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Abstract

We present a personalized, comprehensive eye-tracking solution
based on tracking higher-order Purkinje images, suited specifically
for eyeglasses-style AR and VR displays. Existing eye-tracking
systems for near-eye applications are typically designed to work
for an on-axis configuration and rely on pupil center and corneal
reflections (PCCR) to estimate gaze with an accuracy of only about
0.5°to 1°. These are often expensive, bulky in form factor, and fail
to estimate monocular accommodation, which is crucial for focus
adjustment within the AR glasses.

Our system independently measures the binocular vergence and
monocular accommodation using higher-order Purkinje reflections
from the eye, extending the PCCR based methods. We demonstrate
that these reflections are sensitive to both gaze rotation and lens
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accommodation and model the Purkinje images’ behavior in simu-
lation. We also design and fabricate a user-customized eye tracker
using cheap off-the-shelf cameras and LEDs. We use an end-to-end
convolutional neural network (CNN) for calibrating the eye tracker
for the individual user, allowing for robust and simultaneous estima-
tion of vergence and accommodation. Experimental results show
that our solution, specifically catering to individual users, outper-
forms state-of-the-art methods for vergence and depth estimation,
achieving an accuracy of 0.3782°and 1.108cm respectively.

Index Terms: Augmented Reality—Eye tracking—Eye tracking
Techniques—Purkinje images; Human-Computer Interaction

1 Introduction

We have recently seen dramatic developments in AR and VR with
commercially available devices that offer a resolution, tracking, and
latency sufficient to provide compelling experiences to consumers.
In the next few years, the field will be ready to integrate more
sophisticated technologies and solve long-standing problems in AR
displays, such as wide field-of-view (FOV), high resolution, large
eye box, and accommodation support, all in an eyeglasses form
factor. Such glasses will provide a comfortable view, simultaneously,
of both real and virtual imagery.



Vergence and accommodation The distance to which the eyes
verge to maintain a single binocular vision of an object is called the
vergence distance, and the distance to which the eyes must accom-
modate to bring the image of that point in space to sharp focus is the
accommodation depth. Vergence and accommodation are neurally
coupled, i.e., one drives the other. To maintain a well-focused view
of an object, the vergence distance and the accommodation distance
should match the focal distance of the object in space. While this
naturally occurs in people with normal vision, it is mismatched for
people with refractive errors in eyes, e.g., near-sighted or far-sighted.
The situation becomes complex when it comes to VR and AR dis-
plays, where the focal, vergence and accommodation depth are often
mismatched for all people [5].

Need for vergence and accommodation tracking Both real
and virtual imagery can be simultaneously presented at a correct
focal depth if rapid, accurate, and robust eyetracking were included,
resulting in a system that can measure the user’s object of attention
in both the real and virtual world. Accurate and rapid vergence
tracking can potentially also enable gaze-contingent rendering and
displays [2, 41]. However, note that the vergence depth can only
approximate the accommodation depth of the eye [48] and typically
occurs only in users with normal vision. Therefore, we must not only
measure vergence accurately but also separately measure monocular
accommodation. Suppose we can determine the accommodation
supported by the eye’s lens. In that case, the virtual imagery in an AR
display can be set to the focal distance that matches the user’s current
accommodation distance [6,7]. Furthermore, any prescription power
for compensating the unmet accommodation needs due to refractive
errors in the eye can also be applied via an external focus adjustment
for viewing the real-world [5]. Such a display combined with robust
monocular vergence and accommodation tracking of eyes can also
potentially act as auto-focus “everyday” prescription eyeglasses,
with the virtual display content turned off.

Achieving enhanced eyetracking Estimating both monocular
vergence and accommodation independently and simultaneously re-
quires tracking of not just the pupil but also the continuous change in
lens shape. Sophisticated equipment like an autorefractor or a Shack-
Hartmann wavefront can measure the change in lens accommodation
by analyzing the reflected wavefront from the retina through the eye
but are extremely bulky to go with eyeglasses-style displays. Instead,
we look at imaging the Purkinje reflections, the reflections from
various surfaces of the eye, using miniature cameras that fitted into
the eyeglasses frame. Since these reflections occur from curved
surfaces of the eye, they are sensitive to eye gaze changes and ac-
commodation and are well-suited for vergence and accommodation
tracking.

We believe that the future AR eyeglasses will be individually
owned and personalized akin to the current day personal smart-
phones. Such personalized AR eyeglasses will have eyetrackers and
prescription correction lenses, also catering to the individual user.
In this work, we demonstrate a compact eyeglasses-style eyetracker
based on tracking higher-order Purkinje reflections from the eye.
Our eye tracker is customized for a specific user, and our approach
to achieving Purkinje images based vergence and accommodation
tracking are threefold:

Designing the eyeglasses: The higher-order Purkinje reflections
occurring from the deeper layers of the eye are typically faint and
often difficult to capture robustly and consistently. To this end, we
introduce a sophisticated, physically-accurate, and anatomically-
informed synthetic eye model to simulate the Purkinje reflections
from the eye. We use this synthetic eye model to optimize for the
positions of cameras and infrared LEDs to robustly and consistently
capture the Purkinje reflections. We experimentally find that our
eye tracker outperforms the existing state-of-the-art eyetracking
methods.

Estimating gaze and accommodation: The relationship be-
tween the position of the Purkinje reflections in space and the corre-
sponding gaze and accommodation change is non-linear. To measure
the eye’s underlying gaze and accommodation from the Purkinje
images as seen by the eyetracking cameras, we use a convolutional
neural network (CNN) as the non-linear function approximator. It
parameterizes the relationship between the gaze vergence and ac-
commodation depth, and the Purkinje images. This allows us not
only to estimate the vergence and accommodation robustly but also
at faster frame rates.

Collecting ground truth training data: We design a special
multi-plane display setup with adjustable focal planes to collect the
ground truth calibration data required to train the neural network.
The network is then used to estimate the gaze and accommodation
from the Purkinje images. We anticipate that the calibration data
can be collected directly via an eyeglasses-style focus-supporting
near-eye display in the future.

This serves as a best first approximate for the configuration of
cameras and LEDs on the eyetracking eyeglasses. We further refine
to precisely fit the eye physiology of each user, which we note is a
one-time effort. Specifically, we make the following contributions
in this work:

• We introduce higher-order Purkinje image tracking as a robust
method for fast and continuous estimation of vergence and
accommodation, independently and simultaneously, achieving
improved accuracy.

• We design and fabricate customized eyeglasses, hosting mul-
tiple cameras and LEDs for robust and consistent tracking of
higher-order Purkinje images in AR eyeglasses. To this end,
we also create an improved anatomically-informed digital 3D
model of the eye to simulate the behavior of Purkinje images.

• We propose a convolutional neural network to learn the non-
linear mapping between the characteristics of the Purkinje
images captured by multiple cameras, and the vergence and
accommodation of the eye. We also create an annotated dataset.
We will release all code, datasets, and design models.

• We assess our proposed user-specific eyetracking solution ex-
perimentally with a hardware prototype and show that our
eyetracker achieves improved accuracy for both monocular
and binocular vergence and accommodation estimation.

2 RelatedWork

In this section, we review eyetracking for head-mounted and near-
eye displays for virtual and augmented reality, emphasizing camera-
based eyetracking techniques.

2.1 Eyetracking systems

Eyetracking systems for near-eye displays can be broadly classified
into three categories: 1) electro-oculography(EOG), 2) magnetic
eyetracking, and 3) video-oculography (VOG). Our work belongs to
video-oculography.

Video-oculography (VOG) uses camera-based eyetrackers to track
the features in eyes such as the limbus (border of the cornea and
sclera), pupil, and reflections from the cornea and other surfaces
of the eye (Purkinje reflections). A common technique used to
perform VOG based eyetracking is pupil center corneal reflection
(PCCR). In PCCR, one or more infrared (IR) light sources are used
in combination with IR cameras to track the corneal glint relative
to the pupil center during the eye motion [21]. Extending this
methodology, the center of the iris is tracked instead of the center of
the pupil [50]. Dual-Purkinje image-based eyetrackers make use of
not only corneal reflections but also reflections from the posterior
lens surface to track the gaze angle [8, 11] and sometimes gaze



depth [31]. Dual-Purkinje gaze trackers are generally more robust
than PCCR tracking, but are typically bulky, relatively difficult, and
restricted to controlled laboratory environments, making it difficult
to use in AR eyeglasses [8]. Recent work by Lee et al. [31] attempts
to implement dual-Purkinje eye tracking in a compact form factor
that achieves a compromised gaze accuracy of only 0.96◦ horizontal
and 1.6◦ vertical, and a 4.59 cm error in accommodation depth. Our
system instead tracks reflections from the interior surfaces of the eye
lens, similar to early attempts by Itoh et al. [23].

2.2 Camera-based gaze estimation

Camera-based gaze estimation methods utilize computer-vision tech-
niques to predict the line of sight for each user’s eye at any given
instant, thus continuously tracking the gaze. Such gaze estimation
and tracking approaches can be primarily categorized into three
methods: feature-based, model-based, and appearance-based [66].

Feature-based gaze estimation localizes key features of the eye,
such as pupil (or iris) center and eye corners, and map these features
to the corresponding gaze coordinates on the screen space [47, 58].
On the other hand, model-based methods use a geometric model
of the human eye that is fitted to the pupil image frames captured
by the camera for gaze estimation [53, 59, 61]. Appearance-based
gaze estimation methods utilize eye images, sometimes along with
a set of features extracted from the images, to learn the mapping
between the images and the corresponding gaze via machine learning
techniques [45, 52, 67]. Recent research has also seen success with a
combination of the three methods [25, 60, 62].

2.3 Vergence and accommodation depth estimation

As discussed above, tracking both vergence and accommodation
is necessary for comfortable viewing experience in AR eyeglasses
for all users [5]. Common techniques for 3D gaze tracking can be
categorized into gaze ray-casting, vergence-based, accommodation-
based, and vestibulo-ocular reflex-based methods. Gaze ray-casting
methods measure the depth to the first object in the scene where the
imaginary gaze vectors from both eyes intersect [9, 55]. However,
this technique works well only when the gaze vectors intersect at
an object and fail to address occlusion ambiguity. Vergence-based
methods, on the other hand, do not rely on objects in the scene but
on the fact that the two eyes roll in opposite directions to foveate
on objects at different depths and simultaneously focus on them.
Using the gaze disparity between the left and right eyes [12, 14],
and/or inter-pupillary distance [3, 35], the vergence between the two
eyes and hence the fixation depth can be calculated via triangulation.
Accommodation-based methods leverage the anatomical changes in
the eyes, such as changing lens curvature during accommodation,
to estimate the focal depth. Popular monocular depth estimation
devices are the autorefractor [34] and the Shack-Hartmann wavefront
sensor [37]. These, which are often used for medical and research
purposes, provide a good estimate of accommodation but are very
bulky and impractical to be integrated into AR eyeglasses.

2.4 Rendering anatomically correct eye models

An eyeglasses-style eye tracker requires an optimized placement of
cameras and IR LEDs to efficiently and robustly track higher-order
Purkinje images. A near-accurate anatomically correct 3D graphics
eye model is necessary for designing such eyetracking eyeglasses,
and hence we review several relevant synthetic eye models here.

Świrski et al. [14] were perhaps the early researchers to use a sim-
ulated eye model and synthetic gaze for eyetracking. Anatomically-
aware graphics model of the eye from then increasingly provides a
fineness to model eye movement and eye texture. Generative adver-
sarial network (GAN) has been leveraged to improve the quality of
synthetic eye image [49]. Wood et al. [63] created a comprehensive
and detailed eye model, including the sclera, pupil, iris, and cornea,

using a collection of controllable eye-region scans. This model ex-
hibits both realistic shape changes such as pupillary dilation and
textures such as iris and scleral veins. Kim et al. [25], extended
Wood’s model with additional anatomical details and offered a more
sophisticated shading and higher resolution of rendering. However,
the above eye models do not simulate the eye’s accommodation
behavior, which involves the crystalline lens shape change that is
essential for tracking monocular accommodation in our eyetracking
system.

As a more precise optical model of the human eye, the Arizona
model [46] defines a series of surfaces including cornea, lens, and
retina by radius, conic constant, IOR, etc. The accommodative
mechanism in a young eye lens was quantitatively described by
the geometric model from Reilly [43]. More recently, Zoulinakis
et.al. [69] studied in detail the accommodation states as described by
the three widely used optical eye models: Navarro [36], Arizona [46]
and Liou-Brennan [33] found that all three models were able to
simulate accommodation with the expected results.

2.5 Eye-gaze datasets

Existing gaze estimation methods that rely on data-driven ap-
proaches such as machine learning or deep learning, leverage both
real and synthetic eye-gaze datasets. While real data can lead to
potentially robust learning, synthetic eye datasets can relieve re-
searchers from manual data collection and labeling. We review a
few popular datasets used for learning-based gaze estimation, in-
cluding both remote and near-eye gaze tracking.

Remote gaze tracking The MPIIGaze [68] includes 214k full-
face images of 15 users, collected from remote laptop cameras.
UT Multi-view [52] has 64K data from 50 testers from multiple
views. Columbia Gaze [51] created a gaze dataset of 56 people
and 5880 images that focused on gaze locking. EYEDIAP [19]
collected eye image data from RGB and RGB-D cameras from 16
people. GazeCapture [26] contains data from over 1450 people of
almost 2.5M frames. BIOID [24] database consists of 1521 images,
each 384 × 288 pixel, of 23 different people. WebGazer [38] is a
51-participant benchmark dataset from webcam videos.

Near-eye gaze tracking InvisibleEye [56] is a dataset of 280k
recorded images with millimeter-size RGB cameras. NVGaze [25]
dataset has both real data and synthetic data of 2M infrared images of
eyes rendered at 1280 × 960 resolution. SynthesEyes [63] has 11.4k
eye images sampled at different illumination conditions. Świrski
and Dodgson [54] created an IR image dataset with 159 frames.
LPW [57] has 66 eye region videos for the pupil detection evalua-
tion. ElSe [18] contributed 55,000 IR eye images and ExCuSe [16]
provided 38,000 new, hand-labeled eye images.

Our work draws inspiration from a variety of prior art but offers
new features and implementation choices. We especially leverage
the sensitivity of third Purkinje reflections from the anterior eye-lens
surface to vergence and accommodation changes, and robustly track
them with our CNN calibrated multi-camera and multi-LED eye
tracker, all in an eyeglasses form factor.

3 Purkinje Images

Purkinje-Sanson images, or simply Purkinje images, are reflections
from the anatomical structure of the eye named after Czech anatomist
Jan Purkyně and French physician Louis Sanson. Due to the imper-
fections, usually at least four Purkinje images are formed from the
anterior (outer) and posterior (inner) surfaces of the eye’s cornea and
crystalline lens. Specifically, Purkinje image I (P1) is the reflection
of light from the outer surface of the cornea, Purkinje image II (P2)
from the inner surface of the cornea, Purkinje image III (P3) from
the outer surface of the lens and the Purkinje image IV (P4) from the
inner surface of the crystalline lens. Due to the imperfections in the
eye’s optical system, the light reflected from the lens surfaces can



sometimes be reflected back into the eye at the cornea giving rise to
fainter fifth and the sixth entoptic Purkinje reflections. The typical
four Purkinje images play an important role in modern applications
such as measuring tilt and decentration of intraocular lens [13],
assessing the polarization optics of the cornea and lens [42] and
detecting fake iris [30].

3.1 Intensity and motion of the Purkinje images

Purkinje images in the eyes are caused by incoming light from the
world reflecting at several interfaces of the eye where a change in
refractive index is seen, namely the anterior and posterior cornea
and lens surfaces, before hitting the retina. A ray entering the eye
undergoes both reflection and refraction at these interfaces according
to Fresnel laws, as shown in Fig. 1, and results in the four common
Purkinje images as discussed above. Further, the intensity of these
images are also guided by the Fresnel equation

I =
∣∣∣∣ (n2 −n1)
(n2 + n1)

∣∣∣∣2 (1)

where n1 and n2 are the refractive indices before and after the reflect-
ing surface. Parameterizing the eye using the well known Arizona
eye model [46], it can be easily seen that Purkinje image I is the
brightest and Purkinje image II is the faintest, with Purkinje images
III and IV having about the same intensity. Given that Purkinje
images I and II from the static and thin cornea are formed at the
same location, this corneal glint is typically used as a feature for
gaze tracking.

Figure 1: Top left: Purkinje images formation. Top right: Purkinje image in
actual capturing. Bottom: Simplified eye structures from a mirror system
standpoint, detailing the formation of P3 image captured by camera. P1,
P2, P3, and P4 stand for Purkinje image I, II, III, and IV.

The static cornea supplies most of the focal power in the eye,
while the dynamic crystalline lens provides the additional adjust-
ments for accommodation. When the eye verges and accommodates
to different points in 3D space, it causes the eyeball to rotate within
the socket and the crystalline lens to change its shape to provide
for the required accommodation power. This change in lens shape

results in a change in the path of reflected light from the anterior
and posterior surfaces of the crystalline lens, making Purkinje image
III and Purkinje image IV appear in slightly different locations. Of
course, the location of Purkinje reflections also change with gaze,
when the eyeball moves inside the socket. Therefore, robustly track-
ing these reflections can provide improved gaze estimates and give
information about the change in lens shape, hence the accommoda-
tion of the eye [1, 4, 10, 28].

3.2 Sensitivity to gaze and accommodation
The effect of gaze and accommodation is different on the different
Purkinje images, owing to the respective profiles of surface that
causes these reflections within the eye. We analyze the sensitivity
of Purkinje images with gaze and accommodation by modeling the
reflection and refraction at various surfaces of the eye, as shown
in Fig. 1 [30]. To this end, we simulate an eye model with the
characteristics of various anatomical surfaces parameterized by the
Arizona eye model [46]. Raytracing through various surfaces of
the eye and plotting the position of Purkinje images on the imaging
sensor yield the relative sensitivities of Purkinje image I, III and IV
with change in gaze relative to the pupil center, shown in Fig. 2. In
simulation and experiments, we find that the third reflection is more
sensitive to gaze (and accommodation) than the others, relative to
the pupil center. However, as discussed in Sect. 3.1, not only is the
intensity of the third Purkinje image significantly less compared to
the first (Fig. 1), it is also optically formed on a different focal plane
compared to the rest of the Purkinje images, making it out of focus
and difficult to detect robustly together with the others.

Figure 2: Purkinje images and pupil center position change during eye
rotation.

3.3 Capturing the Purkinje images
As discussed above, the higher-order Purkinje images are sensitive to
gaze and accommodation changes, and if tracked robustly, they can
reveal information about the eye accommodation states. However,
they are often difficult to capture due to their significantly reduced
brightness. Moreover, the third Purkinje image, which we find to be
most sensitive for improved eye tracking, is optically formed on a
distant focal plane as compared to the others resulting in a defocus,
making it even harder to capture. Due to the increased sensitivity,
these reflections are also prone to quickly fall out of the field of view
of the eye tracking camera with gaze changes.

To robustly track these reflections, the camera needs to be consis-
tently in focus while also spanning a wide field of view to potentially
track all of the movements of Purkinje images. Although the field
of view of small eye tracking cameras that can be integrated into
an eyeglass frame is typically narrow, a multitude of such cameras
combined with multiple illuminating infrared LED sources cover a
wider tracking field of view. Each camera and LED combination can



then cover a smaller tracking field for the Purkinje images. More-
over, having these cameras slightly defocused can image all of the
Purkinje images. Note that our concentration in this paper is only
the third Purkinje image and how such a multi-camera multi-LED
eye tracker design is robust enough to track Purkinje image III re-
flections. We optimize our eye tracker glasses to cover the working
field of view with two cameras and two IR LEDs, which we discuss
in the following sections.

4 System Setup

We devise an eyetracking system that achieves improved vergence
and accommodation estimation in a compact eyeglasses-style form
factor. Designing compact near-eye eye trackers for AR displays is
a relatively an under-investigated problem. We note that much of
the prior art in gaze tracking utilized on-axis configuration of eye
tracking cameras suitable for VR use cases but unsuitable for AR
as the cameras block the available field of view (e.g. NVGaze [25]).
While Lee et al. [31] and Wu et al. [64] explored an unoptimized
off-axis camera configuration, the closest work to ours is the Invis-
ibleEye [56] tracker, in which the camera positions are optimized
based on gaze tracking accuracy on synthetic datasets. In our work,
we consider not only the typical pupil center and corneal glint but
also the third Purkinje reflections. Given that higher-order Purkinje
images are difficult to capture, as discussed in Sect. 3, we employ
multiple cameras and multiple LEDs. However, this poses a chal-
lenging problem of designing the eyeglasses and the illuminating
and imaging sources for efficient and consistent tracking of Purkinje
images.

We want our eye tracker to be accurate, compact, and customiz-
able to various users. To this end, we first model user and environ-
ment variables in the simulation and then optimize the positions of
multiple cameras and LEDs by analyzing characteristics of Purkinje
images. We also parameterize the movement of eyeglasses to simu-
late slippage and create a synthetic dataset to evaluate its impact on
eyetracking. With the computed positions of cameras and LEDs, we
design an eyeglasses frame that fits the user and 3D print it. Cameras
and LEDs are then attached to the frame at corresponding slots. In
the following sections, we lay out our mechanisms in simulation and
hardware setup.

4.1 Simulation

One major benefit of simulation is its capacity to sample a large set
of parameters to model both user and environment variables, which
would be hard to implement in a real setup. We specifically focus on
modeling detailed eye structures, such as the anterior and posterior
cornea and eye lens, iris, pupil, and sclera. Current state-of-the-art
works in eye rendering [25, 62, 63] have not paid attention to the
eye lens, which is essential to the formation of high-level Purkinje
images.

Considering other variables that may impact the capturing of
Purkinje image III, we also introduce a head model with eyelashes,
virtual camera, and LED models with the same parameters as those
of the real ones.

4.1.1 Modeling the Eye Parameters

Based on the Arizona eye model [46], we utilize quadric functions
to model a series of surfaces, including the anterior and posterior
cornea and lens. A common quadric function is represented as [43]:

(1 + q) · z2 −2r · z + x2 + y2 = 0 (2)

where q is the conic constant of a specific surface, and r is the
radius. For anterior and posterior cornea surfaces, q is -0.25 for both,
and r is 7.8 and 6.5mm, separately. The sclera is modeled as a sphere
with an average radius of 13.4mm. The lens model is created using
two quadric functions that vary with accommodation. The anterior

Figure 3: Left: Eye model texture. Right: Eye structure cornea and lens
highlighted in orange and yellow respectively.

Figure 4: Comparison of Purkinje images capturing from the actual setup
(top row) and the simulation (bottom row). It demonstrates the movement
of Purkinje image III during eye rotation as well.

surface of the lens has a conic constant of −7.52+1.29A and a radius
of 12.0−0.4A, where A is the accommodation in diopters. The conic
constant and the radius of the posterior surface are −1.35−0.43A
and −5.22 + 0.2A [46]. Eye lens parameterization enables flexible
lens deformation in response to eye accommodation.

The outermost surface of the eye can then be formed by inter-
secting the anterior cornea and the sclera. Similarly, the eye’s inner
surface is modeled by intersecting the posterior cornea and the iris’s
plane, with a hole in the middle to represent the pupil. Fig. 3 provides
a visualization of the simulated eye model, including eye texture,
cornea and lens surface. Fig. 4 compares the captured Purkinje
images and simulated ones.

In addition to the eye model, we also import a head model 1 with
eyelashes, to fit with the eyeball. Interocular distance is assumed to
be 63mm [15]. Inspired by [63], we modeled the eyelids movement
in consideration of its potential occlusion with Purkinje images in
capturing stage. Currently, we utilize the head model closest to our
tester’s face shape. To be more precise, a reconstructed user face
model could be used in the future.

Beyond the user-specific parameters, we also model environmen-
tal parameters, specifically cameras and LEDs. We model the virtual
camera with a resolution at 1920×1080 and focus length of 35mm
according to the Raspberry Pi Camera we use, and set the focal
depth to the anterior lens surface, where Purkinje image III forms.
The LED we model provides a directional spotlight with a 3mm size
of soft shadow and a 45 ◦emitting angle. The specification is from
the smallest-size of LED we can find in the consumer market.

4.1.2 Optimizing the Camera and LED Positions

With the model described above, we start to explore the optimal
positions for cameras and LEDs given a specific face and eye model.
For more precise Purkinje images visualization, we use ray tracing-
based rendering. Our goal of optimization is to ensure that, within a

1https://www.3dscanstore.com



Algorithm 1: Camera and LED position optimization
Initialize position of Cam1 in the bottom center in alignment

with the eye center;
/* Search LED1 = (x,y,z), c1,c2 are thresholds */
for (x,y,z)← (−1.5,−2,0) cm to (0,0,3) cm do

set numPIII(x,y,z) = 0;
for (θh, θv)← (−12◦,−12◦) to (12◦,12◦) do

Render I1 without lens;
Render I2 without posterior lens;
if

∑
i, j 1(I1(i, j)− I2(i, j) > c1) > c2 then
numPIII(x,y,z) + = 1;

end
end

end
Set LED1 = argmax(x,y,z)numPIII(x,y,z);
Set Cam2 with lowest y and closest z while Purkinje image

III is able to be seen in the whole FOV;
Update LED1 to ensure that Cam1 and Cam2 can cover two

connected but not repeated areas;
Set LED2 at the symmetrical point of LED1 relative to the

eye center;

certain range of field of view, both the Purkinje image I and III are
visible everywhere the eye rotates. Other constraints we consider
include preventing occlusion of the vision, using fewer LEDs to
avoid mutual interference between LEDs, using fewer cameras to
decrease both the bandwidth and price, and guarantee a large enough
field of view.

We describe the algorithm for optimizing the camera and LED
positions on our eye tracking eyeglasses in Algorithm 1. We start
with one camera and one LED by initializing the camera position
cam1 in the bottom center in alignment with the eye center. It
is worth mentioning that we only consider the bottom positions
of cameras due to occlusion of eyelashes on the top and obvious
distortion of eye images on the side.

To optimize the LED position LED1, we first discretize the space
in a unit of 0.1cm and set the field of view to ±12◦×±12◦. Since the
eyeball is modeled symmetrically, we only need to search half of the
original space. Considering the compactness requirement, the final
search space is set to a 1.5cm × 2cm × 3cm cube in front of the
eye. When searching for LED1, we rotate the eyeball in the whole
FOV with a step of 1 degree and expect to see Purkinje image III
in as many angles as possible. To identify Purkinje image III, we
compute the disparity of two rendered eye images, one without lens,
another one with only the anterior lens surface.

We discovered that a single LED can sufficiently illuminate to
cover half of the ±12◦field of view, both horizontally and vertically.
We also find out that any vertical combination of two LEDs will
cause occlusion of the current field of view, so we choose to add
another camera above the previous one. We fix the LED1 and
search Cam2 that satisfies both non-occlusion and compactness
requirements. The results show that two cameras are enough for
capturing Purkinje images in the specified field of view. We then
update the LED1 to ensure that two cameras can cover two connected
but not repeated areas to maximize the field of view. In the end, we
add another LED2 symmetric to the eye center, considering the eye
symmetry.

While we initiate the optimization to cover a 12-degree field
of view, the result shows that the final camera and LED positions
derived from the optimization can cover a 15-degree field of view.
In total, we use four LEDs and four cameras for both eyes for the
solid capturing of Purkinje image III.

4.2 Hardware
With the optimized camera and infrared LED positions generated
from the simulation, we design several slots to put the objects and 3D
print the eyeglasses model. The eyetracker is then assembled with
four tiny Raspberry Pi cameras with a length of 8mm, resolution at
1920×1080, and frame rate at 30fps. To reduce noise, we attach a
lens filter to the camera to filter out visible light. We deploy four
clear round infrared LEDs as light sources, each with a lens diameter
of 3mm, an IR emitter of 940nm, and an emitting angle of 30◦. The
total cost of the setup is around $100, much cheaper than current
commercial ones. The assembled eyeglasses are shown in Fig. 5.

Figure 5: Eyeglasses with multi-plane setup. The LEDs are marked with
blue boxes and the cameras are marked in green boxes. The full-view of
multi-plane data capturing system is inserted in the bottom-right corner.

When collecting the dataset, our eyetracker is stuck above an
adjustable chin rest to guarantee minimal head movement during
the experiments. To capture eye images of the tester looking at
different depths, we set up a multi-plane system, as shown in the
lower right corner of Fig. 5. The displays are laid down and each
with a 45◦upward-pointing mirror to form an image reflected in
the vertical direction. Such setup allows the user to stare at dots at
different depths and guarantee that the images from each display
centered at the same horizontal and vertical direction.

Upon the controlling systems, a desktop with a Windows 8 system
connects to all four screens. Both cameras and infrared LEDs are
connected to a Raspberry Pi Zero. With knowledge of each LED’s
corresponding field of view coverage in advance, we sync up the
Raspberry Pi control program with the display program. When-
ever a target point is shown on display, the program turns on the
corresponding LED that proved to have visible Purkinje image III.

5 Purkinje Image Based Gaze Estimation
To leverage the detected eye features, we design an end-to-end
convolutional neural network (CNN), shown in Fig. 6. Using a
CNN has several benefits such as high accuracy, robustness, and
efficiency on large datasets. Our model takes images captured by
four cameras and feeds them into a Faster R-CNN [44] to generate
heatmaps, which are then stacked with the original images to pass to
a regressor for the final 3D gaze output. In the following section, we
first describe the ground truth generation process and then discuss
the gaze estimation model in detail.

5.1 Ground truth generation
5.1.1 Data collection

We first ask the subjects to put their heads on a chin rest and calibrate
their head positions by aligning the vertical and horizontal lines at
all four displays during the data collection stage. We turn on each
LED to make sure there is no hardware malfunction and then start
the collection by recording on Raspberry Pi cameras. Random target
points will appear on each display, and the subjects are asked to



Figure 6: Our network architecture. Images captured by different cameras
are first fed into the detector to infer the heatmaps of semantic features.
Then the original image and its corresponding heatmaps are concat
together as the input of the regressor. The final output of the regressor is
the gaze position in 3D space.

stare at the target point. To ensure the tester’s attention, we require
the tester to click on the target point first, which shrinks by 5 pixels
to provide higher acuity and sufficient time to accommodate and
maintain on display for one second. Eye images captured during
this period for each target point have known (x,y,z) positions. To
enforce the sample to cover the entire data space with a feasible
sampled data size, 300 target points light up one-by-one randomly
on the whole ±15 × ±15◦field of view for each display. We also
ask the user to stare at uniformly distributed points with a step of
two degrees as test data for more discernible visualization of gaze
tracking errors.

Our data collection system is controlled by one master Raspberry
Pi and four slave Raspberry Pi. Master Raspberry Pi sends a signal
to all slave Raspberry Pi, by which each of them controls one camera
on the eyetracker. When different target points appear on display,
the corresponding LEDs light up as designed by the simulation.

5.1.2 Data processing

Our raw data are video streams from four Raspberry Pi cameras. We
synchronize four videos with the recorded timestamps and extract
five frames from one video at each target point. In addition to
the known target position, we also generate ground truth of pupil
coordinates and center coordinates for Purkinje images I and III.
In 6, we show that using these features together produces a better
result than using one or two of them. For pupil segmentation, we
leverage model from DeepVOG [65], which returns us with the
center coordinates, the axis of pupil ellipse, and angle of rotation. For
Purkinje image I and III, we manually label the center coordinates
using VGG Image Annotator 2. In total, we have 32,500 labeled eye
images from five depths, that look into 1625 different target points
from five depths, shot by four cameras. Among those target points,
1486 contain Purkinje image III from at least one of the camera’s
capturing.

5.2 Gaze estimation with neural network

With the data collected from four cameras, we estimate the 3D
gaze position with an end-to-end four-branch convolutional neural
network. We first use Faster-RCNN to detect semantic eye features,
including pupil, Purkinje images I, and III. We then transfer those
features into heatmaps to better signify their positions and sizes.
Concatenating the heatmaps with their original input images, we

2http://www.robots.ox.ac.uk/ vgg/software/via/via-1.0.6.html

feed them into a modified LeNet [29] to generate feature maps.
Those feature maps from different branches are then stacked together
to feed into a fully connected layer, which derives the final 3D gaze
position g. Fig. 6 visualizes the whole pipeline of our algorithm, and
we will go into details of each component in the next few paragraphs.

Feature detection For eye features detection, we are inspired
by the idea of using Feature Pyramid Network (FPN) [32] to en-
hance Faster R-CNN [44]. It is proved to be useful for small objects
detection, which is suitable for small-sized features such as Purkinje
images. We choose ResNet18 [22] as the backbone, which is smaller
and faster, as a more complex structure does not improve the results.
In the implementation, we adjust the anchor size to [60,500], based
on the average sizes of Purkinje image I, Purkinje image III, and
pupil in eye images. Based on the ground truth data, both Purkinje
images can be regarded as circles with a radius of 30 pixels, and the
pupil has an averaged radius of 250 pixels. We choose the finest-
resolution layer P2 as the return layer on account of the small size of
anchors. In consideration of the generalization of feature detection,
all the Faster-RCNN modules share the weights. The outputs of the
Faster-RCNN are several bounding boxes of detected features. We
remove all the bounding boxes with confidence less than 0.5, and
then select the ones with the highest confidence as the final estimated
position of our three main eye features. To transfer from bound-
ing boxes to heatmaps, we approximate each bounding box with a
straight ellipse and simulate overlaying a piecewise two-dimensional
Standard Gaussian distribution on the ellipse, centered on the ellipse
center. Regions farther away from the center are blurred, indicat-
ing lower credibility in the boundary. Representing features with
heatmaps is also beneficial in the absence of eye features. Without
changing the network architecture, a fully black image is used to
indicate that no feature is detected. Stacking heatmaps with original
images allow us to load both Purkinje image information and other
eye features that may affect the gaze estimation.

3D Gaze regression For each camera branch, we feed the gen-
erated heatmaps, stacked with the corresponding original image, into
a regressor. Our regressor is based on LeNet [29] with some modifi-
cation. It is composed of two convolutional layers, each followed
by a max-pooling layer and a ReLU activation. To avoid overfitting,
we set a small 3 × 3 kernel size. All the feature maps from different
branches are then stacked with each other and input to two fully
connected layers with dimensions 500 and 200 and finally output
the 3D gaze point (x,y,z).

The resolution of raw images is 1920x1080, and we scale the size
to 720x540 to remove redundant details and preserve eye feature
quality. We find that data augmentation improves the tracking ac-
curacy for both gaze angle and accommodation. The input images
are contrasted enhanced and gray-scaled before going into the neu-
ral network. We minimize the least absolute deviations from the
estimated to the true gaze point in 3D.

Training The neural network is implemented by PyTorch [40].
The total datasets with 32,500 images are captured from four cameras
with targets at five different depths: 30cm, 35cm, 40cm, 45cm,
50cm. 80% images of the dataset are used as training data and the
remaining for the test. Multiple images corresponding to one target
will not be placed in both the train and test dataset. In the binocular
version, images captured by four cameras are fed into the network
simultaneously, while in the monocular version, only left or right
two camera images are input. In the training process, we first train
Faster-RCNN with the labeled location of the pupil, Purkinje image
I, and Purkinje image III. We then freeze its weights and train the
regression network separately. The initial learning rate for training
Faster-RCNN is set to 0.0003, and 0.0001 for training regressors.
They are both decreased by a factor of 0.3 once the number of epoch
reaches one of the milestones [20,50,80]. The model uses Adam



Table 1: Quantitative results of semantic feature detection of real cameras
frames

Pupil P1 P3

True Positive 100% 100% 100%
False Positive 0% 0% 2.92%
Euclidean Distance (px) 1.8739 2.2699 2.5493

optimizer, and we train for a total of 100 epochs. For both Faster-
RCNN and regressors, the batch size is set to 1 to encourage stronger
regularization. All training is performed on an NVIDIA GTX 1080
Ti graphics card.

6 Results and Analysis

In this section, we evaluate our proposed user-specific gaze tracking
algorithm on our multi-view dataset and provide qualitative and
quantitative analysis on major components. We also validate the
effectiveness of the third Purkinje images in improving both ver-
gence and accommodation estimation. Experiments demonstrate
that our results outperform the state-of-the-art in both vergence and
monocular accommodation estimation.

6.1 Dataset

Our dataset is composed of 32,500 eye images from a single sub-
ject, a 24-year-old Asian female with normal vision 3. It con-
tains the subject’s data looking at five depths of the plane, each
with 325 target points. Different from existing near-eye tracking
dataset [17,25,54,56,57,63], our eye dataset captures Purkinje image
III, which is useful for both eye vergence and monocular accommo-
dation estimation. Unlike [20, 25], our dataset is fully captured by
off-axis cameras, in line with the scenarios of using AR glasses, and
more challenging than on-axis setup. Our dataset also consists of
multi-view eye images that enable robust eye tracking even when
eye features are occluded in some views. Multi-view dataset also un-
leashes the potential to mitigate drift issues in near-eye eyetracking,
which is a common but underestimated problem.

6.2 Quantitative and qualitative evaluation

6.2.1 Semantic features detection

In the algorithm, we leverage Faster-RCNN for semantic feature
detection, which includes pupil, Purkinje image I and III. To evaluate
the result of the detection, we measure both the true positive and false
positive detection rate, considering the occlusions of eye features
in the images and the scenarios that features are not being captured
properly. We also compute the Euclidean distance between the
estimated feature center and the ground truth to indicate the accuracy
of detection. As shown in Table 1, our feature detection method is
able to detect all three features (pupil, Purkinje image I, and Purkinje
image PIII) correctly when they indeed exist. No pupil or Purkinje
image I are misdetected when they do not exist. In all images without
Purkinje image III, only 2.92% of them are falsely detected, which is
acceptable given the difficulty of distinguishing noise from Purkinje
image III in some capturing. On 720x540 resolution, the averaged
Euclidean distance of estimated and real feature center are 1.8739px,
2.2699px, 2.5493px respectively. Such high accuracy allows us to
detect Purkinje images’ tiny movements and is an important stepping
stone for our next gaze tracking.

Fig. 7 illustrates the detected features in highlighted blue, green,
and red bounding boxes, along with three heatmaps representing
pupil, Purkinje image I, and Purkinje image III.

3Data selection and evaluation currently limited only to an individual
user due to our institution being closed due to COVID-19

Figure 7: Qualitative results of semantic features detection. The first
column shows pupil, Purkinje image I and Purkinje image III highlighted
in blue, green, and red bounding box. The three columns on the right
illustrate their corresponding heatmaps.

Figure 8: 2D Error visualization at 40cm depth. Reference and estimated
points are marked with red square and blue cross, separately. We select
three pairs of them to visualize the vergence error, i.e. the average error
of the estimated left and right gaze angle and its ground truth.

6.2.2 Vergence and accommodation estimation

We visualize the ground truth target position and the estimated gaze
position at a depth of 40cm, which is halfway through the range
of depths used in our experiments in Fig. 8. Ground truth target
points are marked as red squares, while the calculated gaze points
are indicated as blue crosses. A purple line connects each pair of
target points and calculated gaze point in the visualization. To bet-
ter evaluate our results, we transfer the output 3D vector (x,y,z) to
yaw and pitch gaze angle (θ,φ) to compute the vergence angle error.
Our eye tracker estimates gaze with an error of only about 0.37
on average. We further validate the generalizability of our method
for estimating the gaze and accommodation at different depths in
Fig. 9. The left plot describes the vergence angle error across dif-
ferent depths, while the right one plots the error in estimating the
accommodation depth for various distances. The median errors in
the vergence angle estimates and the accommodation estimates are
consistently low across multiple depths.

6.3 Ablation study
Effectiveness of Purkinje image III We conduct an ablation

study to assess the importance of Purkinje image III in estimating
vergence and accommodation. As eye features are represented as
different layers of heatmaps in our neural network, we conduct
ablation studies of different heatmap combinations to assess their
efficacy. Table 2 and Table 3 provide the binocular and monocular
results of vergence and accommodation estimation, respectively.



Figure 9: Vergence and accommodation error distribution at five depths.
Both figures show that we are able to estimate vergence and accommo-
dation consistently. The estimated vergence errors at five depths are all
under 0.5◦and the accommodation errors are all close to 1cm.

Table 2: Comparison of using different features in binocular version of our
eye tracker.

Input Angle est. (degree) Depth est. (cm)

image 0.4846 1.234
image+PIII 0.4362 1.144
image+pupil+PI 0.4143 1.213
image+pupil+PI+PIII 0.3782 1.108

In terms of vergence, our baseline is to directly input eye im-
ages to the regressor without detecting features, which yields
0.4846◦accuracy in angle estimation. By adding extra informa-
tion of detected Purkinje image III, our system achieves a better
0.4362◦accuracy with 10% improvement, which indicates the ef-
fectiveness of Purkinje image III on this task. The best estimation
result comes from binding all features, which yields 0.3782◦in angle
estimation accuracy with a 22% improvement. As a comparison, we
also experiment with only using input images and detected PCCR
features, i.e., pupil and Purkinje image I, which achieves a better
result than the baseline but is worse than the one combining Purkinje
image III. The result corresponds with our theoretical analysis on
the relationship between feature movements and rotation angles:
Pupil center and Purkinje image III experience the largest distance
change while the eye rotates. Experiments also show that using both
features at the same time achieves the optimal results.

Similarly, for accommodation estimation, adding Purkinje image
III coordinates as an input improve depth estimation from 1.234cm
accuracy to 1.144cm. The best result 1.108cm is achieved by in-
putting images with all the features.

Both binocular and monocular results show the effectiveness
of the Purkinje image III. We also found that binocular result is
better than monocular one, which is very reasonable considering the
additional information another eye may provide compared to the
monocular version.

6.4 Comparison with state-of-the-art work
6.4.1 Vergence estimation

We compare our results with current state-of-the-art work in both
vergence and accommodation estimation. For the vergence estima-
tion task, we compare with NVGaze [25] and Park’s GazeML [39].
NVGaze used a convolutional neural network motivated by Laine et

Table 3: Comparison of using different features in monocular version of
our eye tracker.

Input Angle est. (degree) Depth est. (cm)

image 0.5988 1.467
image+PIII 0.5542 1.286
image+pupil+PI 0.5193 1.349
image+pupil+PI+PIII 0.4834 1.245

Table 4: Comparison with state-of-the-art methods for gaze estimation.

GazeML [39] NVGaze [25] Ours

Gaze Error
(degree) 0.92 0.67 0.52

al. [27] and GazeML projects eyeball and iris models onto binary
maps for gaze direction regression. On its dataset, NVGaze achieved
an absolute estimation error of 0.84◦accuracy, with the best case of
0.5◦. The deep pictorial gaze model from Park et al. had a gaze
angle error of 4.5◦on the 15-person MPII [68] dataset. Since none
of their datasets contain Purkinje image III, for a fair comparison,
we reproduce the network architecture used by NVGaze and borrow
the code from GazeML’s online repository 4. We train both methods
on our dataset and evaluate with the same metrics. Since the input
of GazeML and NVGaze is both one single image, we also only use
one branch in the original network architecture. Table 4 presents the
performance of those approaches evaluated on our dataset. GazeML
achieves a 0.92◦angle estimation error, while NVGaze has a better
result with a 0.67◦error. Our method, however, achieves the best
vergence estimation performance, which goes to 0.52◦. Note that we
compare our network performance only on our single-user dataset.
A comparison on a multi-user dataset is left for future work.

6.4.2 Monocular accommodation estimation

We compare the performance of our monocular accommodation
estimation with Lee et al. [31] and Itoh et al. [23]. Lee et al. [31]
used the relative positions of the Purkinje image I and IV to the
pupil center, inter-distance between these two Purkinje images, and
pupil size to calculate the 3D gaze position. Although Lee et al. [31]
evaluated their accuracy based on a larger range of depths than ours,
i.e. 10cm to 50cm, the normal focus range of human eyes starts
with 25cm. Moreover, their accommodation estimation is mainly
based on pupil diameter, which is heavily affected by illumination
change. They leveraged a multi-layered perceptron (MLP) and
achieved an average 4.59cm error along with the depth. We also
compare with results from Itoh et al. [23] as they used Purkinje
image III in the experiment as well. However, they did not offer
their methods or implementations in detail. The final mean absolute
error of their accommodation estimation is 3.15cm for a 10-degree
viewing angle. Nor did they explicitly describe the depth values
they used for network training, and only provide a depth range of
15-40cm, similar to ours 30-50cm. Their reported average depth
estimation error is 3.15cm. We achieve a 1.108cm better than both
methods. And we also illustrate the improvement of angle estimation
by leveraging Purkinje Image III that is not mentioned before.

6.5 Errors from eyeglasses slippage

Eyeglasses sliding down the bridge of the nose is a common problem
encountered by all people wearing eyeglasses. We anticipate that,
in the future, when the tracker is attached to AR eyeglasses, this
kind of slippage will be a significant problem. The slippage of
eyeglasses would cause the attached eyetracking cameras to drift
in space, causing errors in the gaze estimation. We evaluated the
simulated drift using our proposed algorithm to assess the impact
of eyeglasses slippage on gaze estimation accuracy. To this end, we
trained a dataset of simulated eye images captured from cameras
attached to the eyeglasses model without any drift. We tested this
trained model to evaluate the gaze estimation accuracy on test data
consisting of images with varying amounts of eyeglass drift between
1mm to 5mm along the nose bridge, as shown in Fig. 5. The error in
estimated gaze angle (degrees) is plotted in Fig. 10. It can be seen in

4https://github.com/swook/GazeML



Fig. 10 that eyeglass slippage can significantly impact the accuracy
of gaze estimation.

Next, we conduct a controlled laboratory experiment where a user
is asked to look at a set of target points displayed at a distance of
40 cm in two different sessions. Despite having a chin rest to hold
the head position constant relative to the eye tracker, we notice dis-
crepancies in the image frames captured by the eyetracking cameras,
which we account for drifting. We show one such example in Fig. 5.
Such slippage could be severe in an eye tracker in-the-wild. How-
ever, we note that such errors caused by drift can be compensated for
by taking advantage of the multiple cameras and IR LEDs present in
our eye tracker. The multiple cameras allow us to estimate the eye’s
3D position relative to the eyeglasses frame, making it possible to ac-
count for the eyeglasses slippage in the gaze estimation pipeline. To
validate this, we show the drift compensation for one frame of a real
experiment by overlaying the drift-compensated camera image with
that of a non-drifted camera image in Fig. 10. While we currently
propose using geometric techniques to estimate the camera drift via
detecting landmark features on the captured eye frames, we expect
this to be included as part of an end-to-end learning framework in
the future.

Figure 10: Top left: Drifting of the eyeglasses over the nose bridge.
Top right: Errors caused by drifting of the eyeglasses and hence the
eye tracking cameras. Notice how the captured frames differ when the
eyeglasses drift. We compensate for the eyeglasses drift using geometric
techniques and validate by overlaying non-drifted image and the warped
drifted image to show alignment. Bottom: The error in gaze estimation
caused due to the eyeglasses slippage over the nose bridge.

7 Discussion and FutureWork

In this work, we present a comprehensive eyetracking system that
captures higher-order Purkinje images for more accurate vergence
and monocular accommodation estimation, without requiring addi-
tional information from the ambient environment. The first Purkinje
image (i.e., corneal glint) and the fourth has been widely used in
state-of-the-art near-eye eyetrackers. Contrary to the existing work,
we utilize the third Purkinje image from the anterior surface of the
eye’s crystalline lens for both vergence and accommodation esti-

mation. The third Purkinje image is typically underutilized for its
reduced brightness and sensitivity to the camera, LED positions, and
eye motion. In this work, we model an anatomical eye, in simulation,
to include not only the cornea, sclera, and iris, but also the eye’s
crystalline lens that causes the higher-order Purkinje images. We
use this more advanced eye model to optimize for the placement
of cameras and LEDs for robust tracking of Purkinje images. We
also demonstrate a prototype eye tracker made from off-the-shelf
Raspberry Pi cameras and LEDs, thus providing a cheap alternative
to commercial eyetrackers. We use a convolutional neural network
that uses the detected eye features for fast and reliable gaze and
accommodation estimation, achieving an accuracy of 0.3782 de-
gree and 1.108cm in vergence and accommodation, respectively,
outperforming the existing state-of-the-art work eye trackers.

Limitations Our current eye tracker can be improved in several
ways and currently has the following limitations. First of all, our
anatomical eye model is only an approximate model that might not
generalize well for a wide variety of users, potentially leading to mi-
nor discrepancies in the simulated and real positions of the Purkinje
images. This can result in a one-time effort to manually optimize the
positions of the cameras and LEDs, to refine the optimized positions
in simulation further. We wish to model the physiological variabil-
ity of eyes that generalize well to a large set of people and design
optimization strategies to eliminate any manual effort in the future.

Our eyetracking solution can be customized and calibrated for
each individual user owing to the personal ownership and use of
the future AR eyeglasses, similar to today’s smartphones. While
the proposed eyetracking method can extend to a wide range of
users, including those with both normal vision as well as refractive
errors in the eyes, we currently evaluate our eye tracker only on a
single user with normal vision. Our university remained closed due
to the COVID-19 pandemic limiting an extensive analysis of our
eye tracker to validate its generalizability to a wide variety of users.
Moreover, we also could not demonstrate the use of eye tracker
in-the-wild. However, we expect that our eyetracking solution will
generalize well for a wide range of users and anticipate integrating
well into the future AR eyeglasses.

8 Conclusion
We anticipate that the future AR near-eye displays will be in the
form factor of everyday prescription eyeglasses, integrating the
digital content seamlessly into our ambient real world. For such
displays, presenting well-focused imagery of both real and virtual
worlds via tracking the user’s eyes is of significant importance for
comfortable viewing experiences. Moreover, eye tracking can aid
such techniques as gaze-contingent rendering that can dramatically
reduce the power and compute demands of AR eyeglasses, resulting
in extended battery life for prolonged usage.

We demonstrate in this paper, an eye tracker for AR eyeglasses
that tracks both the vergence and monocular accommodation ro-
bustly via tracking the Purkinje reflections from the various surfaces
of the eye using multiple cameras and multiple IR LED sources for
illumination. Our eye tracker improves the gaze and accommodation
estimation significantly compared to the existing eye trackers. We
are excited by the possibility of future AR displays integrating our
eyetracker alongside with focus adjusting capabilities for both real
and virtual imagery to provide seamless and comfortable augmented
reality experiences.
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[16] W. Fuhl, T. Kübler, K. Sippel, W. Rosenstiel, and E. Kasneci. Ex-
cuse: Robust pupil detection in real-world scenarios. In International
Conference on Computer Analysis of Images and Patterns, pp. 39–51.
Springer, 2015.

[17] W. Fuhl, T. Santini, G. Kasneci, W. Rosenstiel, and E. Kasneci. Pupilnet
v2. 0: Convolutional neural networks for cpu based real time robust
pupil detection. arXiv preprint arXiv:1711.00112, 2017.
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds., Advances
in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

[41] A. Patney, M. Salvi, J. Kim, A. Kaplanyan, C. Wyman, N. Benty,
D. Luebke, and A. Lefohn. Towards foveated rendering for gaze-
tracked virtual reality. ACM Transactions on Graphics (TOG),
35(6):179, 2016.

[42] B. K. Pierscionek and R. A. Weale. Investigation of the polarization op-
tics of the living human cornea and lens with purkinje images. Applied
optics, 37(28):6845–6851, 1998.

[43] M. A. Reilly. A quantitative geometric mechanics lens model: in-
sights into the mechanisms of accommodation and presbyopia. Vision
research, 103:20–31, 2014.

[44] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pp. 91–99, 2015.

[45] T. Schneider, B. Schauerte, and R. Stiefelhagen. Manifold alignment
for person independent appearance-based gaze estimation. In 2014
22nd International Conference on Pattern Recognition, pp. 1167–1172.
IEEE, 2014.

[46] J. Schwiegerling. Arizona eye model. In Field Guide to Visual and
Ophthalmic Optics. International Society for Optics and Photonics,
2004.

[47] L. Sesma, A. Villanueva, and R. Cabeza. Evaluation of pupil center-eye
corner vector for gaze estimation using a web cam. In Proceedings of
the symposium on eye tracking research and applications, pp. 217–220.
ACM, 2012.

[48] T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks. The zone of
comfort: Predicting visual discomfort with stereo displays. Journal of
vision, 11(8):11–11, 2011.

[49] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb.
Learning from simulated and unsupervised images through adversarial
training. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2107–2116, 2017.

[50] J. Sigut and S.-A. Sidha. Iris center corneal reflection method for
gaze tracking using visible light. IEEE Transactions on Biomedical
Engineering, 58(2):411–419, 2010.

[51] B. A. Smith, Q. Yin, S. K. Feiner, and S. K. Nayar. Gaze locking: pas-
sive eye contact detection for human-object interaction. In Proceedings
of the 26th annual ACM symposium on User interface software and
technology, pp. 271–280, 2013.

[52] Y. Sugano, Y. Matsushita, and Y. Sato. Learning-by-synthesis for
appearance-based 3d gaze estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1821–
1828, 2014.
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[62] E. Wood, T. Baltrušaitis, L.-P. Morency, P. Robinson, and A. Bulling.
Learning an appearance-based gaze estimator from one million synthe-
sised images. In Proceedings of the Ninth Biennial ACM Symposium
on Eye Tracking Research & Applications, pp. 131–138. ACM, 2016.

[63] E. Wood, T. Baltrusaitis, X. Zhang, Y. Sugano, P. Robinson, and
A. Bulling. Rendering of eyes for eye-shape registration and gaze
estimation. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 3756–3764, 2015.

[64] Z. Wu, S. Rajendran, T. van As, J. Zimmermann, V. Badrinarayanan,
and A. Rabinovich. Eyenet: A multi-task network for off-axis eye gaze
estimation and user understanding. arXiv preprint arXiv:1908.09060,
2019.

[65] Y.-H. Yiu, M. Aboulatta, T. Raiser, L. Ophey, V. L. Flanagin, P. zu Eu-
lenburg, and S.-A. Ahmadi. Deepvog: Open-source pupil segmentation
and gaze estimation in neuroscience using deep learning. Journal of
neuroscience methods, 324:108307, 2019.

[66] X. Zhang, Y. Sugano, and A. Bulling. Evaluation of appearance-based
methods and implications for gaze-based applications. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems,
pp. 1–13, 2019.

[67] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Appearance-based
gaze estimation in the wild. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4511–4520, 2015.

[68] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling. Mpiigaze: Real-world
dataset and deep appearance-based gaze estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 41(1):162–175, 2017.

[69] G. Zoulinakis, J. J. Esteve-Taboada, T. Ferrer-Blasco, D. Madrid-Costa,
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