vector Instructions

	4 Development and Testing of New Tools
	4.1 Developing x86-64 ISA Tools
	4.2 Testing x86-64 ISA Tools

	5 Instruction distribution Fidelity Of CPU Benchmarks
	5.1 Instruction Distribution

	6 Related Work
	7 Conclusions
	References

