

Are You Having Difficulty?
Jason Carter

Department of Computer Science
University of North Carolina at Chapel Hill

carterjl@cs.unc.edu

Prasun Dewan
Department of Computer Science

University of North Carolina at Chapel Hill
dewan@cs.unc.edu

ABSTRACT
It would be useful if software engineers/instructors could be
aware that remote team members/students are having
difficulty with their programming tasks. We have
developed an approach that tries to automatically create this
semantic awareness based on developers’ interactions with
the programming environment, which is extended to log
these interactions and allow the developers to train or
supervise the algorithm by explicitly indicating they are
having difficulty. Based on the logs of six programmers, we
have found that our approach has high accuracy.

Author Keywords
Context aware computing, machine learning, help

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: Computer-
supported cooperative work.

General Terms
Human Factors

MOTIVATION AND GOAL
Often programmers get “stuck” while coding, unable to
make much progress despite all efforts to address some
issue. It would be useful if an interested remote party could
become aware of this situation, through for instance, a
status change in a buddy list (Figure 1). For example,
instructors could use this information to (a) offer help to
student programmers who are too shy to ask for it, (b)
determine how much progress they are making, and (c)
identify difficult problems..

An educational setting provides particularly compelling
applications of this idea because an important goal is to
help students and monitor their progress. In fact, the true
benefits of this idea could actually occur in industry. A
manager of a team could use this information to identify
problematic software components and better estimate
completion times. Even more interestingly, based on recent
research; it is possible to argue that this information could
significantly improve programmer productivity.

Figure 1: The Eclipse
environment extended to show a
user’s Google Talk® buddy list.

Figure 2: Notification
that alerts developers of a

status change.

In a study comparing co-located and distributed software
development, Herbsleb [7] found that the productivity of
co-located teams was significantly higher than that of
distributed teams primarily because co-located developers
were more apt to help each other finish their tasks. A
related study by Teasley et al. found that the productivity of
a team located in a single “war-room” was much higher
than that of one spread out in different cubicles. A major
reason was that if someone was having difficulty with some
aspect of code, another developer in the war-room “walking
by [and] seeing the activity over their shoulders, would stop
to provide help” [13]. The studies above imply that
developers often do not explicitly ask for help, even when
they could use it, and that the greater the distance between
them and potential helpers, the more difficult it is for the
latter to determine if the former need help. This implication
is consistent with studies that show students and new
programmers are late to use help [2], and programmers
often exhaust other forms of help before asking for help
from a teammate [11].

One approach to address this problem, described in [6],
makes distributed team members aware of each others’
interactions with the programming environment. For
example, [6] gives a scenario in which Bob, on seeing Alice
stuck on debugging a particular class, deduces she could
use help, and offers it. This distributed scenario directly
mimics the war-room scenario quoted above.

Providing virtual channels that give distributed users the
feeling of “being there” in a single location is an important
goal of CSCW. However, Hollan and Stornetta have argued
that if CSCW is to be truly successful, it should go “beyond
being there” by providing capabilities not available in face-
to-face interaction [8]. For the topic of this paper, this
means automatically determining if a developer is having
difficulty, thereby relieving team members from manually
making this deduction, as in the co-located and distributed
scenarios above. Previous work [1] has also argued that this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2010, February 6–10, 2010, Savannah, Georgia, USA.
Copyright 2010 ACM 978-1-60558-795-0/10/02...$10.00.

idea could increase group awareness among large
development teams and be useful for novice programmers
and their mentors.

Kapoor et al. [9] describe a step towards realizing this
vision. They show that it is possible to reliably infer when
kids, solving a Tower of Hanoi problem, are frustrated by
using cameras, posture seating chairs, pressure mice, and
wireless Bluetooth skin conductance tests as sensors to
collect data. A problem with this approach is the overhead
of using this non-standard equipment.

An alternative approach would be to determine this
information by logging developers’ interaction with some
component of the system. An important step in this
direction is taken in [12], which describes a tool that
monitors students’ interactions with CVS and newsgroups
to calculate the workloads and work-statuses of students.
This information could potentially be used to determine if
students were having difficulty, but this awareness would
be provided, not when they had the difficulty, but later,
when they checked in the files or posted to newsgroups.
Developers may struggle for a long time before they take
these actions, and for certain problems, would not expect a
response from the Internet.

Providing earlier awareness, as in the two scenarios above,
requires logging interactions with the programming
environment. The authors of [12] did not take this
alternative because “many students have a preferred
programming environment and establishing a common one
would be a challenge.”

It is possible to overcome this problem by creating such a
logger for all of the mainstream programming
environments. Before this step can be taken, it is important
to determine if it is possible to automatically determine if
developers are having difficulty.

ISSUES, APPROACH, AND EVALUATION
There are reasons to believe it can work. Previous work by
Begole et al. [3] show that that there are rhythms or patterns
in users’ activities that can be exploited by computer tools
to provide semantic awareness to their collaborators such as
when they are likely to return to their office. Even closer to
the subject of our research, Fogarty et al. [5] show that it is
possible to develop a tool that uses developers’ interactions
with the programming environment to determine if they are
interruptible.

Training and Naïve Algorithm for Measuring Progress
The challenge for us was to train and evaluate a system that
tries to determine if someone is having difficulty. This
problem is more difficult than that faced by Begole et al. [3]
because there is no secondary information, such as calendar
appointments, telling us about the events we wish to detect.
Fogerty et al. [5] also faced this problem, and their solution

Figure 3: Buttons developers press to indicate their status.

was to randomly interrupt users to determine how
interruptible they were. We cannot use this approach as it is
likely that no random interruption would find a developer is
having difficulty - by definition having difficulty is an
exceptional event.

Therefore, a better alternative is to use the approach taken
by Kapoor et al. [9]. The kids indicated their frustration
level by clicking on “I’m frustrated” or “I need help”
buttons. These buttons are useful only for the training
phase. Even in this phase, it may be useful to run an initial
naïve algorithm that actively guesses the progress status,
whose predictions can be corrected by the developers. The
reason is that developers are more apt to correct a guessed
status than to remember to press the buttons to indicate their
status. This is the approach we took, and Figure 3 shows the
user-interface for correcting the status. The “Eureka” button
was intended to capture those situations in which
developers did not realize they had been having an unusual
problem until they had solved it. However, none of our
subjects used it. The “Notifications Enabled” button
allowed developers to determine if they received status
change notifications.

Creating a naïve algorithm for the training phase requires
some top down thinking about how having difficulty could
be inferred. The basic intuition is to monitor progress of
developers, and when this progress is less than some
threshold, indicate that they are having difficulty. Progress
is related to productivity but is also fundamentally different.
It is measured while programmers are writing code, while
productivity is usually measured after programmers have
done so. There are several measures for productivity such
as time to market. However, little work has been done on
measuring progress.

The only one we found was one done by Kersten and
Murphy [10], which provides a tool for automatically
showing to developers items related to their tasks, thereby
reducing the need to manually navigate to these items. They
measure the success of their tool by determining how the
tool changes developers’ edit ratio, which is the ratio of
number of editing commands to the number of navigation
commands. Instead of using this metric to evaluate the
performance of an algorithm, as in [10], we used it as an
input to the design of our naïve algorithm for determining
status changes. If the edit ratio and number of debugs is less
than a low threshold, the algorithm notifies the developers
that they are having difficulty (Figure 2). If a correction is
made, the threshold is increased. As in [10], we have
extended an Eclipse plug-in [15] to log developers’
interaction with it and compute the edit ratio. We logged

Figure 4: Participant 1’s programming activity over an hour.

three freshmen doing class assignments, and three graduate
students doing class and research assignments.

We equated being stuck and needing help with having
difficulty. All but one programmer pressed only the “Stuck”
button to indicate lack of progress.

The naïve algorithm did not predict the progress status well.
Our next step was to explore the logs and corrections to
derive a better algorithm.

Deriving Mining Algorithm
We analyzed the logs to determine if there are patterns that
occur when developers indicate they are having difficulty.
To determine the patterns, we must determine values
known as features that change when programmers are
making progress and having difficulty.

A manual inspection of the logs showed that, consistent
with the assumption of the naïve algorithm, the frequency
of certain edit commands decreased when developers were
having difficulty. Depending on the developer, the
frequency of execution of other commands increased.
Based on these data, we grouped the commands into five
categories; navigation, edit (text insertion/deletion), remove
(methods and/or classes), debug, and the programming
environment losing/gaining focus. We calculated, for
different segments of the log, the ratio of the occurrences of
each category of commands in that segment to the total
number of commands in the segment as percentage, and
used these percentages as features over which patterns are
identified.

As programmers work at different rates, the log was
segmented based on the number of events executed instead
of time, as in [5]. The size of these segments is an important
issue - if the size is too large, then both kinds of patterns
might occur in a single segment, and if it is too small, there
might not be sufficient information to determine any
pattern. To illustrate, it is undesirable to have segment size
that is one or the size of the complete log.

Figure 5: Participant 2’s programming activity over an hour.

After experimenting with several values, we found a
segment size of 50 to be the best.

To determine how indicative the features are of
programmers’ behavior we graphed the programming
behavior of all six programmers. In each graph, the x-axis is
session time and y-axis is the percent for each feature.

Figures 4 and 5 are portions of the graphs created for
participant 1 and 2, respectively, illustrating both
commonalities and differences in the behavior of
programmers. In both cases, when the programmers
indicated they were having difficulty, the edit percentages
decreased and other percentages increased. When
participant 1(2) was stuck, the navigation (debug and focus)
percentage increased. Participant 2’s edit (debug and focus)
percentages continued to decrease (increase) for a while
after he indicated he was stuck, which was not true in the
case of participant 1. This seems to indicate that participant
1 was quicker in detecting, or at least informing the system,
that he was having difficulty. Thus, the two graphs validate
our feature choice, and show that a general model must
account for differences in not only what percentages
developers change when they are stuck but also how
quickly they inform the system about status changes.

There are several standard ways to build a general model.
In particular, we tried the naïve Bayes model as it is the one
used in [5] for predicting the interruptibility status.
Interruptibility and progress seem to be related as they both
indicate the status of developers. More interestingly, there
may be a correlation between the two – the more progress
developers are making, the less interruptible they might be,
as indicated by the war-room scenario in which developers
interrupt others to offer help.

On the other hand, there is also reason to believe that
progress and interruptibility statuses are fundamentally
different because having difficulty is a rare event. In our
experiments, developers indicated they were stuck only for
76 of the 2288 total segments. This leads to the class
imbalance problem which occurs when trying to detect a

rare, but important event such as having difficulty. The
accuracy of traditional classification algorithms are biased
towards the more common event, making progress, and will
not recognize the rare event, having difficulty. The SMOTE
[4] algorithm implemented in the WEKA toolkit [14]
overcomes this problem. It replicates rare data, having
difficulty, until that data are equal to the more common
data, making progress. Therefore, we used this scheme,
which converted the 76 rare records to 1216 replicated
ones.

The replicated data of all developers were combined and
used as input to several standard algorithms to build
statistical models.. The decision tree algorithm gave the
best result [14]. It correctly predicted the current situation
(making progress, having difficulty) 92 percent of the time.
By itself, is not very impressive because simply guessing
that the developer is always making progress would have
been correct 97% of the time, but would never correctly
predict when developers were having difficulty. Our
scheme identified 90% of the having-difficulty statuses. On
the other hand, 8% of the time it incorrectly identified
making progress as having difficulty. This high false-
positive rate may not be a problem in a teaching lab, as it is
better to check with a few students who do not need help to
ensure that those who do need it are found. Moreover, the
fact that the system has a small but significant false positive
rate may allow developers truly having difficulty to tell
those judging them that the system was inaccurate, while
admitting the difficulty to mentors and friends [2] helping
them. The title of the paper reflects that developers should
ask teammates if they are having difficulty before
concluding that their teammates need help.

To determine these numbers, we used a standard technique,
known as cross validation, which executes 10 trials of
model construction, and splits the logged data so that 90%
of the data are used to train the algorithm and 10% of the
data are used to test it.

CONCLUSIONS AND FUTURE WORK
The contributions of this paper are showing, based on the
logs of six developers, that (a) when developers indicate
they are having difficulty, one or more of their debug,
navigation, focus, edit, and remove percentages change, (b)
the exact percentages that change depend on the developer,
(c) how quickly developers discover/indicate they are stuck
also depends on the developers, (d) despite these
differences, it was possible to use standard techniques on
the features we identified to automatically predict, with
great accuracy, when the six developers would say they
were having difficulty, and (e) a variety of previous works,
implicitly or explicitly, indicate that providing such
semantic awareness would be useful.

While we have built a widget that shows this awareness to
selected Google contacts in an Eclipse window (Figure 1),
but we have not yet deployed it. We intend to perform

additional lab/field studies with a greater number and
variety of developers including non-students to further
evaluate the decision-tree model. Concurrently, we plan to
deploy the status widget to understand both its usefulness
and the privacy concerns it raises.

 ACKNOWLEDGEMENTS
This research was funded in part by NSF grants IIS
0312328, IIS 0712794, IIS-0810861, and
HRD-0450099 UNC-Chapel Hill AGEP Program.

REFERENCES
1. Begel, A. Help, I Need Somebody! In the CSCW

Workshop: Supporting the Social Side of Large-Scale
Software Development, Banff, Alberta, Canada, 2006.

2. Begel A. and Simon B., Novice software developers, all
over again. In Proc. of the 4th ICER, p.3-14, 2008.

3. Begole, J.B., et al. Work Rhythms: Analyzing
Visualizations of Awareness Histories of Distributed
Groups. In Proc. CSCW 2002, 334-343.

4. Chawla, N.V., et. al. Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16. 2002.

5. Fogarty, J., Ko, A., Aung. H. H., Golden E., Tang, K.
and Hudson S. Examining Task Engagement in Sensor-
Based Statistical Models of Human Interruptibility. In
Proc. CHI, 331-340, 2005.

6. Hedge R. and Dewan P. Connecting Programming
Environments to Support Ad-Hoc Collaboration.ASE
2008.

7. Herbsleb, J.D., et. al. Distance, dependencies, and delay
in a global collaboration. In Proc. CSCW 2000.

8. Hollan, J. and Scott S. Beyond being there. CHI ’92.
9. Kapoor, A., Burleson, et al. “Automatic Prediction of

Frustration,” International Journal of Human-Computer
Studies, Vol. 65, Issue 8, 2007.

10. Kersten, M., Murphy, G. C., Mylar: A degree-of-interest
model for IDEs. In Proc. Aspect-Oriented Software
Development, 159-168. 2005.

11. LaToza, T. D., Venolia G., and Deline R. Maintaining
mental models: a study of developer work habits. ICSE
’06: 492–501, 2006. ACM.

12. Liu, Y. and Stroulia, E., A Lightweight Project-
Management Environment for Small Novice Teams, In
Proc. of 3rd International Workshop on Adoption-
Centric Software Engineering, 42-48, 2003.

13. Teasley, S., et al. How does radical collocation help a
team succeed? In Proc. CSCW 2000.

14. Witten, I.H. and Frank, E. (1999) Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann.

15. Y. Sharon. Eclipseye—spying on eclipse. Bachelor’s
thesis, University of Lugano, 2007.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	MOTIVATION AND GOAL
	Training and Naïve Algorithm for Measuring Progress
	Deriving Mining Algorithm

	CONCLUSIONS AND FUTURE WORK
	 ACKNOWLEDGEMENTS
	REFERENCES

