
Comp 110-003 - Assignment 9:

MVC and Animation

Date Assigned: Mon Nov 28, 2011

Completion Date: Mon Dec 7, 2011 (midnight)

In this assignment, you will strengthen your knowledge of the MVC programming paradigm and get

practice with animations. As in the previous two assignments, you will continue to improve your

structured object programming skills.

Start this assignment with all of your code from the previous assignment!

Part 1: Turning Rectangle, Oval, and Highway into observables
Extend your Rectangle and Oval classes from the previous assignments by making them an

observable that follows the Java Beans observable pattern. There are three steps that you must do:

1) Define a PropertyChangeListener history

2) Implement the standard addPropertyChangeListener method in AHighway

3) After you change a value of one of the Rectangle/Oval properties, notify all observers

For help on completing these steps, read the “Variations in Observer/Observable Communication”

section in the MVC chapter notes. You can find additional examples in the

AnAnimatingShuttleLocation discussion in the Array chapter notes.

Recall that the object that is actually changed is the one that must notify the observers. For example,

when a car location is modified, it should be Rectangle and Oval instances making up the car that

notify observers.

You do not have to implement PropertyChangeEvent and PropertyChangeListener. Instead, you

can need to import them from the java.beans package. To do so, include the following two lines in

every class that uses PropertyChangeEvent and PropertyChangeListener instances:

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeEvent;

Part 2: Moving the rabbit in all directions
Extend your AHighway by adding a moveRabbitLeft, moveRabbitRight, moveRabbitUp, and

moveRabbitDown operations, which move the rabbit left, right, up, and down, respectively, by

RabbitMoveDistance (defined in previous assignment). This should not take long because you have

already defined moveRabbit in the previous assignment, which moved the rabbit vertically by

MoveRabbitDistance. As was the case with moveRabbit in the previous assignment, each one of the

new move operations must also check if the rabbit is colliding with any of the cars and update the

RabbitStatus property accordingly.

If in the previous assignment, you moved the cars or the rabbit whenever the corresponding move

distance properties changed, you will have to correct your assignment. The rabbit and the cars need to

move when you or a user (which can be another object) calls moveAllCar or

moveRabbit(Left/Right/Up/Down).

Also, if in the previous assignment, you used the move distance property values as offsets, you will need

to correct your assignment. These properties stored by how much the cars and the rabbit should move,

not to what location they should move.

Part 3: AConsoleHighwayController
Implement a console-based controller for AHighway, called AConsoleHighwayController. It should

implement the following interface:

public interface HighwayController {

public void setModel(Highway model);

public void processInput();

}

The processInput command accepts user input from the console. Assume the user can enter the

following commands only (hence, no erroneous input checking is required):

1) ‘a’ to move the rabbit left

2) ‘d’ to move the rabbit right

3) ‘w’ to move the rabbit up

4) ‘s’ to move the rabbit down

5) ‘q’ to stop entering commands

Each command must be followed by Enter. This is a somewhat awkward input interface, but it makes

the code you have to write a little less complex. So to move the rabbit up twice, the user would type first

w, then Enter, then w again, and then Enter again.

Part 4: Animating AHighway
Define two editable integer properties, AnimationDistance and AnimationPause, in AHighway. Then

implement a startGame operation in AHighway that has an infinite loop that does the following:

1) Move the cars by AnimationStepSize to the left

2) Sleep for AnimationPauseTime time

NOTE: After a while, all of the cars on the highway will move off the screen. This behavior is acceptable.

Part 5: AHighwayDriver
Implement your main method in AHigwayDriver. The method is responsible for:

1) instantiating AHighway (the model)

2) instantiating AConsoleBasedHighwayController (the controller)

3) Connecting the model and the controller

4) Calling bus.uigen.ObjectEdtitor.edit to display the highway

AHighwayDriver also sets up the highway for the game as follows:

1) Sets MoveCarDistance to 10

2) Sets PreviousCarDistance to 150

3) Sets MoveRabbitDistance to 35

4) Sets AnimationStepSize to 10

5) Sets AnimationPauseTime to 30

6) Adds 30 cars to the highway, each of which is of width 100 and height 30

Playing the Game
1) The user first runs AHighwayDriver. The following screen should appear.

2) Once the highway is displayed in an ObjectEditor window, the user invokes the StartGame

operation on the Highway as shown below.

3) Then the user enters commands to move the rabbit.

Finishing the Game
There are two ways to finish the game.

1) Rabbit crosses the road without getting hit: In this case, you need to display a “Congratulations!

You live to play another day” message in a JOptionPane.

2) Rabbit gets hit: In this case, you need to display a “Splat! Please try again” message in a

JOptionPane.

When a finishing condition is reached, you do not have to stop the cars from moving. The reason for the

latter is that in the real-world, cars on a highway will not stop because of a rabbit. Also, assume that the

user will not enter any more commands once the finish message is displayed. In other words, you do not

have to write any code to explicitly prevent the user from entering anything but a non ‘q’ command.

Bonus
For the past few months, the bunny world has been hopping. A rumor has been spreading that the

legend of Bravehops will be fulfilled on Dec 5, 2007. For those of you who have not heard of Bravehops,

it is a legend of a rabbit who escapes the Land Below the Highway and reaches the world beyond.

Rabbits from the farthest reaches of the Land Below the Highway have gathered in the grassy area just

inside the border of their world in anticipation of the fulfillment of the legend. If Bravehops manages to

reach the other side, they will all stand up and clap their ears. But if Bravehops does not reach the other

side, they will quietly leave without ever being seen.

Your bonus, should you choose to complete it, is to draw the spectators once Bravehops crosses the

highway. The number of spectators you need to draw the nth number in the Fibonacci sequence. The

value of n is stored in an editable integer property of AHighway, called FibonacciNumber. You must use

recursion to calculate the number of spectators from the FibonacciNumber value. The nth number in the

Fibonacci sequence is calculated as follows:

F(1) = 1 if n = 1

F(2) = 1 if n = 2

F(n) = F(n-1) + F(n-2) if n > 2

While the exact locations of and the separation between the spectators is not important, an outside

observer should be able to count the exact number of spectators. In other words, don’t draw them all in

the same location because it will appear to an outside observer that there is only one spectator

regardless of how many you actually draw.

