
� 1

COMP 242 Class Notes 1

Handout 1: Introduction

Prasun Dewan

1. INTRODUCTION

Readings: Chapter 1, Comer; Chopter 1, Solomon.

An operating system is a set of procedures that provide facilities to:

|allocate resources to processes, and

|hide the details of the physical machine and provide a more pleasant virtual

machine.

We shall call these facilities the resource and beauti�cation facilities respec-

tively.

1.1 Resource Facilities

An understanding of resource facilities requires de�nitions of both processes and

resources.

1.1.1 Processes. While the notion of a process exists in all operating systems,

di�erent operating systems support processes in di�erent ways. Therefore a detailed

de�nition of processes is operating system-dependent. Here we present an intuitive

operating system-independent explanation of a process. We shall see later a detailed

explanation of processes supported by the Xinu Operating System.

The idea of a process is related to the idea of a program. A program describes

data and the code to manipulate them. For instance a C program consists of

declarations of variables (data) and procedures (code) that manipulate them. A

process is the result of executing a program. For instance, when a C program is run,

space is allocated in memory for the code and data described by the program and

a new process is created. The process executes the main procedure of the program,

which may call other procedures. The process is removed from the system when

(and if) the computation started by the main procedure terminates or external

factors (such as the system going down or the user typing a special character)

cause termination.

A system may consist of several processes executing concurrently. These pro-

cesses may be the execution instances of (i.e. result of executing) the same or

di�erent programs. For instance, in a typical interactive system, at any point there

are several execution instances of editor, mailer, and command interpreter pro-

grams. Each of these processes represents a separate `thread of control' and is

associated with a separate stack. Executions of these threads in a single processor

system are interleaved, as we shall see later.

1.1.2 Resources. A resource is a commodity needed by a process to do its

work. The computer hardware provides a number of fundamental resources. A

1These notes are derived from several sources, which include, primarily, Doug Comer's two books

on Xinu, Raphael Finkel's "An Operating Systems Vade Mecum", Prentice Hall, 1986, and Singhal

and Shivratari's Advanced Operating Systems," McGraw Hall 1996. Copyright by P. Dewan. All

rights reserved.

2 �

process needs memory space for its code and data, processor time to execute its

instructions, and I/O facilities to accept data and produce results. In addition to

these fundamental resources, the operating system introduces new resources. For

example, �les are provided to store permanent data. Facilities may be provided for

interprocess communication. Other higher level resources may be built out of these

fundamental resources.

The following analogy may explain the process-resource concept. Consider a

theater that shows several one-actor plays simultaneously. The theater corresponds

to the computer and the actors to the processes. The resources are the props used

by the actors. As actors need props, they request them from the director (operating

system). The director's job is to satisfy the following contradictory goals:

|to let each actor have whatever props are needed

|to be fair in giving props to each actor.

The director also is responsible to the owners of the theater (that is, the owners

of the computer), who have invested a considerable sum in its resources. This

responsibility also has several goals:

|to make sure the props (resources) are used as much as possible

|to �nish as many plays (processes) as possible.

1.2 Beauti�cation Facilities

An operating system also provides facilities to hide the details of the hardware. It

constructs higher level resources out of lower level ones. For instance, the hardware

provides terminal interrupts for input from and output to a terminal. An operating

system provides higher level facilities to read and write characters, which relieve a

user program from the task of handling interrupts from the terminal. Similarly, the

hardware provides an unstructured disk. The operating system provides a higher

level structure consisting of �les.

1.3 What an Operating System is Not

An operating system is not:

|the hardware, which provides the fundamental resources managed by the oper-

ating system,

|a programming language, though a programming language is needed to write an

operating system,

|a set of utility programs such as editors, mailers, compilers and loaders, which

use the facilities provided by an operating system.

1.4 Services provided by an Operating System

The following are examples of services provided by an operating system:

|Context Switching & Scheduling, which allocate a process CPU time to execute

its instructions.

|Memory Management, which deals with allocating memory to processes.

|Interprocess Communication, which deals with facilities to allow concurrently

running processes to communicate with each other.

� 3

|File Systems, which provide higher level �les out of low level unstructured data

on a disk.

|High level I/O facilities, which free a process from the low-level details of interrupt

handling.

2. CLASSIFYING OPERATING SYSTEMS

An operating system can be classi�ed according to several criteria, some of which are

given below. The criteria given in this section have to do with the functionality of

the OS. Later we will look at the structural/implementation criteria for classifying

operating systems.

2.1 Number and Coupling among Processors

One important criterion is the number and the coupling among the processors man-

aged by the operating system. The simplest case is the traditional uniprocessor

operating system, which manages a single processor. Operating systems that man-

age multiple, interconnected processors can be distinguished based on the \cou-

pling" among the processors. The level of coupling depends on both the hardware

and the software connecting the processors.

The tightest-coupling case is the multiprocessor operating system, manages

several processors with separate caches but sharing a common memory. The mem-

ory is typically divided into several modules which can be accessed independently.

Thus several (non-con
icting) memory requests can be serviced concurrently. A

switching network is used to direct requests from processors to the correct memory

module. The presence of multiple processors signi�cantly changes the synchroniza-

tion and scheduling components of the operating system.

Long-haul networks are collections of widely scattered computers connected by

a common communication network. Communication in such systems is relatively

slow (9.6 to 56 Kbps) and unreliable and typically through telephone lines, mi-

crowave links, and satellite channels. Long-haul networks provide several network-

based services to their users such as mail, news, talk, and WWW access. The

notion of a long-haul network requires the ability to communicate among remote

processes. It also requires schemes for overcoming the lack of speed and reliability

of the network and also the absence of a global clock.

A local-area network consists of independent computers con�ned to small

geographical area. Since this area is small, the communication network can be fast

(3-100 Mbps) and reliable. It o�ers, in addition to the services o�ered by long-haul

networks, sharing of expensive devices such as printers and large secondary store.

The challenge here is to unify services o�ered by multiple computers and address

the problem of naming these services. For instance, in the case of the �le service,

the challenge is to provide a uni�ed �le system that spans multiple computers.

Local-area (and long-haul) networks run independent, possibly di�erent, oper-

ating systems that o�er limited services for sharing. An alternative approach is

to use the same hardware con�guration but present a single, multicomputer,

operating system that manages all the computers. The main challenge here is dy-

namic placement and migration of processes running on di�erent computers and

implementation of distributed shared memory.

4 �

These four kinds of systems are basically four points in a continuous coupling

spectrum. One can imagine a variety of intermediate points base on how much

sharing is provided among the di�erent processors.

2.2 Support for Mobility

We have assumed above that coupled computers are always connected, are placed

at �xed locations, and can easily meet their power needs. These assumptions do

not hold for battery-powered mobile computers (e.g. laptops) that are sporadically

connected to stationary and mobile computers. To support such computers, we

must revisit scheduling so that CPU energy used is reduced, and distributed syn-

chronization since processes on di�erent mobile computers may not be connected

to each other.

2.3 Real-time Support

An operating systems can also be classi�ed by the extent of the support for real-time

services. Most operating systems support priorities, which may be used to allow

applications with nearer deadlines to get precedence. Real-time operating

systems provide more elaborate, higher-level support for meeting deadlines that

automatically schedules processes based on task durations and deadlines. Things

get tricky when shared objects are accessed by real-time processes, since ideally,

we do not want a process with a later deadline to block a process with an earlier

deadline. Solutions exist if we make certain assumptions about behaviors of real-

time systems.

2.4 Database Support

Operating systems are often competitors of database systems for the management

of secondary store and synchronization of processes. Traditional operating systems

provide simple forms of persistent data and synchronization, leaving complex sup-

port to database systems. Database operating systems provide more elaborate

support - in particular they support transactions.

3. STRUCTURE OF AN OPERATING SYSTEM

An operating system is composed of a kernel, possibly some servers, and posssi-

bly some user-level libraries. The kernel provides operating system services through

a set of procedures, which may be invoked by user processes through system calls.

System calls look like procedure calls when they appear in a program, but transfer

control to the kernel when they are invoked at run time. (read is an example of a

system call in Unix.)

In some operating systems, the kernel and user-processes run in a single (physical

or virtual) address space. In these systems, a system call is simply a procedure call.

In more robust systems, the kernel runs in its own address space and in a special

privileged mode in which it can execute instructions not available to ordinary user

processes. In such systems, a system call invokes a trap as discussed below.

A trap is a hardware event that invokes a trap handler in the kernel. The

trap indicates, in appropriate hardware status �elds, the kind of trap. Traps may

be generated implicitly by the hardware to signal events such as division by zero

and address faults (which we will discuss later), or explicitly by a process when it

� 5

executes a special instruction. Explicit or user-initiated traps are used to handle

system calls. A system call stores the name of the call and its arguments on the

stack and generates a user-initiated trap. The trap handler in the kernel knows,

from the type of the trap, that it is a user-initiated trap asking for a system call,

�nds the name of the systems call, and calls the appropriate kernel procedure to

handle the call passing it the arguments stored on the stack.

We will later consider the various techniques for structuring the kernel. As we

shall see, kernels may be layered, object-oriented, or decomposed into kernel pro-

cesses.

Not all operating services have to be provided by the kernel. Modern operating

systems also de�ne servers, which are user processes that o�er operating system

services to other processes. These services are invoked by clients through interpro-

cess communication (IPC) primitives. We shall see later the rationale for trans-

ferring functionality from the kernel to servers. We shall also see the minimum

functionality that needs to be supported in the kernel. In micorkernel-based

systems, the kernel provides this minimum functionality.

The cost of invoking system calls and IPC primitives is more than the cost of

invoking a simple procedure call when multiple address spaces are supported by the

system. Therefore, as we shall see later, some of the traditional OS functionality is

sometimes also provided by user-level libraries.

3.1 Policy and Mechanism in an Operating System

In this course, we shall distinguish between policy and mechanism. Policies are

ways to choose which activities to perform. Mechanisms are the implementations

that enforce policies, and often depend to some extent on the hardware on which

the operating system runs. For instance, a processes may be granted resources using

the �rst come, �rst serve policy. This policy may be implemented using a queue of

requests. Often the kernel provides mechanisms that are used to implement policies

in servers.

3.2 The XINU Approach

There are several approaches to OS design, depending on the policies and mecha-

nisms supported by the OS. In this course we shall study in detail the policies and

mechanisms of one such approach, implemented in the XINU operating system.

We have chosen XINU in this course because its implementation has been carefully

thought and documented in a text book. Moreover, once you master Xinu, you will

have no di�culty understanding Comer's text books on networking which show how

networking support can be added to Xinu. The XINU approach is fairly typical

of current OS approaches. However, it is only one OS approach and provides lim-

ited functionality. Therefore, variations of and embellishments to it will be studied

through reading and programming assignments and class lectures.

In Xinu, there is no di�erence between a system call and an ordinary procedure

call. A user program is linked to the kernel and can thus invoke kernel procedures

through ordinary procedure calls. Moreover, there is no notion of servers and thus

all operating system services are provided by the kernel. However, we shall see later

how Xinu may be extended to support servers.

An important concept in XINU is layering. The di�erent components of the

6 �

system are partitioned into layers. At the heart of the layered organization is the

raw machine. Building out from this core, higher layers of software provide more

powerful primitives, and shield the user from the machine underneath. Each layer

of the system provides an abstract service, and uses the services of lower level lay-

ers. The following are the XINU layers, going from inside to outside: the hardware,

memory manager, process manager, process coordination, interprocess communi-

cation, real-time clock manager, device manager and device drivers, intermachine

network communication, �le system, and �nally the user programs that use the

virtual machine underneath. In the rest of this course, we shall study these layers

in detail.

Layering has the advantage that it provides a step-by-step or modular approach

to operating system design and implementation. Each layer may be added incre-

mentally, and high level layers have to be concerned only with the de�nition of the

services provided by lower level layers, and not with their implementation.

4. MACHINE AND RUN-TIME ENVIRONMENT

Refer to chapter 2 of the Comer text for the details.

5. XINU PROCESSES AND CONCURRENCY

Consider the following program consisting of three procedures:

#include <conf.h>

main ()

{

int prA(), prB();

resume(create(prA, 200, 20, "proc 1", 0));

resume(create(prB, 200, 20, "proc 2", 0));

}

prA()

{

while (1)

putc(CONSOLE, 'A');

}

prB()

{

while (1)

putc(CONSOLE, `B');

}

The statement `#include <conf.h>' inserts a �le of XINU declarations in the source

program. These declarations include, among other things, a de�nition of the con-

stant CONSOLE, and the procedures `resume', `create', and `putc' used by the

program.

� 7

Consider what happens when this program is executed. A process is created,

which starts executing the main procedure. This procedure in turn executes the

two resume-create statements. Each of these spawns a new process.

The statement `create(prA....)' asks XINU to create a new process that executes

the procedure `prA' (just as the initial process executes the procedure `main'). The

other arguments to create specify such things as the stack size needed (recall that

each process is associated with a separate stack), a scheduling priority (the OS uses

this to allocate processor time to the process), process name (`proc1'), the count of

arguments to the process (which are the arguments to the procedure `prA' and are

zero in number). Create sets up the process, leaving it ready to run, but temporarily

suspended. It returns the process id of the new process, which is an integer that

identi�es the created process so that it may be referenced later. In the example,

the main procedure passes this process id to `resume', which starts (unsuspends)

the process so it begins executing. The process executes the procedure `prA', which

uses the XINU facility `putc' to write the character `A' on the screen.

Similarly, the statement `resume(create (prB...))' creates a process that executes

the procedure `prB', which prints `Bs' on the screen.

It is important to distinguish between a procedure call and calls to `create' and

`resume:

A procedure call does not return until the called procedure completes. Create

and resume return to the caller after starting the process, allowing execution of

both the calling procedure and the named procedure to proceed concurrently, as

discussed in the following section.

Thus in the example, the main program terminates its computation after ex-

ecuting the create and resume procedure (when it reaches the end of the main

procedure), while the two processes remain churning out `As' and `Bs' forever.

5.1 Concurrent Execution of Processes

Modern operating systems allow several processes to execute concurrently. It is not

di�cult to imagine several independent processes each being concurrently executed

statement-by-statement on a di�erent machine. But what does it mean for an

operating system to provide concurrent processing on a single processor, which can

execute only one statement at a time?

On a single processor, the OS, to create the illusion of concurrency, switches

a single processor among several processes, allowing it to run one for only a few

thousandths of a second before moving on to another. When viewed by a human,

these processes appear to run concurrently.

Thus in the example, the execution of the three processes is interleaved. As a

result, the output on the screen is a mixture of `As' and `Bs'.

5.2 Shared Memory in XINU

In XINU, each process has its own copy of local variables, formal parameters, and

procedure calls, but all processes share the same set of global (external) variables.

Consider a simple example of two processes that need to communicate with each

other through a shared integer, `n'.

#include <conf.h>

8 �

int n = 0; /* external variable shared by all processes */

main()

{

int produce(), consume();

resume(create(consume, 200, 20, "cons", 0));

resume(create(produce, 200, 20, "prod", 0));

}

produce()

{

int i;

for(i=1; i<=2000; i++)

n++;

};

consume()

{

int i;

for(i=1; i<=2000; i++)

printf("n is %d", n);

}

The process executing `produce' loops 2000 times, incrementing `n', we call this

process the producer. The process executing `consume' also loops 2000 times; it

prints the value of `n' in decimal. We call this process the consumer.

5.3 Synchronization and Semaphores

Assume it is required that the consumer print all the numbers produced by the

producer. Does the above program achieve this goal?

The answer, surprisingly, is no. While execution of the producer and the con-

sumer is interleaved, no guarantees are made about the relative execution speeds of

the two processes, which the operating system is free to choose. Thus the program-

mer can make no assumptions about the way in which processor time is allocated

to each process.

XINU provides semaphores to synchronize processes. A semaphore consists

of an integer value, initialized when the semaphore is created. The system call wait

decrements the semaphore and causes the suspended process to delay if the result

is negative. Signal performs the opposite action, incrementing the semaphore and

allowing a waiting process to continue. Semaphores are created dynamically with

the call screate, which takes the initial count as an argument, and returns an integer

by which the semaphore is known.

The following program illustrates the use of semaphores to achieve our goal of

printing every value produced:

int n = 0;

� 9

main()

{

int prod2(), cons2();

int produced, consumed;

consumed = screate(0);

produced = screate(1);

resume(create(cons2, 200, 20, "cons", 2, consumed, produced));

resume(create(prod2, 200, 20, "prod", 2, consumed, produced));

}

prod2(consumed, produced)

{

int i;

for(i=1; i<=2000; i++)

{

wait(consumed);

n++;

signal(produced);

}

}

cons2(consumed, produced)

{

int i;

for (i=1; i<=2000; i++) =

{

wait(produced);

printf("n is %d", n);

signal(consumed);

}

In the above example, two semaphores `consumed' and `produced' are created by

calls to screate., The producer waits before the consumer prints a value of `n'.

Likewise, the consumer prints a new value of `n' only after it has been incremented

by the producer. Thus the consumer prints all values of n from 0 through 1999.

5.4 Mutual Exclusion

We now consider mutual exclusion, which ensures that two concurrent processes

do not access shared data at the same time.

The following example illustrates the need for mutual exclusion:

int a[2];

int n = 0;

main()

{

10 �

resume(create(AddChar, 200, 20, "AddChar1", 1, `a'));

resume(create(AddChar, 200, 20, "AddChar2", 1, `b'));

}

AddChar(item)

char item;

{

a[n++] = item;

}

The purpose of the program is to spawn two processes, each of which adds an

item to the global array a, which represents a set whose maximum size is 2. After

all processes are completed, the result should be either:

n = 2;

a[1] = `a';

a[2] = `b';

or

n = 2;

a[1] = `b';

a[2] = `a';

The order in which the two elements are added is not important because of the set

semantics.

Is one of the two results guaranteed by the above program? Certainly, if the

assignment statement:

a[n++] = item;

is executed atomically, (that is executed as one unit by the processor) one of the

two results is guaranteed. However, if they are not executed atomically, an invalid

result may be produced, as shown below.

Assume that the statement:

a[n++] = item;

in process AddChar1 is translated into the following three atomic statements:

temp1 = n;

n++;

a[temp1] = item;

Similarly, assume that

a[n++] = item

in process AddChar2 is translated into:

temp2 = n;

n++;

a[temp2] = item

� 11

Now assume that the OS interleaves the execution of the two statements in the

following manner:

/* begin executing a[n++] = item in process AddChar1 */

temp1 = n;

/* switch to a[n++] = item in process AddChar2 */

temp2 = n;

n++;

a[temp2] = item;

/* execute rest of a[n++] = item in process AddChar1 */

n++;

a[temp1] = item;

The result is:

n = 2;

a[0] = `a';

a[1] = ?;

since both temp1 and temp2 are assigned the initial value of n.

This error can be corrected by using a semaphore to disallow concurrent access

to the shared data. The semaphore has an initial count of 1. Before accessing

shared data, each process executes wait on the semaphore, and calls signal after it

has completed. Thus the statement `a[n++] = item' is replaced by

wait(mutex);

a[n++] = item;

signal(mutex)

where mutex is the semaphore used for mutual exclusion.

6. HEAVYWEIGHT VS LIGHTWEIGHT PROCESSES

As we have seen above, Xinu processes all execute in the same address space, and

do not incur the overhead of a trap when making a system call. Such processes are

called lightweight processes (lwps), since they have little associated state, mak-

ing context switches, process creation, and interprocess communication relatively

inexpensive. These processes are to contrasted with Unix-like heavyweight pro-

cesses (hwps), which run in separate address spaces and trap to the kernel to

make a system call. Lightweight and heavyweight processes are complementary

concepts in that one can run multiple lightweight processes inside a heavyweight

process. In fact, your assignments will be doing exactly this, creating Xinu lwps

within a Unix hwp.

