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ABSTRACT 

Previous research has motivated the idea of automatically 

determining when programmers are having difficulty, provided an 

initial algorithm (unimplemented in an actual system), and 

performed a small student-based evaluation to justify the viability 

of this concept. We have taken the next step in this line of 

research by designing and developing two-different systems that 

incorporate variations of the algorithm, implementing a tool that 

allows independent observers to code recorded sessions, and 

performing studies involving both student and industrial 

programmers. Our work shows that (a) it is possible to develop an 

efficient and reusable architecture for  predicting programmer 

status, (b) the previous technique can be improved through 

aggregation of predicted status, (c) the improved technique 

correlates more with programmers’ perception of whether they are 

stuck than that of observers manually watching the programmers, 

(d) the observers are quicker than the developers to conclude that 

programmers are stuck, (e) with appropriate training, the tool can 

be used to predict even the observers’ perceptions, and (f) a group 

training model offers more accuracy than an individual one when 

the training and test exercises are the same and carried over a 

small time frame. 

Categories and Subject Descriptors 

H.5.3 Group and Organization Interfaces: Computer-supported 

cooperative work.  

General Terms 

Human Factors 

Keywords 

Machine learning, data mining, architecture, software 

development, semantic awareness 

1. INTRODUCTION 
Often programmers get ―stuck‖ while coding, unable to make 

much progress despite all efforts to address some issue. It would 

 

  

 
Figure 1: The Eclipse 

environment extended to show a 

user’s Google Talk® buddy list.  

Figure 2: Notification 

that alerts developers of 

a status change. 

be useful  if an interested remote party could become aware of this 

situation through, for instance, a notification and/or status change 

in a buddy list. This idea extends the notion of continuous 

coordination [1] to continuous help, and provides a new kind of 

contextualized information in collaborative software development 

[2].   

An educational setting provides particularly compelling 

applications of this idea because an important goal is to help 

students and monitor their progress. In fact, based on the results of 

several previous studies, mentioned later, the true benefits of this 

idea could actually occur in industry. 

One way to support this idea is to allow programmers to manually 

change a status field displayed to potential helpers. However, 

there are several apparent problems with this approach. First, 

studies show students and new programmers are late to use help 

[3], and programmers often exhaust other forms of help before 

contacting a teammate [4]. Even those who are willing to 

manually change their status are likely to not set it back, just as 

people forget to change their busy status in an IM tool or turn off 

the ―call steward‖ light in a plane. 

Another approach is to allow a pair of developers to monitor the 

progress of each other, using local [5] or distributed [6] side-by-

side programming.  However, this approach does not scale to 

beyond a pair of programmers,  requires continuous monitoring of  

the partner’s display, and is not guaranteed to succeed as an 

observer may not know if the actor is, in fact, stuck.  

Therefore, a superior approach is to develop a mechanism that 

automatically determines if a programmer is stuck (Figure 2) by 

mining logs of their interaction with the programming 

environment. Such an approach is bound to be iterative, consisting 

of the following steps: 

1. Develop an initial naïve algorithm for predicting the 

(stuck/not stuck) status. 

2. Implement the algorithm in one or more programming 

environments. 
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3. Ask selected developers in lab and/or field experiments to 

correct the predictions made by the current algorithm. 

4. Analyze the logs to refine the set of features. 

5. Input these features to existing selected log-mining 

algorithms. 

6. If none of these algorithms makes a significant improvement, 

stop. 

7. Make the algorithm that gives the best results the current 

algorithm. 

8. Go to 2. 

Our previous work[7] carried out the  first  iteration of the 

process, and evaluated the resulting algorithm (not implemented 

in any programming environment) in a study involving six student 

programmers, whose logs were used both in the training and 

evaluation phases. It leaves, however, several important questions 

unanswered. 

1. Is it possible to develop a common set of extensible 

prediction modules for different programming environments? 

2. Is it possible for the modules to have no impact on the 

response times perceived by the developers? 

3. How well does the previous algorithm work when it is used 

by industrial programmers? 

4. Is it better to train the modules using logs of the individual 

developer whose status is predicted, or some group of 

programmers that excludes him/her? 

5. What is the correlation between the perceptions of the 

developers and their observers regarding whether the 

developers are having difficulty?  

6. If these perceptions differ, how well can the predictions 

made by a tool correlate with the perceptions of human 

observers? 

In the rest of the paper, we address these questions. In Section 2, 

we survey related work providing the inspiration for and 

techniques used in the paper. In Section 3, we describe the results 

of a small field study involving a naïve implementation of the 

previous algorithm, and adaptations to its semantics and 

implementation to overcome some of the problems exposed by 

this effort.  In Section 4, we describe a lab study involving nine 

student and five industrial programmers, and a coding study in 

which two coders and the first author classified recordings made 

during the lab study using a special tool we built for this work. In 

Section 5, we describe the results of the study using an existing 

model for determining if programmers are stuck. In Section 6, we 

consider what happens when group and individual data from the 

lab and coding study are used train the tool. In Section 7, we 

consider privacy issues raised by this work, and present 

preliminary solutions to them. In Section 8, we discuss our 

findings and provide conclusions and directions for future work. 

2. RELATED WORK 
The motivation for encouraging programmers to help each other is 

provided by a variety of previous research efforts, which have 

explored various degrees of couplings among developers: 

distributed, co-located, radically co-located, and pair 

programming. 

Herbsleb et al.[8]  found that the productivity of distributed teams 

was lower than that of co-located teams. A more recent study by 

Cataldo [9]  has similar conclusions based on software quality 

rather than productivity. It found that the number of errors in a 

project was positively correlated with the number of locations 

involved in the project.  Teasley et al. [10]  studied a higher 

degree of physical coupling, called radical co-location, in which 

all team members work in a single war-room or bull-pen. They 

found that the productivity of radically co-located teams was 

higher than that of co-located ones. In radical co-location, even 

though the members of the team work in one room, they (can) use 

different workstations. Higher physical coupling is achieved in 

pair programming, wherein two programmers sit next to each 

other, sharing a workstation, and working on a single task, with 

one programmer, called the driver, providing input, and the other 

programmer, called the navigator, offering advice. Some studies 

of pair programming have found that it offers faster task 

completion times, and more importantly, after taking into account 

the cost of fixing bugs, much better productivity [11, 12].  

The reason higher coupling offers more productivity may lie in 

how much developers help each other. Pair programming is 

centered on the idea of the two programmers helping each other 

with every aspect of the task. Williams and Cockburn report that 

―pairs often find that seemingly ―impossible‖ problems become 

easy or even quick, or at least possible, to solve when they work 

together [11].‖ Teasley et al. [10]  found that in a war-room, if 

someone was having difficulty with some aspect of code, another 

developer in the war-room ―walking by and seeing the activity 

over their shoulders, would stop to provide help.‖ The study by 

Herbsleb et al. [8] also showed the importance of a helpful 

software development. It found that in distributed team 

development, several forms of communication were more 

difficult: it was harder to find people, get work-related 

information through casual conversation, get access to 

information shared with co-located co-workers, get timely 

information about plan changes, have clearly formed plans, agree 

about plans, be clear about assigned tasks, and have co-workers 

provide help (beyond the call of duty). The study found that the 

perception of received help was the only factor that correlated 

with productivity.  A related study by Hebsleb and Grinter [13] 

found  that developers are less comfortable asking remote rather 

than co-located software developers for help. A study by Cataldo 

[9] found that the number of errors correlated with uneven 

distribution of engineers across locations, which, together with the 

other studies, seems to suggest that the team would benefit if a 

location with more engineers (which is likely to have more 

expertise, and perhaps, more time) helped the one with fewer 

engineers. 

Together, these studies seem to conclude that (1) developers often 

hesitate to explicitly ask for help, even when they could use it, and 

(2) the greater the distance between them and potential helpers, 

the more their hesitation, and the more difficult it is for the latter 

to determine if the former need help.   

One approach to address the second problem, described in [14], 

makes distributed team members aware of each other’s 

interactions with the programming environment. For example, 

[14]  gives a scenario in which Bob, on seeing Alice stuck on 

debugging a particular class, deduces she could use help, and 

offers it.  This distributed scenario directly mimics the war-room 

scenario quoted above.  

Providing virtual channels that give distributed users the feeling 

of ―being there‖ in a single location is an important goal of 

CSCW. However,  Hollan and Stornetta have argued that if 



CSCW is to be truly successful, it should go ―beyond being there‖ 

by providing capabilities not available in face-to-face interaction 

[15]. 

One approach  to support this goal is to automatically infer when 

people are frustrated using cameras, posture seating chairs, 

pressure mouse, and wireless Bluetooth skin conductance test as 

sensors to collect data [16].  A problem with this approach is the 

overhead including time and cost of using this extra equipment. 

An alternative approach is to determine this information by 

logging developers’ interaction with the system. An important 

step in this direction is made in [17], which describes a logging-

based tool for monitoring student progress. Student teams use a 

wiki to interact with several tools including CVS, newsgroups, 

and a metrics module that analyzes students’ data. The wiki 

allows students to track their development tasks, and analyzes 

tasks such as file modifications to measure the workload of teams. 

A problem with this approach is that the rate of student progress is 

determined after the fact, when a project is checked-in, rather than 

incrementally, when the student could use help. This limitation 

can be addressed by logging interactions with the programming 

environment. The authors of [17] said they did not take this 

alternative because ―many students have a preferred programming 

environment and establishing a common one would be a 

challenge.‖ 

It is possible to overcome this problem by creating such a logger 

for as many mainstream programming environments as possible. 

Before this step can be taken, it is important to determine if such 

an approach is feasible. 

There is reason to believe it can work.  Previous work by Begole 

et. al. [18] logged email interaction, calendar appointments, and 

the locations of users to show that there are rhythms or patterns in 

user activities. An even closer work to the topic of this paper is  

work by Fogarty et al [19]. Developers are randomly interrupted 

by a notification and their interactions with the programming 

environment are logged. Interruptibility is measured from the time 

the notification appears to the time the notification is 

acknowledged. The specific actions developers perform right 

before they were interrupted are used to determine if these actions 

correlate with being interruptible. 

These approaches represent general methods to mining data, 

which consists of two main steps: (a) an algorithm for deducing 

semantic awareness (out of office, interruptible) and (b) a scheme 

for training the system and evaluating the automatic scheme. Our 

previous work [7] applied this general approach to the problem of 

determining progress. This work extended an Eclipse plug-in [24] 

to log developers’ programming actions and allowed the 

developers to indicate their status: stuck (which is considered, 

here, synonymous with having difficulty) and making progress.  

Based on the event and status logs of six student programmers, it 

developed the following approach for automatically inferring the 

status. It categorized user input into five categories: navigation, 

edit (text insertion/deletion), remove (methods and/or classes), 

debug, and the programming environment losing/gaining focus.  

The logs were segmented into sections based on the number of 

events. Every 50 actions, the tool calculated the ratio of 

occurrences of each category of actions in that segment to the 

total number of actions in the segment as percentage, and used 

these percentages as features over which patterns were identified. 

This event aggregation technique was used to predict developers’ 

status. The intuition behind the technique was that when the ratio 

of edit events to total number of events decreases, programmers 

are stuck. The approach correctly identified 90% of the time when 

the students were having difficulty. This result is promising 

because it recognizes with high accuracy when student 

programmers are having difficulty even though having difficulty 

is a rare event. As mentioned in Section 1, this approach left 

several questions unanswered, which are the focus of this paper. 

3. INITIAL EVALUATION AND 

ADAPTATIONS  
To determine how well the technique developed in our previous 

approach [7] works in practice, we took two additional 

implementation and evaluation steps.  (1) We incorporated the 

algorithm in both the Eclipse and Visual Studio programming 

environments. (2) Some members of our research group, and one 

industrial software developer, used the Eclipse and Visual Studio 

implementations for their daily work. We gained important 

lessons from these steps.  

The industrial developer complained about frequent false 

positives while building a new product – a workflow system. In 

particular, when he started a new session, the tool gave a 

relatively high number of false positives because of the 

navigations performed to build the working set of files. He also 

needed more time to determine if the predicted change of status 

was correct, and, thus, often was not sure about his status.  

The second author identified two additional problems. The cost of 

processing incremental input events was noticeable, and 

sometimes intolerable, on his 3-year old laptop.  Moreover, even 

when the tool accurately predicted he was having difficulty, 

seeing the status message hurt his ego, as he felt that the change in 

progress was caused by the difficulty of the problem rather than 

lack of appropriate skills! A final problem had to do with the 

implementation architecture: the Visual Studio and Eclipse 

implementations performed the same functions, but did not share 

code. Therefore, when a change was made to the code in the 

Eclipse implementation, the code in Visual Studio had to also 

change. Put in another way, there would need to be a different 

implementation of the tool per programming environment, which 

increases programming time and effort. 

We took several steps to address these problems. To address the 

―hurt ego‖ issue, we changed the status message from ―Having 

Difficulty‖ to ―Slow Progress.‖ In addition, we allowed 

developers to customize the message so that the second author 

could, for instance, report it as ―Complex Programming.‖ 

To address the false positives faced by the industrial programmer, 

we developed a label aggregation technique that complemented 

the event aggregation technique. As before, we computed the 

status every 50 events. However, we notified the developer every 

250 events – the value reported was the dominant status in the last 

five segments. 

Together, the two aggregation techniques take into account the 

fact that the status of a developer does not change instantaneously.  

In addition, we added an ―indeterminate‖ status value to capture 

the fact that developers need time to decide if they are stuck. At 

startup, before 250 events were input, the tool reported the 

indeterminate value. We also allowed the developer to correct a 

predicted status to indeterminate. 

 



 

Figure 3: System Architecture

Table 1: Field Study of Industrial Software Developer. 

Status Guessed # Corrected Accuracy 

 

Difficulty 

 

17 2 88% 

 

Making Progress 

 

69 7 89% 

Indeterminate 2 0 100% 

 

Table 1 shows that the changes resulted in a high accuracy for the 

industrial developer. 

However, the table shows that the aggregation scheme results in a 

large number of false negatives. In particular, it missed 7 of the 22 

cases when the developer was having difficulty.  To develop a 

more accurate scheme, we gathered more data points through a 

user study.  

Before this step can be taken, it was important to address the 

performance and implementation overhead of the Eclipse and 

Visual Studio implementations. A reusable architecture is crucial 

for this research because of its iterative nature. We were able to 

apply certain standard design patterns and existing libraries to 

address the reuse issue. To address the performance issue, we 

offloaded event processing to a separate process that worked 

asynchronously from the programming environment. 

Figure 3 shows the architecture. Naturally, a separate module is 

needed per programming environment to intercept its events.  In 

addition, a separate module is needed per programming 

environment to display the current status, which is done by using 

a Google talk plug-in. Thus, in our implementation we use two 

different event-interception and status-display modules – one pair 

for Eclipse, and one for Visual Studio. 

An event-interception module asynchronously forwards the events 

to a separate process, which makes the predictions. As the process 

was written in C#, serialized events could be sent directly from 

Visual Studio to this process. Java events, on the other hand, 

require conversion, and we were able to use standard (WOX and 

IKVM) libraries to do so. 

Consider now the modules in the predicting process. Events are 

received by the ―communication director‖ of the system, the 

mediator, which mediates between a pipeline of other modules. 

The mediator gives the received event to the first module in the 

pipeline. In addition, it receives output from each of these 

modules and feeds it as input the next module, if such a module 

exists. 

The first module to receive input from the mediator is the event 

aggregator module. This module aggregates 50 events and passes 

these events to the mediator. The mediator passes these events to 

the feature extractor module, which computes the ratios that are 

used to predict a status. The feature extractor passes the ratios to 

the mediator, and the mediator gives these ratios to the prediction 

manager. The prediction manager includes the decision tree 

algorithm (used in  [7]), which uses previous data and the ratios to 

predict a status. This status is passed to the status aggregator, 

which aggregates each status and gives a final prediction to the 

mediator. The mediator delivers this status to the status displayer 

of the appropriate programming environment. 

The benefit of using the mediator pattern is that it allows modules 

to be loosely coupled so that any change in the flow of 

communication would not require a change to a module. For 

example, if the status manager had to be omitted, the mediator 

would have to change. However, the other modules in the system 

would stay the same. 

The iterative nature of this research requires the ability to easily 

change also the behavior of each of the individual modules in this 

pipeline. We used the standard Strategy pattern to achieve this 

goal. We give below specific uses for it in our context by 

considering each of the phases in the pipeline, and showing that 

multiple algorithms could be used in each phase. 

1. Event aggregator: There are at least two algorithms that can 

be run to aggregate events. The current algorithm uses 

discrete, independent chunks of 50 events. An alternate 

option is to use a gradual sliding window approach similar to 

the approach used in TCP/IP. The code below shows the use  



  

 

Figure 4: Video Coding Tool

of the strategy pattern to easily switch between the two, 

assuming both are implemented: 

EventAggregator ea = new EventAggregator();    

        //ea.setEventAggregationStrategy(new SlidingWindow()); 

ea.setEventAggregationStrategy(new DiscreteChunks()) 

2. Feature extractor: We currently extract features based on the 

number of events. For example, the edit ratio it computes is 

the number of edits divided by the total sum of all actions 

including editing. It would also be useful extract features 

based on time such as editing time/total time. Another useful 

feature that was observed while watching developers solve 

problems is the number of exceptions per run.  

3. Prediction manager: We currently use two machine learning 

algorithms, decision tree and classification via clustering, to 

predict developers’ status. In the future, we plan to test other 

classification or clustering algorithms, and perhaps build our 

own algorithm.  

4. Status manager: There are at least two ways to aggregate 

statuses. Currently, we aggregate five statuses and take the 

most dominant status.  This algorithm is similar to 

aggregating events in discrete chunks. Another approach is to 

use a sliding window, which corresponds to using a sliding 

window to aggregate events. 

Our experience with the new architecture showed that (a) as 

expected, when multiple strategy objects were implemented for a 

stage, it was indeed trivial to replace one with the other, and (b) 

the asynchronous processing did not result in perceptible delays in 

user-response times.  

We were now ready to do a controlled user study to evaluate the 

adapted algorithm and investigate additional adaptations based on 

this study. 

4. USER AND CODING STUDY 
In a controlled user study, the problems must be chosen carefully.  

Our previous work [7] found that having difficulty is a rare event. 

Thus, we must try and ensure that developers face difficulty in the 

small amount of time available (1-4 hours) for a lab study, and yet 

do not find the problems impossible. 

We used problems from the Mid-Atlantic ACM programming 

competition. These problems are attractive because they have 

varying difficulty.  We piloted several problems to find problems 

that were difficult but not impossible to solve by the subjects. 

Based on these pilots, we settled on the problems shown in Table 

2. The table characterizes the difficulty of each problem by 

showing the number of teams that solved the problem, the total 

number of teams, and the fraction of teams that solved the 

problem. The difficulty level of each problem was determined by 

the number of teams that solved the problem. For example, 100% 

of teams that attempted the Simple Question of Chemistry 

problem solved it, while only 16% of teams that attempted the 

Balanced Budget Initiative Problem solved it. 

Five industrial and nine student programmers participated in the 

study. Participants were instructed to correct an incorrect 

prediction by the system using status-correction buttons (Figure 

5). By measuring how often the developers corrected their status, 

we could, as in [7], measure the accuracy of our approach with 

respect to the perceptions of the developers. 

However, there is a question as to whether participants would 

accurately report their status, given the hurt ego problem faced by 

the second author. Moreover, it is useful to compare the tool’s 

predictions about a developer’s status with that of a third party 

manually observing the developer. Therefore, the first author and 

two independent coders observed participants' programming 

activities and made an independent determination of their status. 

To allow coders to independently and asynchronously observe 

participants' programming activities, we used Microsoft Live 

Meeting® to record the participants' screens. Live Meeting® also 

allowed the first author to observe remote sessions. In fact, Tang 

et al. [20] argued that screen recording is an effective and  



Table 2: ACM problems from Mid-Atlantic contest. 

Year Problem Title 

# of teams 

that solved 

problem 

# of 

teams 

%  

correct 

 

2006 

 

Shrew-ology 43 138 

 

31% 

2004 

 

Balanced 

Budget Initiative 
23 142 

 

16% 

2002 

A Simple 

Question of 

Chemistry 

124 124 

 

100% 

unobtrusive technique when subjects do not feel it invades their 

privacy.  

We obtained participants' consent to record their screens. We 

recorded 40 hours and 44 minutes of video. To relieve coders 

from watching hours of video, we created a video observation 

tool, shown in Figure 4. This video tool shows all segments where 

the participant, first author (while observing the experiments and 

later when randomly sampling the video), or system indicated the 

participant was having difficulty or not sure of their status 

(indeterminate). As it turned out, in our study, there was one 

indeterminate segment (indicated by a participant). We shall refer 

to these segments as ―stuck‖ segments. 

As there were few such segments, we asked the coders to classify 

each of these segments. It was not reasonable, however, to ask 

them to classify all of the other segments, which would have 

involved watching over forty hours of video. We could use a 

statistical sampling approach to reduce the number, but because 

having difficulty is a rare event, we would have had to sample the 

vast majority of segments to capture the false negatives. 

Therefore, we used the following, somewhat arbitrary approach to 

choose the ―making progress‖ segments. We randomly chose 

these segments, and made the number of randomly sampled points 

about the same as the number of having difficulty or 

indeterminate segments. If there were fewer than three having 

difficulty or indeterminate segments, we randomly sampled three 

segments. We shall refer to the randomly sampled segments as 

―random segments‖. 

Each segment was two minutes of video. Coders were not aware 

of the status of each segment and had to classify the segment as 

making progress or slow progress. They were shown the video 

that corresponded to a particular participant and problem. If there 

were any segments for the coder to classify, they were shown on a 

line below the track bar. The segments on the line corresponded 

with the particular point in the video the coder needed to classify. 

To classify segments, coders right clicked on the segment to label 

it as ―slow progress‖ (the message displayed for ―having 

difficulty‖), and left clicked to label it "making progress". An 

image of a mouse was provided to remind coders what each 

mouse button meant, and a legend was also provided to help 

coders remember that a black segment meant the segment was 

unlabeled, a red segment meant slow progress, and a green 

segment meant making progress.  

Two coders and the first author classified 26 stuck segments and 

36 random segments.  

5. STUDY RESULTS 
After the user study and coding phases were complete, we were 

able to answer the following questions: What is the correlation 

between (a) predictions of the two coders; (b) developers’ and 

coders’ perception of status, (c) predictions of the tool and the 

developers’ perception of the status, and (d) predictions of the tool 

and the coders’ perception of the status? As we see below, the 

answers depended on whether the segment involved was one of 

the ―stuck‖ segments or random segments. 

Table 3 shows that coders agreed 88% of the time with each other 

on stuck segments, and 83% of the time on random segments, and 

overall they agreed 85% of the time. 

To determine the level of agreement within the stuck (random) 

segments we counted the number of times observers agreed with 

each other and divided that by the total number of stuck (random) 

segments observed.  

Interestingly, coders agreed that in 50% of the random segments, 

which were classified by the tool as ―making progress,‖ 

participants were actually having difficulty. We examined these 

eighteen cases individually and found three segments that were 

three minutes before a stuck segment, so in these cases, the 

observers were quicker than the tool in determining the status of 

these segments.  In the remaining fifteen segments, the coders 

seemed to take the inactivity of developers as being stuck. The 

three early observations were not counted as incorrect. 

So what did the participants themselves feel about their status in 

case of these segments? By definition, they agreed completely 

with the predicted status for these segments, as these were the 

segments that were classified by the tool, participant, and first 

author as ―making progress‖ segments. 

We noticed that coders seemed to have a difficult time classifying 

participants when they were idle, and apparently thinking. The 

tool uses developers' actions to predict their status and does not 

take into account think times or when developers are idle. 

Therefore, we consider the fifteen random segments as ―making 

progress‖ when computing the accuracy of the tool.  

Consider now the non-random or ―stuck segments.‖ Again, these 

are the segments classified either by the first author, or the 

participant, or the tool as ―having difficulty‖. These segments tell 

a very different story. Table 4 shows the agreement of the coders 

with the tool, the author, and the participants for these segments. 

Interestingly, coders agreed with the tool 100% of the time that 

participants were stuck. Perhaps even more interestingly, 

participants never corrected a ―having difficulty‖ status predicted 

by the tool. 

In four of these segments, participants corrected the ―making 

progress‖ prediction of the tool. Three of those times, participants 

indicated they were having difficulty, and one of those times 

participants indicated that they were not sure of their status 

(indeterminate.) In nine of these segments, the first author 

classified the ―making progress‖ prediction of the tool as actually 

―having difficulty‖.  The coders agreed with seven of these 

observations (77%). Coders agreed with the participant 75% of 

the time. The coders disagreed with the participant who indicated 

indeterminate as the status. The first author also reviewed this 

disagreement and agreed with the coders that the participant was 

indeed having difficulty. 

Several (preliminary) conclusions can be drawn from these 

results. What is perhaps most remarkable is that when the tool  



Table 3: Observer's agreement with each other. 

Segment 

Type 

 

# of 

Agreements 

 

# of 

Observations 

% 

Agreement 

 

Stuck 

segments 

 

23 26 88% 

 

Random 

segments 

 

30 36 83% 

Total 53 62 85% 

Table 4: Coders’ agreement with the tool, first author, and 

participants (stuck segments). 

Entity 

 

# of 

Agreements 

 

# of 

Observations 

% 

Agreement 

 

Tool 

 

13 13 100% 

 

First 

Author 

 

7 9 77% 

Participant 3 4 75% 

Total 23 26 88% 

predicts programmers are having difficulty, all three types of 

humans involved in making the prediction – the participants, the 

coders, and the first author, also think they are having difficulty. 

Thus, the tool does not seem to give a false positive, which is a  

very strong result, and a significant improvement over the results 

in our previous work [7]. 

Moreover, if we take the participants’ perceptions as ground truth, 

the tool also gives negligible false negatives – only four segments 

out of 1222 segments in the entire study were corrected. On the 

other hand, if we take the coders’ agreements as ground truth, the 

results are not so good, and it seems, based on our sampling, the 

tool missed half of the positives (stuck status). 

There are two ways to interpret these data. The first relies on the 

viewpoint of the participants rather than the coders. The argument 

for doing so is that the observers could not read the mind of the 

participants, and were probably looking only at idle times to 

deduce the developer status. Idle times, alone, are not sufficient to 

distinguish between thinking and having difficulty. Our tool, on 

the other hand, keeps track of and computes a larger number of 

factors, such as the navigation, edit, and focus ratios, and thus 

agrees more with the participants. In fact, when asked about the 

accuracy of the tool, participants commented that they were happy 

with it (Table 4).  The numbers shown in the table are represented 

by the following two comments:  "I think it worked pretty well; 

It's non-intrusive, and only pops up with information when the 

status changes." " It knew when I was having issues cause it 

switched to slow progress and when I was flyin doing all the class 

design it said progress." 

The other interpretation relies on the observers (coders and first 

author) rather than the participants. The rationale for doing so is 

that participants tend to underreport their problems [21]. The false 

negatives of the tool can be explained by two factors: 

1. The tool uses developers' actions to predict their status, and 

does not take into account idle times, which should probably 

be considered in a future algorithm.  

2. The training set consisted of data from the six student 

programmers logged in our previous work  [7], who used the 

tool during normal ―field work‖ consisting of assignments 

and research projects. The behavior of these programmers 

was different in some ways from those of several of the 

programmers in this lab study.  The first group primarily 

used the Internet to look for help when they were having 

difficulty. The participants in this study did not use the 

Internet often because of the type of tasks and duration of 

this study.  The only times they used the Internet was to 

remember syntax or look at the Java or .NET API. Moreover, 

the two groups solved different types of problems, and the 

group in this study also included industrial programmers.  

One piece of objective data seems to indicate that the type of 

programmer may be a factor in automatic status prediction. 

For three student participants, the automatic predictions were 

completely in agreement with the perceptions of the coders, 

when the coders agreed. 

Even under this interpretation, our tool seems useful because of 

the zero false-positive rates. It seems that if a choice has to be 

made between low false positives and negatives, the former is 

more desirable, as it does not unnecessarily waste the time of the 

developers and those who offer help. Missing some ―having 

difficulty‖ statuses is no worse than the current practice of not 

having any automatic predictions.  Our tool did give several 

positives (thirteen), which were all correct under this 

interpretation. Thus, if it is considered desirable to automatically 

let others know about developers’ difficulties – an assumption of 

this research based on previous work - then it seems better to use 

our tool than not use it. 

Naturally, it is attractive to try and reduce the false negative rate 

(under the second interpretation) without increasing the false 

positive rate. One way to do so is train the system using the 

observers’ conclusions rather than developer corrections 

(assuming the former are true). Moreover, the accuracy can be 

further improved if the training data involved the same exercises 

as the ones used in the testing phase. We could either build a 

group model, in which the data of multiple developers is 

aggregated during the training phase, or an individual model, 

where no aggregation is done. (The approach described so far was 

also a group model, but in it, the training group was smaller and 

solved different problems) Therefore, we decided to, next, explore 

these directions.   

6. PREDICTING OBSERVER STATUS 
To build the individual and our group models, we assumed the 

following ground truth. All segments classified by the participants 

as stuck, were indeed stuck segments. Participants implicitly 

classify segments as stuck when they do not correct a stuck 

prediction of the tool. They explicitly classify them as stuck when 

they correct a ―making progress‖ segment as ―slow progress‖. 

Of the remaining segments, if the first author and the two coders 

classified a segment as stuck, then it was also a stuck segment,. 



 
Figure 5a: Accuracy of tool (participants 1-6) 

regardless of how the participant classified it. All other segments 

were making progress.  

To build and evaluate the individual model, we used a standard 

technique, known as cross validation, which executes 10 trials of 

model construction, and splits the data so that 90% of the data are 

used to train the algorithm and 10% of the data are used to test it. 

In some of the participant's training sets, the number of ―making 

progress‖ segments vastly outnumbered the number of ―having 

difficulty‖ segments, resulting in low accuracy in predicting the 

"having difficulty" segments. This is an example of the class 

imbalance problem in classification algorithms, wherein the 

accuracy of predicting an event can decrease as the frequency of a 

rare but important event decreases. The SMOTE [22]  algorithm 

implemented in the WEKA toolkit [23] overcomes this 

problem by replicating rare data records until that data are equal 

to the more common data. 

Therefore we used this scheme in the data sets of those 

participants who experienced the class imbalance problem. In our 

case, we used an accuracy threshold of 90% to determine if a 

participant experienced this problem, which was the accuracy of 

our previous approach [7]. The accuracy of the model without 

SMOTE was 66% or less for participants who had difficulty 

20% or less of the time.  For participants who had difficulty more 

than 20% of the time, the accuracy of the model without SMOTE 

was 94% or more. Thus, according to our threshold, participants 

who had difficulty less than 20% of the time faced the class 

imbalance problem. For these participants, we used SMOTE to 

replicate the ―having difficulty‖ segments. In the case of the 

remaining participants,‖ having difficulty‖ was either less or 

about as frequent as ―making progress‖. Thus, there was never a 

need to use SMOTE to replicate the ―making progress‖ segments. 

Three of the twelve participants faced so much difficulty that they  

Figure 5b. Accuracy of tool (Participants 7-12) 

did not complete two of the three exercises. 

To build the model for a particular individual, we used that 

individual's data as both the training and test set. To build the 

group model, we aggregated the data from all of our participants 

except data from the participant whose status we were trying to 

automatically predict. The exclusion was meant to test if a tool 

trained by one set of developers could be used to predict the status 

of another. We used the group data to predict the status of each 

individual.  

The group data set did not suffer from the class imbalance 

problem because some of the participants had difficulty just as 

much as they were making progress. As mentioned before, even 

those who made relatively smooth progress experienced some 

difficulty. The decision tree algorithm [23] was used to build both 

the individual and group models. 

Figures 5a and 5b show the accuracy of the tool. We considered 

four accuracies: (a) group stuck: the accuracy of the group model 

when predicting having difficulty, (b) individual stuck: the 

accuracy of the individual model when predicting having 

difficulty, (c) group overall: the accuracy of the group model 

when predicting both making progress and having difficulty, and 

(d) individual overall: the accuracy of the individual model when 

predicting both making progress and having difficulty. The 

accuracies are shown for all but two participants. These two 

participants were not included because their data was not 

collected correctly. 

We expected each individual's model to be more accurate than the 

group model, but surprisingly, the group model was more accurate 

in predicting both ―having difficulty‖ and ―making progress‖ than 

the individual model. This unintuitive result is likely because the 

group model has more data than the individual model. It is  

0% 50% 100%

1

2

3

4

5

6

Accuracy 

P
a

r
ti

c
p

a
n

t 

1 2 3 4 5 6

Group Stuck 75% 100% 100% 33% 100% 50%

Group Overall 96% 98% 100% 93% 100% 99%

Ind. Stuck 75% 94% 96% 95% 100% 98%

Ind. Overall 94% 97% 98% 97% 92% 98%

Accuracy of Tool 

0% 50% 100%

7

8

9

10

11

12

Accuracy 

P
a

r
ti

c
ip

a
n

t 

7 8 9 10 11 12

Group Stuck 90% 100% 100% 100% 100% 100%

Group Overall 96% 92% 98% 98% 100% 100%

Ind. Stuck 80% 83% 97% 98% 95% 91%

Ind. Overall 92% 92% 97% 99% 96% 90%

Accuracy of Tool 



Table 5: Survey Questions and Results (Scale: 1 = Strongly 

Disagree to 7 = Strongly agree). 

  Survey Question  Mean  Median STDDEV 

Q1   I felt that the tool was 

accurate.  

6  6  .95  

Q2  I would prefer to use a 

speech interface (speaking 

your status) instead of 

pressing buttons to correct 

the status.  

2.83  3  1.53  

possible that with more training, the individual model would 

perform better. Even then, it may not be the preferable approach 

because participants, probably, would not like training the tool. In 

fact, during the debrief one participant commented that pressing 

buttons "stopped my flow of thought" and another participant felt 

that pressing buttons "sort of broke my concentration".  

We asked participants if they preferred to speak their status 

because this could help reduce breaking their concentration (Table 

5). Participants did not like this feature either, and felt it would be 

disruptive to those around them. 

There were two participants whose accuracy was 50% or below. 

We examined these cases and determined that the tool believed 

these participants were making progress while human observers 

believed the participants were stuck. In each case, the participants 

were performing significant edits, which indicated to the tool that 

they were making progress. However, these edits involved a large 

number of deletions. This kind of activity suggests that, when 

extracting features, editing actions should be split into two 

categories: insertion and deletion of text. 

The evaluations above show that it is possible to increase the 

agreement between a tool and a set of observers by (a) keeping the 

exercises the same in the training and evaluation set, and (b) using 

the judgments of these observers in the training set. Additional 

iterations are required to determine if (a) a tool trained using one 

set of exercises can be used to predict the status for another set of 

tasks, and (b) judgments of one set of observers can be used to 

agree with the judgments of another set of observers. 

7. PRIVACY 
So far, we have assumed that letting others know about 

difficulties of others is good. This assumption is probably true 

when the observers are mentors/advisors, as suggested in [3]. 

However it is possible to have observers who judge programmers 

without actually helping them. These judgers can use information 

about developers being stuck repeatedly in a negative manner 

which could cause programmers to lose respect in their team. 

Even when observers can be trusted, the developers may want 

more time to investigate their problems.   There are several ways 

to solve this problem. One approach is to block judgers, a feature 

readily available in Google Talk and other IM clients. The 

problem with this approach is that blocked judgers can realize that 

they are blocked, which could cause them to become hostile. 

Therefore, a superior approach is to allow programmers to decide 

which status they want to report. Figure 6 shows a preliminary 

scheme we have implemented to support this feature, which is 

also used by developers to train the system. This interface reports 

two statuses – the true status and the reported status. Buttons are 

provided to change both statuses. 

 Figure 6: Training user interface that show actual versus 

report status. 

The buttons that change the true status are used to train the system 

and the buttons that change the reported status determine what 

others on their buddy lists see (Figure 1). The true status field is 

automatically copied to the reported status field after a certain 

time lag. During this time, developers can manually disable the 

copying.  Assuming that having difficulty is indeed a rare event, 

this user-interface does not impose substantial overhead.  

We have not formally evaluated these privacy controls, but we 

have gotten some initial feedback from those who have used 

them. Users would indeed like to customize not only what status 

is reported, but when it is reported, and to whom it is reported. 

Thus, this scheme must be extended to control the nature and 

timing of reported status for different classes of observers such as 

(a) human observers and tools, (b) a team member sitting on the 

next seat, radically co-located, and distributed, (c) a close friend, 

mentor, and boss, and (d) team members who have and do not 

have the expertise to help solve a problem. 

Such elaborate customization could make the overhead required to 

use the tool high. Future versions of this scheme must allow for 

setting user-specific defaults. For example, the number of IM 

messages with team members can be used to identify close 

friends; organization charts can be used to find mentors and 

bosses; location information can be used to find the physical 

distance between developers and various observers; and the 

difficulty each team member has with different pieces of a project 

can be used to find expertise. In addition, the tool can adapt how 

developers morph the reported status. For instance, if they always 

report the indeterminate status to their boss, then the tool could 

ask them if they wish to set this value automatically for this 

observer. 

8. CONCLUSIONS AND FUTURE WORK  
This paper contributes to both the general area of semantic 

awareness and the specific subarea of providing awareness about 

developers’ progress. To the best of our knowledge, other work on 

semantic awareness has not tied the judgments of third-party 

observers with those of a tool. Our work shows that (a) these 

judgments can be different from those of the actors about whom 

the awareness is being provided, (b) a special tool must be 

provided to gather third-party observations, and (c) it is possible 

to train an automatic tool to agree, to a high degree, with those of 

the observers. 

Our main contributions, of course, are in the subarea of difficulty 

prediction. We have identified a pipeline of modules for 

predicting and displaying difficulty. We have also shown the 

usefulness of two well-known design patterns, Mediator and 

Strategy, in implementing the pipeline. We have created an 

architecture that allows the pipeline implementation to be reused 

by and execute asynchronously with multiple programming 

environments.  Our evaluations show that label aggregation can be 

used to significantly improve the accuracy of a difficulty-

prediction algorithm, and a group training model offers more 

accuracy than an individual one under certain circumstances. 

They also show that it is possible to build a tool that does not give 

false positives, regardless of whether the participant or observer 

judgments are used about the ground truth. Finally, we motivate 



and present new user-interfaces for customizing status messages 

and exporting the status to others. 

As mentioned before, it would be useful to formally evaluate a 

design space of status customization and exporting interfaces, and 

determine if (a) a tool trained using one set of exercises can be 

used to predict the status for another set of tasks, and (b) 

judgments of one set of observers can be used to agree with the 

judgments of another set of observers. Perhaps the biggest 

unresolved issue raised by this work is whether the participants or 

observers should be relied upon to determine if developers are 

stuck.  

Perhaps more observations are needed to help resolve this issue. 

Another, more objective approach, is to make the following 

assumption: The fraction of ―having difficulty‖ segments is 

proportional to the inherent difficulty of the problem. By using 

problems of known difficulty, we can determine whether the 

judgments of observers or developers correspond more closely 

with problem difficulty.   

Once this issue is resolved, the next step would then be to deploy 

the tool in larger field studies and determine (a) what the 

developers feel about the accuracy of the tool, (b) how often and 

to whom they export the ―having difficulty‖ status, and (c) how 

often and from whom they accept help.  Naturally, based on this 

experience, we can expect additional iterations through the design 

process identified earlier. 

Assuming that observers are not reliable in characterizing 

developer’s difficulty level, a pair of programmers working side-

by-side [6] could use difficulty notifications to determine if they 

should help each other. Moreover, knowing the rate at which 

developers get stuck may be useful not only for determining if 

they need help. It could be used to (a) characterize the inherent 

difficulty of new problems, (b) determine the expertise of 

developers to solve certain kinds of problems, (c) estimate how 

long it will take them to complete their task, (d) compare the 

effectiveness of the various coupling degrees, mentioned earlier, 

in reducing the number of times developers face difficulty. 

This paper provides a basis and motivation for carrying out these 

future research directions. 
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