
Comp 110-003 - Assignment 8:

Arrays and Enums

Date Assigned: Mon Nov 14, 2011

Completion Date: Tues Nov 22 (midnight)

In this assignment, you will gain experience with arrays. In addition, you will strengthen your structured

object skills. You do not need to write a console-based interface. Assume that all interaction will take

place using ObjectEditor. Each part of the assignment is illustrated using screen shots to help you

visualize what the ObjectEditor windows will look like and show you how to interact with your program.

The submission date assumes that by the end of the lecture on Nov 18, we will cover the parts of

chapters 10, 11, 12, 13, and 14 that are needed for the assignment. If this does not happen, we will

postpone the submission by two weekdays. The assignment does not cover any of the material in unit

15.

Part 1 – CarHistory
Implement a history of cars (ACarHistory class and CarHistory interface). The history holds a

maximum of 30 entries. To get started, take a look at StringHistory and PointHistory examples in

the notes. As in the case of PointHistory, ObjectEditor should be able to display the history of your

cars in an edit window. Figure 1 below illustrates how to interactively add a car to your car

history.

Part 2 – Rabbit
In this section, implement a rabbit (class and interface). For full points, your rabbit should be

represented as rectangle that is 50 pixels wide and 100 pixels high. The rabbit should initially be 200

pixels to the right of the X axis and to the bottom of the Y axis. As was the case with AVehicle,

ObjectEditor should be able to display your rabbit. If you make your rabbit look more realistic, you will

receive a 10% bonus.

Part 3 – Highway
Implement a highway class that contains a car history and a rabbit. The highway should also:

 Define the following three editable int properties: CarMoveDistance, PreviousCarDistance, and

RabbitMoveDistance.

 Define an add operation that adds a new car to the car history, which takes two int

parameters, the width and height of the new car. The new car should be PreviousCarDistance

pixels to the right of the previous car in the history. In other words, the left-most edge of the

new car should be PreviousCarDistance pixels away from the right-most edge of the previous car

in the history. You are free how far from the Y-axis the cars are as long as they are all the same

distance away. The easiest is simply not to worry about a Y offset for now. Also,

o when adding the first car, assume that the left-most edge should be 0 pixels away from

the Y-axis.

o you should assume that the cars are added in such a fashion that they never collide with

one another.

 Define an enum property called RabbitStatus in highway that can take one of two values: ALIVE

and ROAD_KILL.

Figure 3 shows how an instance of highway is displayed in ObjectEditor implement the specifications in

the above three bullets.

The highway should additionally:

 Define a method isRabbitColliding that updates the value of RabbitStatus to ROAD_KILL if

the rabbit is colliding with the car; otherwise, it sets the value of RabbitStatus to ALIVE. Use the

following to test for a collision:

o If the bounding-rectangle of the rabbit is touching or overlapping with a bounding

rectangle of the car, then the car and the rabbit are colliding; otherwise, they are not

colliding.

o BONUS: if you make a more realistic rabbit, then you can implement the following

collision test for 10% more bonus

 The car and the rabbit are colliding if and only if any part of the rabbit is

touching or overlapping with any part of the car in the ObjectEditor window for

the highway. In other words, they are colliding if and only if you can see the

collision in the ObjectEditor window. Note that with the default collision

detection test, the rabbit and a car can collide without the collision being

visually shown in the ObjectEditor window.

 Define an operation moveAllCars that moves all of the cars in the car history

MoveCarDistance pixels to the right. It then calls isRabbitColliding.

Figure 3 shows the highway after setting PreviousCarDistance to 50 and then adding the first (Figure 3

left) and second (Figure 4 right) cars, both of which are of width 100 and height 30. Figure 4 shows the

highway after setting MoveCarDistance to 50 and calling moveAllCars.

 Define an operation moveRabbit that moves the rabbit RabbitMoveDistance pixels up. It then

calls isRabbitColliding.

Figure 5 shows the effect of setting MoveRabbitDistance to 50 and invoking moveRabbit on the

highway shown in Figure 4. Note that the rabbit status should be ROAD_KILL.

There are no “god bunnies” in allowed – in other words, it must be possible to position the cars and the

rabbit in a way that results in ROAD_KILL as the rabbit status.

Hope everyone has fun!

Figure 1. Inserting a car into the history

Figure 2. Initial instance of AHighway
with a Rabbit.

Figure 3. Highway after adding two cars, both with width 100 and height 30, assuming that the value
of PreviousCarInstance is 70

Figure 4. Result of setting the value of MoveCarDistance to 50 and invoking moveAllCars after
adding two cars as shown in Figure 5

Figure 5. Setting RabbitMoveDistance to 50 and invoking moveRabbit assuming highway was in state
shown in Figure 4

