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ABSTRACT 
It would be useful if software engineers/instructors could be 
aware that remote team members/students are having 
difficulty with their programming tasks. We have 
developed an approach that tries to automatically create this 
semantic awareness based on developers’ interactions with 
the programming environment, which is extended to log 
these interactions and allow the developers to train or 
supervise the algorithm by explicitly indicating they are 
having difficulty. Based on the logs of six programmers, we 
have found that our approach has high accuracy. 
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ACM Classification Keywords 
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MOTIVATION AND GOAL 
Often programmers get “stuck” while coding, unable to 
make much progress despite all efforts to address some 
issue. It would be useful if an interested remote party could 
become aware of this situation, through for instance, a 
status change in a buddy list (Figure 1). For example, 
instructors could use this information to (a) offer help to 
student programmers who are too shy to ask for it, (b) 
determine how much progress they are making, and (c) 
identify difficult problems.. 

An educational setting provides particularly compelling 
applications of this idea because an important goal is to 
help students and monitor their progress. In fact, the true 
benefits of this idea could actually occur in industry. A 
manager of a team could use this information to identify 
problematic software components and better estimate 
completion times. Even more interestingly, based on recent 
research; it is possible to argue that this information could 
significantly improve programmer productivity. 

    

Figure 1: The Eclipse 
environment extended to show a 
user’s Google Talk® buddy list.  

Figure 2: Notification 
that alerts developers of a 

status change. 

In a study comparing co-located and distributed software 
development, Herbsleb [7] found that the productivity of 
co-located teams was significantly higher than that of 
distributed teams primarily because co-located developers 
were more apt to help each other finish their tasks. A 
related study by Teasley et al. found that the productivity of 
a team located in a single “war-room” was much higher 
than that of one spread out in different cubicles. A major 
reason was that if someone was having difficulty with some 
aspect of code, another developer in the war-room “walking 
by [and] seeing the activity over their shoulders, would stop 
to provide help” [13]. The studies above imply that 
developers often do not explicitly ask for help, even when 
they could use it, and that the greater the distance between 
them and potential helpers, the more difficult it is for the 
latter to determine if the former need help.  This implication 
is consistent with studies that show students and new 
programmers are late to use help [2], and programmers 
often exhaust other forms of help before asking for help 
from a teammate [11]. 

One approach to address this problem, described in [6], 
makes distributed team members aware of each others’ 
interactions with the programming environment. For 
example, [6] gives a scenario in which Bob, on seeing Alice 
stuck on debugging a particular class, deduces she could 
use help, and offers it.  This distributed scenario directly 
mimics the war-room scenario quoted above.  

Providing virtual channels that give distributed users the 
feeling of “being there” in a single location is an important 
goal of CSCW. However, Hollan and Stornetta have argued 
that if CSCW is to be truly successful, it should go “beyond 
being there” by providing capabilities not available in face-
to-face interaction [8]. For the topic of this paper, this 
means automatically determining if a developer is having 
difficulty, thereby relieving team members from manually 
making this deduction, as in the co-located and distributed 
scenarios above. Previous work [1] has also argued that this 
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idea could increase group awareness among large 
development teams and be useful for novice programmers 
and their mentors. 

Kapoor et al. [9] describe a step towards realizing this 
vision. They show that it is possible to reliably infer when 
kids, solving a Tower of Hanoi problem, are frustrated by 
using cameras, posture seating chairs, pressure mice, and 
wireless Bluetooth skin conductance tests as sensors to 
collect data. A problem with this approach is the overhead 
of using this non-standard equipment. 

An alternative approach would be to determine this 
information by logging developers’ interaction with some 
component of the system. An important step in this 
direction is taken in [12], which describes a tool that 
monitors students’ interactions with CVS and newsgroups 
to calculate the workloads and work-statuses of students.  
This information could potentially be used to determine if 
students were having difficulty, but this awareness would 
be provided, not when they had the difficulty, but later, 
when they checked in the files or posted to newsgroups.  
Developers may struggle for a long time before they take 
these actions, and for certain problems, would not expect a 
response from the Internet. 

Providing earlier awareness, as in the two scenarios above, 
requires logging interactions with the programming 
environment. The authors of [12] did not take this 
alternative because “many students have a preferred 
programming environment and establishing a common one 
would be a challenge.” 

It is possible to overcome this problem by creating such a 
logger for all of the mainstream programming 
environments. Before this step can be taken, it is important 
to determine if it is possible to automatically determine if 
developers are having difficulty.  

ISSUES, APPROACH, AND EVALUATION 
There are reasons to believe it can work. Previous work by 
Begole et al. [3] show that that there are rhythms or patterns 
in users’ activities that can be exploited by computer tools 
to provide semantic awareness to their collaborators such as 
when they are likely to return to their office. Even closer to 
the subject of our research, Fogarty et al. [5] show that it is 
possible to develop a tool that uses developers’ interactions 
with the programming environment to determine if they are 
interruptible. 

Training and Naïve Algorithm for Measuring Progress 
The challenge for us was to train and evaluate a system that 
tries to determine if someone is having difficulty.  This 
problem is more difficult than that faced by Begole et al. [3] 
because there is no secondary information, such as calendar 
appointments, telling us about the events we wish to detect. 
Fogerty et al. [5] also faced this problem, and their solution  

 
Figure 3: Buttons developers press to indicate their status.  

was to randomly interrupt users to determine how 
interruptible they were. We cannot use this approach as it is 
likely that no random interruption would find a developer is 
having difficulty - by definition having difficulty is an 
exceptional event. 

Therefore, a better alternative is to use the approach taken 
by Kapoor et al. [9]. The kids indicated their frustration 
level by clicking on “I’m frustrated” or “I need help” 
buttons. These buttons are useful only for the training 
phase. Even in this phase, it may be useful to run an initial 
naïve algorithm that actively guesses the progress status, 
whose predictions can be corrected by the developers. The 
reason is that developers are more apt to correct a guessed 
status than to remember to press the buttons to indicate their 
status. This is the approach we took, and Figure 3 shows the 
user-interface for correcting the status. The “Eureka” button 
was intended to capture those situations in which 
developers did not realize they had been having an unusual 
problem until they had solved it. However, none of our 
subjects used it. The “Notifications Enabled” button 
allowed developers to determine if they received status 
change notifications. 

Creating a naïve algorithm for the training phase requires 
some top down thinking about how having difficulty could 
be inferred. The basic intuition is to monitor progress of 
developers, and when this progress is less than some 
threshold, indicate that they are having difficulty. Progress 
is related to productivity but is also fundamentally different.  
It is measured while programmers are writing code, while 
productivity is usually measured after programmers have 
done so. There are several measures for productivity such 
as time to market. However, little work has been done on 
measuring progress. 

The only one we found was one done by Kersten and 
Murphy [10], which provides a tool for automatically 
showing to developers items related to their tasks, thereby 
reducing the need to manually navigate to these items. They 
measure the success of their tool by determining how the 
tool changes developers’ edit ratio, which is the ratio of 
number of editing commands to the number of navigation 
commands. Instead of using this metric to evaluate the 
performance of an algorithm, as in [10], we used it as an 
input to the design of our naïve algorithm for determining 
status changes. If the edit ratio and number of debugs is less 
than a low threshold, the algorithm notifies the developers 
that they are having difficulty (Figure 2). If a correction is 
made, the threshold is increased. As in [10], we have 
extended an Eclipse plug-in [15] to log developers’ 
interaction with it and compute the edit ratio. We logged 

 



 

 
Figure 4: Participant 1’s programming activity over an hour. 

three freshmen doing class assignments, and three graduate 
students doing class and research assignments. 

We equated being stuck and needing help with having 
difficulty. All but one programmer pressed only the “Stuck” 
button to indicate lack of progress. 

The naïve algorithm did not predict the progress status well. 
Our next step was to explore the logs and corrections to 
derive a better algorithm. 

Deriving Mining Algorithm 
We analyzed the logs to determine if there are patterns that 
occur when developers indicate they are having difficulty. 
To determine the patterns, we must determine values 
known as features that change when programmers are 
making progress and having difficulty. 

A manual inspection of the logs showed that, consistent 
with the assumption of the naïve algorithm, the frequency 
of certain edit commands decreased when developers were 
having difficulty. Depending on the developer, the 
frequency of execution of other commands increased. 
Based on these data, we grouped the commands into five 
categories; navigation, edit (text insertion/deletion), remove 
(methods and/or classes), debug, and the programming 
environment losing/gaining focus.  We calculated, for 
different segments of the log, the ratio of the occurrences of 
each category of commands in that segment to the total 
number of commands in the segment as percentage, and 
used these percentages as features over which patterns are 
identified. 

As programmers work at different rates, the log was 
segmented based on the number of events executed instead 
of time, as in [5]. The size of these segments is an important 
issue - if the size is too large, then both kinds of patterns 
might occur in a single segment, and if it is too small, there 
might not be sufficient information to determine any 
pattern. To illustrate, it is undesirable to have segment size 
that is one or the size of the complete log.  

 
Figure 5: Participant 2’s programming activity over an hour. 

After experimenting with several values, we found a 
segment size of 50 to be the best. 

To determine how indicative the features are of 
programmers’ behavior we graphed the programming 
behavior of all six programmers. In each graph, the x-axis is 
session time and y-axis is the percent for each feature.  

Figures 4 and 5 are portions of the graphs created for 
participant 1 and 2, respectively, illustrating both 
commonalities and differences in the behavior of 
programmers. In both cases, when the programmers 
indicated they were having difficulty, the edit percentages 
decreased and other percentages increased. When 
participant 1(2) was stuck, the navigation (debug and focus) 
percentage increased. Participant 2’s edit (debug and focus) 
percentages continued to decrease (increase) for a while 
after he indicated he was stuck, which was not true in the 
case of participant 1. This seems to indicate that participant 
1 was quicker in detecting, or at least informing the system, 
that he was having difficulty. Thus, the two graphs validate 
our feature choice, and show that a general model must 
account for differences in not only what percentages 
developers change when they are stuck but also how 
quickly they inform the system about status changes. 

There are several standard ways to build a general model. 
In particular, we tried the naïve Bayes model as it is the one 
used in [5] for predicting the interruptibility status.  
Interruptibility and progress seem to be related as they both 
indicate the status of developers. More interestingly, there 
may be a correlation between the two – the more progress 
developers are making, the less interruptible they might be, 
as indicated by the war-room scenario in which developers 
interrupt others to offer help. 

On the other hand, there is also reason to believe that 
progress and interruptibility statuses are fundamentally 
different because having difficulty is a rare event. In our 
experiments, developers indicated they were stuck only for 
76 of the 2288 total segments. This leads to the class 
imbalance problem which occurs when trying to detect a 

 



 

 

rare, but important event such as having difficulty. The 
accuracy of traditional classification algorithms are biased 
towards the more common event, making progress, and will 
not recognize the rare event, having difficulty. The SMOTE 
[4] algorithm implemented in the WEKA toolkit [14] 
overcomes this problem. It replicates rare data, having 
difficulty, until that data are equal to the more common 
data, making progress. Therefore, we used this scheme, 
which converted the 76 rare records to 1216 replicated 
ones. 

The replicated data of all developers were combined and 
used as input to several standard algorithms to build 
statistical models.. The decision tree algorithm gave the 
best result [14]. It correctly predicted the current situation 
(making progress, having difficulty) 92 percent of the time. 
By itself, is not very impressive because simply guessing 
that the developer is always making progress would have 
been correct 97% of the time, but would never correctly 
predict when developers were having difficulty. Our 
scheme identified 90% of the having-difficulty statuses. On 
the other hand, 8% of the time it incorrectly identified 
making progress as having difficulty.  This high false-
positive rate may not be a problem in a teaching lab, as it is 
better to check with a few students who do not need help to 
ensure that those who do need it are found. Moreover, the 
fact that the system has a small but significant false positive 
rate may allow developers truly having difficulty  to tell 
those judging them that the system was inaccurate, while 
admitting the difficulty to mentors and friends [2]  helping 
them.  The title of the paper reflects that developers should 
ask teammates if they are having difficulty before 
concluding that their teammates need help. 

To determine these numbers, we used a standard technique, 
known as cross validation, which executes 10 trials of 
model construction, and splits the logged data so that 90% 
of the data are used to train the algorithm and 10% of the 
data are used to test it.  

CONCLUSIONS AND FUTURE WORK 
The contributions of this paper are showing, based on the 
logs of six developers,  that  (a) when developers indicate 
they are having difficulty, one or more of their debug, 
navigation, focus, edit, and remove percentages change, (b) 
the exact percentages that change depend on the developer, 
(c) how quickly developers discover/indicate they are stuck 
also depends on the developers, (d) despite these 
differences, it was possible to use standard techniques on 
the features we identified to automatically predict, with 
great accuracy, when the six developers would say they 
were having difficulty, and (e) a variety of previous works, 
implicitly or explicitly, indicate that providing such 
semantic awareness would be useful.  

While we have built a widget that shows this awareness to 
selected Google contacts in an Eclipse window (Figure 1), 
but we have not yet deployed it.  We intend to perform 

additional lab/field studies with a greater number and 
variety of developers including non-students to further 
evaluate the decision-tree model. Concurrently, we plan to 
deploy the status widget to understand both its usefulness 
and the privacy concerns it raises.  
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