
� 1

COMP 242 Class Notes

Section 3: Interprocess Communication

1. INTERPROCESS COMMUNICATION

Readings: Chapter 7, Comer.

An operating system provides interprocess communication to allow processes

to exchange information. Interprocess communication is useful for creating cooper-

ating processes. For instance an `ls' process and a `more' process can cooperate to

produce a paged listing of a directory.

There are several mechanisms for interprocess communication. We discuss some

of these below.

1.1 Shared Memory

Processes that share memory can exchange data by writing and reading shared

variables. As an example, consider two processes p and q that share some variable

mesg. Then p can communicate information to q by writing new data in mesg,

which q can then read.

The above discussion raises an important question. How does q know when p

writes new information into mesg? In some cases, q does not need to know. For

instance, if it is a load balancing program that simply looks at the current load in

p's machine stored in mesg. When it does need to know, it could poll, but polling

puts undue burden on the cpu. Another possibility is that it could get a software

interrupt, which we discuss below. A familiar alternative is to use semaphores

or conditions. Process q could block till p changes mesg and sends a signal that

unblocks q. However, these solutions would not allow q to (automatically) block if

mesg cannot hold all the data it wants to write. (The programmer could manually

implement a bounded bu�er using semaphores.) Moreover, conventional shared

memory is accessed by processes on a single machine, so it cannot be used for

communicating information among remote processes. Recently, there has been a lot

of work in distributed shared memory over LANs, which you will study in 203/243,

which tends to be implemented using interprocess communication. However, even if

we could implement shared memory directly over WANs (without message passing),

it is not an ideal abstraction for all kinds of IPC. In particular, it is not the best

abstraction for sending requests to servers, which requires coding of these requests

as data structures. As we shall see later, message passing (in particular, RPC) is

more appropriate for supporting client-server interaction.

1.2 Software Interrupt

We can introduce a service call that lets one process cause a software interrupt in

another:

Interrupt(process id, interrupt number)

and another that allows a process to associate a handler with an interrupt:

Handle(interrupt number, handler)

Software interrupts are often used by an operating system to inform a process

about the following events:



2 �

The user typed the \attention key".

An alarm scheduled by the process has expired.

Some limit, such as �le size or virtual time, has been exceeded.

It is important to distinguish among interrupts, traps, software interrupts, and

exceptions. In all cases, an event is processed asyncrhonously by some handler

procedure. Interrupt and trap numbers are de�ned by the hardware which is also

responsible for calling the procedure in the kerneal space Software trap numbers

are de�ned by the operating system which is responsible for calling a procedure in

the user space. An interrupt handler is called in response to a signal from another

device while a trap handler is called in response to an instruction executed within

the cpu.

A software interrupt handler is called in response to the invocation of a system

call. Exceptions are processed by the programming language. An exception raised

in some block, b, of some process p, can be caught by a handler in the same block,

or a block/procedure (in p) along static/dynamic links from b, or by a process q

that (directly or indirectly) forked p. The rasiser of an exception does not identify

which process should handle it, so exceptions are not IPC mechanisms.

The notion of software interrupts is somewhat confused in some environments

such as the PC, where traps to kernel-provided I/O routines are called software

interrupts. There is a special instruction on the PC called INT which is used to

invoke these traps. For instance, the instruction

int 16H

executes the BIOS interrupt routine for processing the current character received

from the keyboard. (It is executed by the interrupt handler of the Xinu kernel to ask

the PC BIOS handler to fetch the character from the keyboard.) The term interrupt

is used because these rountines are called usually by hardware interrupt routines.

We are using the term software interrupts for what Unix calls signals, which are not

to be confused with semaphores, though you invoke the signal operation on both!

1.3 Message Passing

The most popular form of interprocess communication involvesmessage passing.

Processes communicate with each other by exchanging messages. A process may

send information to a port, from which another process may receive information.

The sending and receiving processes can be on the same or di�erent computers

connected via a communication medium.

One reason for the popularity of message passing is its ability to support client-

server interaction. A server is a process that o�ers a set of services to client

processes. These services are invoked in response to messages from the clients and

results are returned in messages to the client. Thus a process may act as a sort

server by accepting messages that ask it to sort a list of data items.

In this course we shall be particularly interested in servers that o�er operating

system services. With such servers, part of the operating system functionality can

be transferred from the kernel to utility processes. For instance �le management

can be handled by a �le server, which o�ers services such as open, read, write, and

seek. Similarly, terminal management can also be handled by a server that o�ers

services such as getchar and putchar.



� 3

There are several issues involved in message passing. We discuss some of these

below.

1.3.1 Reliability of Messages. Messages sent between computers can fail to arrive

or can be garbled because of noise and contention for the communication line. There

are techniques to increase the reliability of data transfer. However, these techniques

cost both extra space (longer messages to increase redundancy, more code to check

the messages) and time

Message passing techniques can be distinguished by the reliability by which they

deliver messages.

1.4 Integration with I/O

Another issue is whether the IPC prmitives are integated with �le and terminal

I/O. The integration would make the OS API becomes smaller, hence easier to

understand and learn, and also allow late binding of a source or destination of

information.

1.4.1 Order. Another issue is whether messages sent to a port are received in

the order in which they are sent. Di�erential bu�ering delays and routings in a

network environment can place messages out of order. It takes extra e�ort (in the

form of sequence number, and more generally, time stamps) to ensure order.

1.4.2 Access. An important issue is how many readers and writers can exchange

information at a port. Di�erent approaches impose various restrictions on the ac-

cess to ports. A bound port is the most restrictive: There may be only one reader

and writer. At the other extreme, the free port allows any number of readers and

writers. These are suitable for programming client/server interactions based on a

family of servers providing a common service. A common service is associated with

a single port; clients send their service requests to this port and servers providing

the requested service receive service requests from the port. Unfortunately, imple-

menting free ports can be quite costly. The queue associated with the port is kept at

a site which, in general, is remote to both a sender and a receiver. Thus both sends

and receives result in messages being sent to this site. The former put messages

in this queue and the latter request messages from it. (Often the implementation

used is a little di�erent from the centralized one described above: When a message

is sent to a port, it is relayed to all sites where a receive could be performed on the

destination port; then, after a message has been received, all these sites are noti�ed

that a message is no longer available for receipt. However, even in this replciated

case, both sends and receives result in remote communication.)

Between these two extremes are input ports and output ports. An input port

has only one reader but any number of writers. It models the fairly typical many

client, one server situation. Input ports are easy to implement since all receives that

designate a port occur in the same process. Thus the message queue associated with

a port can be kept with the receiver. Output ports, in contrast, allow any number

of readers but only one writer. They are easier to implement than free ports since

the message queue can be kept with the sender. However, they are not popular

since the one client, many server situation is very unusual. Note that sending to

an output port does not broadcast the message to all the receivers - a speci�c



4 �

message is received by a single server. Perhaps a \practical" use of an output port

is distribution of tickets or other resources by a \vendor" to a set of \buyers".

Several applications can use more than one kind of port. For instance a client can

enclose a bound port in a request message to the input report of a �le server. This

bound port can represent the opened �le, and subsequent reads and write requests

can be directed to this port.

1.4.3 Remote Assignment vs Procedure Call. Some systems such as CSP regard

the information in a message to be data subject to interpretation by the recipient.

In these systems, the send operation is of the form:

send (port, outdata)

while the receive is of the form:

receive (port, indata)

The completion of the receive causes the outdata to be assigned to indata (if the

ports named are the same). Thus, a matching send and receive essentially perform

a remote assignment:

indata := outdata

Typically, indata and outdata are untyped byte streams though with language sup-

port typed data may be transmitted in messages.

Other systems, such as Ada regard the information in a message to be a request

for service. The service is named by the port, and message contains parameters.

In these systems, the send operation is of the form:

<result> := { send} <port or service name> (<parameters>)

and the receive operation is of the form:

receive <port or service name> (<formal parameters>): <result type>

begin

service request

{reply} (answer)

end

(Here, we are assuming language support for specifying these operations)

The send operation is similar to a procedure call, and the receive operation is

similar to a procedure declaration. When the receive succeeds, the parameters of the

incoming message are assigned to the formal parameters of the receive statement.

The receiving process then executes code that services the request, and then sends

any results in a reply message. The following are examples of matching send and

receive:

/* client */

foo := send add (3, 5);

/* server */

receive add (p1, p2: int): int

begin



� 5

reply (p1 + p2)

end

The main di�erence between the send and a procedure call is that the former

can result in code being executed in a process on a remote machine. Thus the

parameters are marshalled into a message from which they are unmarshalled into

the receiver's address space. Hence, such a send is called a remote procedure

call. The main di�erence between the receive and a procedure declaration is that

the code associated with the receive is not executed till the process executes the

receive operation. At this point, in the case of synchronous RPC, the sender and

the receiver are said to be in a rendezvous. Later, we shall see other di�erences

between local and remote procedure calls.

The second form of message-passing can be simulated by the �rst. Thus the

following communication according to the �rst form simulates the `add' example:

/*client*/

send (addPort, 3) /* addPort is an input port */

send (addPort, 5)

send (addPort, replyPort); /* reply port is a bound port */

receive (replyPort, result);

/*server*/

receive (addPort, p1);

receive (addPort, p2);

receive (addPort, replyPort); /* assuming a port can handle multiple types */

send (replyPort, p1 + p2);

Thus the second form of communication is higher-level compared to the �rst and

requires fewer kernel calls. However, it is also less 
exible, since it requires exactly

one reply to a message from the receiver of the message, does not allow incremental

transmission of the returned information, and also requires that all parameters of

a request come from a single source. Sometimes it is useful if the receiver of a

message forwards the request to another server. In such a situation the answer

could come from a process other than the one to which the request was made.

Also, in data
ow computations, often each operand of an operation comes from a

di�erent process. When all operands of an operation arrive at a server process, the

operation is said to be triggered. Finally, a \more" process receiving a �le from an

\ls' process may wish to receive and display the �le incrementally. RPC does not

directly support the above scenarios.

1.4.4 Synchronous vs Asynchronous. The send, receive, and reply operations may

be synchronous or asynchronous. A synchronous operation blocks a process

till the operation completes. An asynchronous operation is non-blocking and

only initiates the operation. The caller could discover completion by polling, by

software interrupt, or by waiting explicitly for completion later. (Does it make sense

to have an RPC send not block?) An asynchronous operation needs to return a

call/transaction id if the application needs to be later noti�ed about the operation.

At noti�cation time, this id would be placed in some global location or passed as

an argument to a handler or wait call.



6 �

The notion of synchronous operations requires an understanding of what it means

for an operation to complete. In the case of remote assignment, both the send and

receive complete when the message has been delivered to the receiver. In the case

of remote procedure call, the send, receive, and reply complete when the result has

been delivered to the sender, assuming there is a return value. Otherwise, the send

and receive complete when the procedure �nishes execution. During the time the

procedure is executing, the sender and receiver are in a rendezvous, as mentioned

before.

Note that synchronous/asynchronous implies blocking/not blocking but not vice

versa, that is, not every blocking operation is synchronous and not every non

blocking operation is asynchronous. For instance, a send that blocks till the re-

ceiver machine has received the message is blocking but not synchronous since

the receiver process may not have received it. Similarly, we will see later a Xinu

receive that is non-blocking but is not asynchronous. These de�nitions of syn-

chronous/asynchronous operations are similar but not identical to the ones given

in your text books, which tend to equate synchronous with blocking.

Asynchronous message passing allows more parallelism. Since a process does not

block, it can do some computation while the message is in transit. In a synchronous

system, such parallelism can be achieved by forking a separate process for each

concurrent send, but this approach incurs the cost of extra process management.

This cost is typically bearable with lwps but not hwps.

Asynchronous message passing introduces several problems. What happens if the

message cannot be delivered? The process never waits for delivery of the message,

and thus never hears about the error. Software interrupts could be used to report

such errors. Another problem related to asynchronous communication is to do with

bu�ering. If messages sent asynchronously are bu�ered in a space managed by the

OS, then a process may �ll this space by 
ooding the system with a large number

of messages.

1.4.5 Bu�ering of Messages. Consider the case when a process sends the value

of variable smesg to some port. While the message is in transit, it needs to be

kept in some memory area. It may be kept in the sender's address space or may be

bu�ered in an address space managed by the operating system such as the process

table.

Keeping the data in the sender's address space is both time and space e�cient:

It does not require space for bu�ering and does not require copying to and from a

bu�er. However, it is not suitable if asynchronous sends are allowed (why?).

Several questions arise when data are bu�ered by the OS: What is the size of

a message bu�ered by the OS? How many bu�ers are allocated? What happens

when the bu�er area gets exhausted? Are bu�ers allocated per port, per process,

or shared by all processes and ports? There are no good general answers to these

questions.

1.4.6 Pipes. One solution to some of the bu�ering problems of asynchronous send

is to provide an intermediate degree of synchrony between pure synchronous and

asynchronous. We can treat the set of message bu�ers as a \traditional bounded

bu�er" that blocks the sending process when there are no more bu�ers available.

That is exactly the kind of message passing supported by Unix pipes. Pipes also



� 7

allow the output of one process to become the input of another.

A pipe is like a �le opened for reading and writing. Pipes are constructed by the

service call pipe, which opens a new pipe and returns two descriptors for it, one

for reading and another for writing. Reading a pipe advances the read bu�er, and

writing it advances the write bu�er. The operating system may only wish to bu�er

a limited amount of data for each pipe, so an attempt to write to a full pipe may

block the writer. Likewise, an attempt to read from an empty bu�er will block the

reader.

Though a pipe may have several readers and writers, it is really intended for

one reader and writer. Pipes are used to unify input/output mechanisms and

interprocess communication. Processes expect that they will have two descriptors

when they start, one called `standard input' and another called `standard output'.

Typically, the �rst is a descriptor to the terminal open for input, and the second

is a similar descriptor for output. However, the command interpreter, which starts

most processes, can arrange for these descriptors to be di�erent. If the standard

output descriptor happens to be a �le descriptor, the output of the process will go

to the �le, and not to the terminal. Similarly, the command interpreter can arrange

for the standard output of one process to be one end of a pipe and for the other

end of the pipe to be standard input for a second process. Thus a listing program

can be piped to a sorting program which in turn directs its output to a �le.

1.4.7 Selectivity of Receipt. A process may wish to receive information from a

subset of the set of ports available for receipt. Systems di�er in the amount of

selectivity provided to a receiving process. Some allow a process to receive either

from a particular port or all ports. Others allow a process to specify any subset of

the set of all ports. Still others allow a process to peek at the value of incoming

messages and make its decision to accept or reject messages based on the contents

of messages.

Selection of a subset of ports is often speci�ed as follows:

select

receive <port> ...

receive <port> ...

...

receive <port> ...

end

(We are assuming RPC here, with synchronous send) If none of the ports has a

message, then the process blocks. If several ports have messages, then one port is

chosen non-deterministically. If only one port has a message, then the corresponding

receive is executed. Typically, a select is enclosed within a loop. Thus after servicing

a request, a process can service another request.

Often a system allows a guard to be attached to an arm of the select. The guard

is a boolean expression and the associated receive occurs only if the condition is

true. The following example shows guarded receives in a `bounded bu�er' process:

loop

select

when count > 0 receive consume (...) ...



8 �

when count < size receive produce (...) ...

end

end loop.

Here count keeps the number of �lled bu�ers. The consuming process is blocked if

the bu�er is empty and the producing process is blocked if it is full.

Notice a process executing such a loop statement is similar to a monitor. Each

receive in an arm of a select corresponds to an entry procedure declaration in a

monitor (which we will study under process coordination). A process services one

receive at a time, just as a monitor executes one entry procedure at a time. The

guards correspond to waits on conditions. The Lauer and Needham paper contains

a more detailed discussion on this topic.

In the example above we are assuming language-level support. Similar semantics

can be supported through system calls.

1.5 Xinu Low-Level Message Passing

Xinu o�ers two kinds of message passing primitives: one `low-level', and the other

`high-level'. We now discuss the �rst kind. A discussion of the implementation of

the second kind requires discussion of some of the memory management issues.

We �rst discuss the semantics of the low-level message passing and then its im-

plementation.

1.5.1 Semantics. Ports are input ports limited to one per process. Thus the

process id of the receiver of the port is used as an identi�er to this port.

The information in a message is considered as data to be interpreted by the

recipient. Thus remote assignment instead of RPC is supported.

The send operation takes as arguments the message and process id and delivers

the message to the speci�ed process. The operation is asynchronous, thus a sender

does not wait till the message is received.

The queue associated with the port holds at most one message. Moreover, a

message size is restricted to 1 word. Thus memory allocated to bu�er and queue

messages is kept under control.

Two kinds of receives are provided. The �rst called receive is a synchronous

receive. It blocks the receiver till a message arrives. The second, called recvclr is

non-blocking. If the process has a message when it calls recvclr, the call returns

the message. Otherwise it returns the value OK to the caller without delaying to

wait for a message to arrive. Thus recvclr allows a process to poll the system for

message arrival. It is useful when the process does not know whether a message

will arrive or not and does not want to block forever in case a message does not

arrive. An example of its use: if software interrupts are not allowed, a process may

use recvclr to check, every now and then, if the user has hit the \attention" key.

Communicating processes reside within the same computer, so the message pass-

ing is trivially reliable and ordered. A reply operation is not supported. Since a

process is limited to one input port, the issue of selective receipt does not arise.

1.5.2 Implementation. The Receive State

A process waiting for a message is put in the receive state. The arrival of a message



� 9

moves it to the ready state.

Send

It checks to see if the speci�ed recipient process has a message outstanding or

not. If there is an outstanding message, the send does nothing and returns (why?).

Otherwise, it bu�ers the message and sets a �eld to indicate that now there is

an outstanding message. Finally, if the receiving process is waiting for a message,

it moves the process to the ready list (and calls resched), enabling the receiving

process to access the message and continue execution.

A message is bu�ered in a �eld in the process table entry of the receiving process.

(Could it be stored in the process table entry of the sending process?)

Receive

It checks to see if there is a message waiting. If not, it moves the process to the

receive state (does the process need to be moved to any list?), and calls reschedule.

It then picks up the message, changes a process table entry �eld indicating there

are no outstanding messages, and returns the message.

Recvclr

It checks if a message has arrived. If no, it returns OK. If yes, it picks the

message, changes appropriate �elds, and returns the message.

2. COMMUNICATION ACROSS A NETWORK

Our implementation has assumed intra-machine IPC. Distributed systems require

communication between remote machines. For instance a long-haul network that

supports remote �le copy requires communication between the remote and local

process involved in the �le copy, a local-area network that supports �le servers needs

to support communication between a client and a �le server, and a multicomputer

OS needs to be able to support communication between arbitrary processes running

on di�erent machines.

One of the important concepts behind network communication is layering. The

hardware provides the most primitive layer of network communication. Layers on

top embellish this communication. We will look at both the hardware (or physical)

layer and embellishments to it.

2.1 The Physical Layer

In this layer we study the low-level hardware primitives for network communication.

This communication may be circuit switched or packet-switched. Circuit-

switched networks operate by forming a dedicated connection (circuit) between

the two points. While a circuit is in place, no other communication can take place

between the channels involved in the communication. The US telephone system uses

such communication between two telephones. Packet-switched networks operate

by dividing the conversation between two parties into packets, and multiplexing



10 �

the packets of di�erent conversations onto the communication channels. A packet,

typically, contains only a few hundred bytes of data that includes header information

that identi�es the sender and receiver.

Each approach has its advantages. Circuit switching guarantees a constant com-

munication rate: once the circuit is established, no other network activity will

decrease the communication rate. This is particularly important for audio/video

communication. One disadvantage is throughput: no one else can use the cir-

cuit during a `lull' in the conversation between the two parties. Therefore circuit

switching is not a very popular method for computer communication and packet

switching is always preferred since it provides better utilization of the channel band-

width, which is specially important for asynchronous transfer of bulk data. Since

a channel bandwidth, typically, is fairly high, sharing of its does not present many

problems, specially for traditional data transfer applications. For multimedia com-

munication, packet-switched networks have been designed that try to reserve part

of the network bandwith for some communication channels. In the remainder of

the discussion we shall assume packet switching.

2.2 Network Topologies and Access Control Protocols

An important issue in the design of a network is the network topology. A popular

network toplogy is the bus topology. Under this topology, the communicating

devices are connected to a common bus, and packets contain addresses of the re-

ceiving devices. Thus, while a packet is available to all devices, only the addressed

device actually receives it.

Since all devices share a common bus, we need a protocol to ensure that devices

to do not corrupt packets by simultaneously transmitting them on the bus. One

such protocol is the CSMA/CD (Carrier Sense Multiple Access with Collision

Detection) protocol. Under this protocol, a sending device listens to the bus to

detect another concurrent transmission. In case of collision, it backs o� for a random

period of time before trying again, and sends a jamming signal to all other devices

asking them to ignore the packet. The backo� period increases exponentially with

each successive unsuccessful attempt at sending a message.

An alternative access protocol is the token ring protocol, which prevents rather

than cures collisions. It arranges the devices in a logical ring and allows a unique

token to be passed along this ring from device to device. Only the token holder is

allowed to send messages. Token passing is implemented as a special control packet.

One can also arrange the devices physically in a token ring topology, which

supports point-to-point transmission rather than broadcast of messages. At each

point, a device either consumes the packet or forwards it to the next point.

This topology can, of course, use the token ring protocol for controlling access.

This protocol is implemented under this topology by continuously keeping a physical

token in circulation, which may be free or busy. A sending device marks a free token

as busy before sending the message and marks it as free the next time it arrives at

that site after the transmission is completed.

It can also use the slotted ring protocol, which circulates, instead of a single

token, a number of �xed length slots, which may be busy or free. A sending device

waits for a slot marked free, sends the message in it, and marks it as busy. To

ensure than one device does not hog the network, a device can use only one slot at



� 11

a time.

2.2.1 The Ethernet. We now look very brie
y at the Ethernet, a local-area

packet-switched network technology invented at Xerox PARC in the early 1970s

that uses the bus topology with the CSMA/CD protocol. The channel used for

communication is a coaxial cable called the ether, whose bandwidth is 10 Mbps

and maximum total length 1500 meters. Each connection to the ether has two

major components. A transceiver connects directly to the ether cable, sensing

and sending signals to the ether. A host interface connects to the transceiver

and communicates (as a device) with the computer (usually through the computer

bus).

Each host interface attached to a computer is assigned a 48 bit Ethernet ad-

dress also called a physical address. This address is used to direct communication

to a particular machine. Vendors purchase blocks of physical addresses and assign

them in sequence as they manufacture Ethernet interface hardware.

Each packet transmitted along an ether is called an Ethernet frame. A frame is

a maximum of 1536 bytes and contains:

a preamble (64 bits or 8 octets), used for synchronization,

source and destination addresses (6 octets),

packet type (2 octets), used by higher layers,

data (46 to 1522 octets), and

Cyclic Redundancy Code (CRC) (4 octets), which is a function of the data in

the frame and is computed by both the sender and the receiver.

The �rst three �elds of a frame form its header.

A destination address in the packet may be the physical address of a single ma-

chine, a multicast address of a group of nodes in the network, or the network

broadcast address (usually all 1's). A host interface picks up a frame if the desti-

nation address is:

the physical address of the interface

a multicast address of the group to which the host belongs, or

one of the alternate addresses speci�ed by the operating system.

the broadcast address

2.3 Internetworking

So far we have seen how packets travel between machines on one network. Internet-

working addresses transmission of packets between machines on di�erent networks.

Communication of data between computers on di�erent networks requires ma-

chines that connect (directly or indirectly) to both networks that are willing to

shu�e packets from one network to another. Such machines are called bridges,

switches, gateways or routers. These denote two kinds of "internetworking" -

one performed by the hardware and the other by the IP layer. Bridges or switches

do hardware-supported internetworking, allowing two physical networks of the same

kind (e.g. ethernet) to become one network. They send packets from one network

to the other. Bridge is the traditional term for this concept while switch is the

more fashionable one.

Gateways or routers do software-supported internetworking, allowing arbitrary

heterogeneous networks to form one logical network. Gateway is the traditional



12 �

term and router the modern one. We will focus here on gateways/routers.

As an example, the machine ciscokid.oit.unc.edu serves as a router between

our departmental FDDI network and the rest of the world. Similarly, the machine

mercury.cs.unc.edu serves as a bridge between an Ethernet subnet and the main

departmental FDDI backbone. Look at http://www.cs.unc.edu/compServ/network/current.html

for our current network con�guration.

Not every machine connected to two networks is a gateway. For instance, the

machine jeffay.cs.unc.edu is connected to connected to both an ethernet and

the FDDI backbone, but is not a gateway.

2.3.1 Internet Addresses. Internetworking across heterogenous networks requires

a network-independent communication paradigm. One such paradigm is illustrated

by the Internet. Each machine connected to the Internet is assigned a 32-bit internet

address that serves as its universal identi�er. This address is a triple (adrKind,

netid, hostid), where adrKind identi�es the kind of address (A, B, and C), netid

identi�es a network, and hostid identi�es a host on that network. The number of

bits devoted to each element depends on the kind of address:

Class A addresses, which are used for the few networks like the Internet backbone

that have a large number of hosts, have the 1st bit set to `0', next 7 bits allocated

for the netid, and the next 24 bits for hostid.

Class B addresses, which are used for intermediate sized networks, have the �rst

two bits set to `10', the next 14 bits allocated for netid, and the next 16 bits for

hostid.

Class C addresses, which are used for small sized networks like Ethernets, have

the �rst two bits set to `11', the next 22 bits allocated for netid, and the remaining

8 bits for hostid.

Internet addresses are usually written as four decimal integers separated by dec-

imal points, where each integer gives one octet of the internet address. Thus the

32 bit internet address:

10000000 00001010 00000010 00011110

is written

128.10.2.30

Note that a host connected to more than one network has more than one internet

address. For instance the internet addresses of ciscokid.oit.unc.edu look like:

152.2.254.254 (for the departmental network)

192.101.24.38 (for a network that connects to Greensboro).

The internet addresses are assigned by a central authority. By convention, an

internet address with host set to zero is considered to be an address of the network,

and not a particular host. Thus the address of the local FDDI backbone is

152.2.254.0

(Look at the �le /etc/hosts and /etc/networks for internet addresses of di�er-

ent computers and networks. Execute /usr/local/bin/nslookup to �nd the IP

address of a machine from its name. Execute /usr/local/etc/traceroute to �nd



� 13

the path a message takes from the local machine to a remote machine speci�ed as

an argument.) Also the hostid consisting of all 1's indicates a broadcast.

The internet is implemented as a layer above the physical layer. It provides its

own unit of transfer called a datagram. Like an Ethernet frame, a datagram is

divided into a header and data area. Like the frame header, a datagram header

contains the source and destination addresses, which are internet addresses instead

of physical addresses.

A datagram needs to be embedded in the physical unit of transfer. For instance a

datagram transmitted on an Ethernet is embedded in the data area of an Ethernet

frame. (Thus the data area of an Ethernet frame is divided into the header and

data areas of the Internet datagram)

How are internet addresses mapped to physical addresses? We �rst consider

communication between hosts on the same network. Later we will consider com-

munication that spans networks.

2.3.2 Communication within a Network. One approach is to make each machine

on the network maintain a table that maps internet addresses to physical addresses.

A machine that needs to send a datagram to another machine on the network

consults the table to �nd the destination physical address, and �lls this address in

the physical header.

A disadvantage of this approach is that if the physical address of a host changes

(due to replacement of a hardware interface, for instance) tables of all hosts need to

be changed. Moreover, it is di�cult to bring a new machine dynamically into the

network, which is something we want in this word of mobile computing. Therefore

the DARPA Internet uses a di�erent approach called ARP (for Address Resolution

Protocol). The idea is very simple: When machine A wants to send a datagram

to machine B, it broadcasts a packet that supplies the internet address of B, and

requests B's physical address. Host B receives the request and sends a reply that

contains its physical address. When A receives the reply, it uses the physical address

to send the datagram directly to B.

Each host maintains a cache of recently acquired internet-physical address

This cache is looked up before an ARP packet is sent.

In the above discussion we have assumed that node B knows its internet address.

How does a node know its internet address? Machines connected to secondary

storage can keep the address on a local �le, which the operating system reads at

startup. Diskless machines however support only remote �les, to access which they

need to communicate with some �le server. However, they do not know the internet

address of the �le server either.

One approach, illustrated by the Reverse Address Translation Protocol

(RARP), is for a diskless machine to broadcast a packet requesting its internet

address. Some server, that serves such requests, locates the internet address of the

machine and sends back a message containing the internet address of the requester.

2.3.3 Indirect Routing. Now assume that A and B are on di�erent networks N1

and N2. In this situation A needs to identify some gateway on N1 that can deliver

the packet on N2, and sends the datagram (using ARP) to that gateway. The gate-

way, when it receives the message either delivers it directly to the host or forwards

it to some other gateway, depending on the internet address of the destination.



14 �

How does a node �nd a gateway for a network? It maintains an internet routing

table, that consists of pairs (N, G), where N is an internet network address and G

is an internet gateway address. This table is updated dynamically to optimize the

routing.

2.4 Process to Process Communication: UDP and TCP/IP

So far we have seen how arbitrary hosts communicate with each other. How do

arbitrary processes on di�erent machines communicate with each other?

One approach to such communication is illustrated by the User Datagram Pro-

tocol (UDP) which is a layer above the Internet. The unit of transfer in this layer

is the UDP datagram, and the destination is an input port within a host. Thus,

the destination of a message is speci�ed as the pair (host, port). A UDP datagram

is embedded in the data �eld of the Internet datagram, and contains its own header

and data areas. The UDP header identi�es the destination port and a reply port.

Appropriate software distributes the datagrams reaching a host onto the queues of

appropriate ports.

UDP provides unreliable delivery: datagrams may be lost due to electrical inter-

ference, congestion, or physical disconnection. Often processes require a commu-

nication protocol that provides reliable delivery. One such protocol built on top

of IP is TCP (for Transmission Control Protocol). TCP/IP supports end-to-end

stream communication: a stream is established by connecting to it and terminated

by closing it. To support reliable delivery, each packet is acknowledged. Should

the acknowledgement also be acknowledged? If so, what about the ack of the ack

of the ack, an so on...? The answer is that the ack is not acked. Instead, if the

sender does not send the ack within some transmission period, T, it retransmits

the packet, and repeats the process till it gets the ack. This process is expected but

not guaranteed to terminate as long as the remote machine/network is not down.

After a certain number of tries, the sender gives up and closes the connection.

Retransmission can result in duplicate packets being received at the sending site.

To distinguish between normal packets and duplicates, packets are associated with

sequence numbers. A packet with a sequence number less than or equal to the last

one received successfully is discarded as a duplicate. However, its ack is resent since

the ack for the original packet may have been lost.

The system allows a sequence of packets within a sliding window to have outstand-

ing acknowledgements. This approach increases the concurrency in the system since

packets and acks can be travelling simultaneously on the system. It also reduces

the number of messages in the system since an ack for a packet simply indicates

the next expected sequence number, thereby implicitly acking for all messages with

a lower sequence number. With each ack, the transmission window slides forward

past the message acked, hence the term sliding window. TCP/IP allows the size of

the sliding window to vary depending on how much bu�er space the receiver has.

TCP/IP connections are two-way and an ack for a packet received from a machine

can be piggybacked on a message sent to that machine.

2.5 OS Interface: Sockets

We have seen earlier abstract ideas behind OS-supported message passing, which

can be implemented on the network layers mentioned above. To show how an OS



� 15

layer sits on top of these network layers, let us consider the concrete example of

Unix sockets. Unix sockets have several unique characteristics. They are are not

tied to a particular network protocol, and provide a uniform interface to UDP

and TCP/IP and other protocols at the process-to-process level. They are united

with the �le system, with socket descriptors essentially being a special case of �le

descriptors. They support a combination of free, input, and bound ports, allowing

dynamic creation of new input and free ports. Unlike the Xinu IPC mechanism you

have seen so far, they allow processes in di�erent address spaces and on di�erent

hosts to communicate with each other.

Socket declarations are given in the �le <sys/socket.h>. The following code

fragments executed by the server and client illustrate the use of sockets.

input_sock = socket (af, type, protocol)

bind (input_socket, local_addr, local_addr_len) - stream

listen (input_socket, qlength) - stream

server_end = accept (input_socket, &remote_addr, &remote_addr_len) - stream only

write (server_end, msg, len)

or

send (server_end, msg, length, flags)

or

sendto (server_end, msg, length, flags, dest_addr, addr_len) - datagram only

read (server_end, &msg, len)

or

recv (server_end, &msg, len, flags)

or

recvfrom (server_end, msg, length, flags, &from_addr, &from_addr_len) - datagram only

and the receiver can similarly execute

client_end = socket (af, type, protocol)

connect (client_end, dest_addr, dest_addr_len)

read, write, send, receive, sendto, or recvfrom

A server providing a service �rst uses the socket call to create a socket that

serves as an input port for creating new sockets. The af parameter indicates ad-

dress family or name space (AF INET - (host, port), AF Unix - Unix �le system,

AF APPLETALK), type indicates type of connection (SOCK DGRAM, SOCK STREAM)

and protocol indicates the kind of protocol to be used (IPPROTO IP - System Picks,

IPPROTO TCP, ...)

The bind call binds the socket to a local address. A separate external name

space is needed for the local address since communicating processes do not share



16 �

memory. It is the structure of this address that the name space argument spec-

i�ed in the previous call. The structure of local IP addresses is given in the �le

<netinet/in.h>.

The address indicates an internet address and port number. The port number is

a 16 bit number the server chooses. Port numbers 0..1023 are reserved by system

servers such as ftp and telnet. Look at the �le /etc/services for port number

of system servers. A user-de�ned server must choose an unbound port number

greater than 1023. You can explicitly pick one of these values and hope no other

process is using the port. A port number of 0 in the port �eld indicates that the

system should choose the next unbound port number, which can then be read back

by the server using getsockname. When communicating internet addresses, port

numbers, and other data among machines with di�erent byte orders, you should

use routines (such as htons, htonl, and ntohs ) that convert between network

and host byte orders for shorts/longs. A bind call can use a special constant (htonl

(INADDR ANY)) for an internet address to indicate that it will listen on any of

the internet addresses of the local host.

To talk to a server, a client needs to create a connection endpoint through its

own socket call. Then it can use connect to link its socket with the server socket.

If it does not have the internet address of the host, it can determine this address

from the host name using gethostbyname.

A socket bound by the server serves as an \input port" to which multiple clients

can connect. The connect call creates a new \bound port" for the server-client

connection. The client end of the bound port is the socket connected by the client.

The other end is returned to the server by the accept call, when a successful

connection is established by the client. Typically, a server forks a new copy of

itself when the connection is established, with the copy inheriting the new socket

descriptor. The server determines the number of connections to a bound socket

using the listen call. For UDP, no connections need to be established through

accept and connect - the connect call can be invoked but it is a local operation

simply storing the intended remote address with the socket. In the stream case,

the client usually does not bind its end of the socket to a local port, the system

automatically binds the socket to an anonymous port. Sockets are not strictly input

or bound ports since they can be inherited and accessed by children of the process

that created them (through the mechanism of �le descriptor inheritance we shall

see later).

Data can be send/received using either the regular read and write calls, or the

special send and recv calls, which take additional message-speci�c arguments such

as send \out of band" data. The sendto and recvfrom calls are applicable only for

UDP datagram communication and are necessary if the client has not \connected"

the socket to a remote address.

If a process is willing to receive data on more than one I/O descriptor (socket,

standard input), then it should use the select call:

int select (width, readfds, writefds, exceptfds, timeout)

int width;

fd_set *readfds, *writefds, *exceptfds;

struct timeval *timeout;



� 17

The call blocks till activities occur in the the �le descriptors speci�ed in the

arguments. The activity could be completion of a read or write or the occurence

of an exceptional condition. The �le descriptors are speci�ed by setting bits in

the fd set bitmasks. Only 0..width-1 bits are examined. The bitmasks return the

descriptors on which the activities occured, and the program can then use them in

subsequent read/write calls. You should always do a select before doing a read or

write since the I/O calls are not guaranteed to block.

2.6 Sun RPC

Both UDP and TCP require a client to encode its request and parameters in the

data area of the message, and then wait for a reply. The server in turn needs to

decode the request, perform the service, and then encode the reply. It would be

more useful if the client could directly call a remote procedure which the server

executes to service the request.

Sun RPC demonstrates how a remote procedure call paradigm can be supported

on top of UDP or TCP via library routines rather than compiler support. Each

server registers a procedure pair via the registerrpc call,

registerrpc (prognum, versnum, procnum, procaddr, inproc, outproc)

A client can then invoke callrpc to call the remote procedure:

callrpc (host, prognum, versum, procnum, inproc, &in, outproc, &out)

The procedure callrpc takes as arguments the machine number of the server, the

procedure identi�er, and the input and output parameters. It sends an appropriate

UDP or TCP message to the destination machine, waits for a reply, extracts the

results, and returns them in the output parameters.

The XDR (eXternal Data Routines) are responsible for marshalling/unmarshalling

procedure parameters onto/from XDR streams.

To illustrate, an add server, that adds an integer and a 
oat, can declare the

following \interface" in a header �le:

#define PROGNUM 1

#define VERSNUM 0

#define ADDNUM 0

typedef struct {

int f1;

float f2 } S;

extern float add ();

Then it can provide an implementation of the add procedure:

float add (s)

S *s;



18 �

{

return (s->f1 + s->f2);

}

A procedure such as add that can be called remotely by Sun RPC is required to

take a one-word argument. It takes only one argument so that callrpc does not have

to deal with a variable number of arguments. Like any other procedure, callrpc has

to �x the type of the argument. The trick to pass a user-de�ned value to a remote

procedure through callrpc is to pass its address and then let the procedure cast it

as a pointer to a value of the correct type.

Next it can provide an implementation of the following xdr procedure between

the client and server:

xdr_s (xdrsp, arg)

XDRS *xdrsp;

S *arg;

{

xdr_int (xdrsp, &arg->f1);

xdr_float (xdrsp, &arg->f2);

}

It is called in the marshalling/unmarshallingmodes by the client and server RPC

system. In the marshalling mode, it writes the argument onto the stream and in

the unmarshalling mode it extracts data from the stream into the argument.

Finally, it can register the procedure with the RPC system:

registerrpc (PROGNUM, VERSNUM, ADDNUM, add, xdr_s, xdr_float )

A client can now invoke this procedure:

S *s;

float *result;

s->f1 = 3;

s-f2 = 4.12;

callrpc (host, PROGNUM, VERSNUM, ADDNUM, xdr_s, s, xdr_float, result);

2.7 Transparent RPC

Sun remote \procedure call" is di�erent from a local procedure call. Some systems,

such as the Xerox Cedar language, try to support transparent RPC which looks

and behaves like an ordinary procedure call. Such RPC di�ers from Sun RPC in

two main ways:

Since a remote procedure call looks exactly like a local procedure call, it does

not explicitly indicate the location of the remote machine. The remote machine is

determined by a special binding phase, which occurs before the call is made.

Programmers do not explicitly marshall parameters or unmarshall results. The

marshalling and unmarshalling (XDR) routines are generated from the declarations



� 19

of procedures invoked remotely. For this reason, systems that support such RPC

are sometimes also called RPC generators.

Let us �ll some of the details behind the concept of transparent RPC system.

Such a system expects procedure headers and the types of the procedure parameters

to be encapsulated in interfaces. An interface is implemented by a server and

used by a client to invoke the procedures de�ned in the interface. An interface

can be compiled for remote invocation. Before we look at the implementation of

transparent RPC, let us resolve some semantic issues.

2.7.1 Semantics. Reference Parameters

An important di�erence between a local and remote procedure call has to do

with address parameters. Since addresses in one process have no meaning in an-

other (unless we have shared memory), some systems disallow address parameters

while others create an isomorphic copy of the data structure pointed to by the

actual parameter at the receiving process and point the formal parameter at this

copy. The latter systems support transparency only for languages that do not allow

address arithmetic.

Binding

How does a client machine identify the server? We can associate each interface

de�nition with a global type name, T. Also we can associate each implementation

of T with a global instance name, I. An instance is implemented by some process

P on some host H. There is a spectrum of binding strategies possible, based on the

binding awareness in the client program:

One extreme approach is for the client program to simply identify which inter-

faces types it is using. The server RPC system publishes the interfaces implemented

by each server, giving the location (host, process, and interface id) of the implemen-

tation. The client RPC system chooses one of these published implementations for

the interfaces used by the client. This is the minimum amount of binding aware-

ness possible since the interface type is necessary to link the client to appropriate

generated routines.

The other extreme is for the client to indicate not only the type of the interface

but also the complete location of the implementation in which it is interested.

Intermediate choices are to specify some but not all the details of the location,

letting the system �gure out the unspeci�ed details. In particular, a client program

can specify I or (I, H).

Less binding awareness makes the program more portable and easier to write.

On the other hand, it gives the client programmer less control and also makes the

binding less e�cient since the system must maintain and search (centralised or

replicated) information about published interfaces.

No of Invocations



20 �

How many times has the remote procedure call executed when it returns to

the invoker? Ideally, we would want to maintain the semantics of local procedure

call, which is guaranteed to have executed execute exactly once when it returns.

However, these semantics are di�cult to maintain in a distributed environment

since messages may be lost and remote machines may crash. Di�erent semantics

have been proposed for number of remote invocations based on how much work the

RPC system is willing to do:

At-least-once: The call executes at least once as long as the server machine does

not fail. These semantics require very little overhead and are easy to implement.

The client machine continues to send call requests to the server machine until it

gets an acknowledgement. If one or more acknowledgements are lost, the server

may execute the call multiple times. This approach works only if the requested

operation is idempotent, that is, multiple invocations of it return the same result.

Servers that implement only idempotent operations must be stateless, that is,

must not change global state in response to client requests. Thus, RPC systems

that support these semantics rely on the design of stateless servers.

At-most-once: The call executes at most once - either it does not execute at all

or it executes exactly once depending on whether the server machine goes down.

Unlike the previous semantics, these semantics require the detection of duplicate

packets, but work for non-idempotent operations.

Exactly once: The system guarantees the local semantics assuming that a server

machine that crashes will eventually restart. It keeps track of orphan calls, that

is, calls on server machines that have crashed, and allows them to be later adopted

by a new server. These semantics and their implementation were proposed in Bruce

Nelson's thesis, but because of the complexity of the implementation, were never

implemented as far as I know. Nelson joined Xerox where he implemented the

weaker at-most-once semantics in the Cedar environment.

How should the caller be told of RPC failures in the case of at-least once or

at-most-once semantics? We cannot return a special status in case of transparent

RPC since local procedure calls do not return such values. One approach, used in

Cedar, is to raise a host failure exception, which makes the client program network

aware even though the call syntax is transparent.

2.7.2 Implementation. There are several basic components that work together

to allow a client to make a distributed invocation in a server that implements a

remote interface:

Client Code

Client code, C, written by the client programmer, that makes the remote invo-

cation. For instance, a call of the form:

i : = P (s)

where P is a procedure de�ned in some remote interface.



� 21

Server Code

The server code, S, written by the server programmer, that implements the re-

mote procedure. For instance a procedure of the form:

procedure P (s: S): int {

/* implement the functionality of P */

...

return (result)

}

Client Stub

A client stub, for each remote procedure P, generated by the interface compiler,

that is linked to the client code and is called by C when it makes the remote

invocation. C cannot call the remote P directly since they are in separately linked

address spaces. Therefore, what it actually does is call the client stub, which

marshalls the parameters, talks to the RPC runtime to send a remote message,

receives a return message from the runtime, unmarshalls the results, and returns it

to C. Thus, the form of the stub is:

procedure P (s: S): int {

/* marshall s */

xdr_s (xdrsp, s)

/* send message via RPC runtime */

...

/* receive message from RPC runtime */

...

/* unmarshall result */

xdr_int (xdrsp, result);

return (result)

}

Server Stub

A server stub, for each each remote procedure P, generated by the interface

compiler, that is linked to the server code, S, and invokes the implementation of P.

It is the dual of the client stub - It unmarshalls the parameters and marshalls the

results. Thus, its form is:

procedure PServerStub {

/* unmarshall s */

xdr_s (xdrsp, s);

/* call P */

result := P (s);

/* marshall result */



22 �

xdr_int (xdrsp, result);

/* send result via RPC runtime */

...

}

Server Dispatcher

A dispatcher, generated by the RPC system, and linked to the server, which re-

ceives an incoming call request and invokes the corresponding server stub. The call

request identi�es the procedure to be invoked and the dispatcher is responsible for

mapping it to the server stub. This mapping is generated at interface compilation

time.

XDR Routines

The XDR routines for prede�ned (simple) types are written by the implementer

of the RPC system, while the routines for user-de�ned types are generated by the

compiler based on the de�nitions of the types of the arguments of the remote pro-

cedures.

RPC Runtime

The RPC runtime, which exists at both the client and server sites. It is respon-

sible for sending and receiving messages from remote sites. It is also responsible

for binding remote calls. It can, like Sun RPC, simply use a general, lower-level

networking layer such as UDP or TCP/IP to send and receive messages. However,

it is possible to de�ne e�cient, specialised communication protocols for implement-

ing transparent RPC, as illustrated by Cedar.

Specialised Protocols

The Cedar system uses a special network protocol to support at-most-once RPC

semantics. Such semantics can be supported on top of a connection-based reliable

protocol such as TCP/IP. However, they are not optimal for RPC mechanisms,

since they have been designed to support asynchronous reliable transfer of bulk

data such as �les. There are two possible optimisations possible in a specialised

protocol:

Implicit Sessions: A bulk data protocol requires explicit opening and closing of

sessions. An RPC implementation on top of such a protocol can use two main

approaches to opening/closing sessions: First, a client machine can open a session

with each possible server machine with which the client may communicate. Sec-

ond, the client machine can open/close the connection before/after each call. The

�rst approach amortizes the cost of opening/closing connections over all calls to



� 23

a server machine, but uses more connections (which are scarce resources) at any

one time and requires probe messages inquiring the status of a server machine to

be sent even when no RPC is active. The second approach, on the other hand,

requires connections to be active and pinged only during the procedure call but

requires an explicit opening/closing per call. A specialised protocol can o�er the

advantages of both approaches by implicitly opening/closing a connection at the

start/termination of a call.

Implicit Acknowledgement: A bulk-data protocol can result in each packet being

acknowledged. In a specialised protocol, the RPC reply can acknowledge the last

packet. This can result in no acknowledgments being sent for RPC calls with small

arguments.

The Cedar implementation shows how a specialised protocol may be imple-

mented. Each call is assigned an id from an increasing sequence of ids generated by

the system. The RPC runtime at the client machine sends to the receiver the fol-

lowing client information: call id, dispatcher id, procedure id, and arguments. The

RPC runtime at the server machine sends back to the client: call id and results.

The client runtime breaks the client information into one or more packets, encloses

the packet number, and asks for an acknowledgement for all packets except the

last one, which is acknowledged by the reply. After each packet, it waits for an

ack/reply. If it does not receive the ack/reply within a certain time, T, it resends

the packet, asking for an explicit ack (even for the last packet). After receiving all

acks, the client may need to wait for the RPC to �nish. It periodically sends probe

packets (after P time units) to check the status of the server machine. If it does not

receive acks to normal/probe to packets after a certain number, R, of retransmis-

sions, it determines that the server machine has crashed and reports an exception

to the client program. Once it receives a reply, it waits for a certain period of time,

D, for another call to the server. If a call is made within that period, then that call

serves as an ack for the reply of the previous call. Otherwise, the client explicitly

sends an ack.

Under this protocol, short calls (duration less than T) with small arguments (�t-

ting in one packet) and occurring frequently (inter call delay less than D) resulting

in no lost messages require only two messages to be communicated. A long call

(duration greater than T but less than P - not requiring probe packets) requires

an additional retransmission of the argument and its explicit ack. A really long

call requires transmissions and acks of probe packets. A call that is not followed

quickly by another call requires an ack for the reply.

Thus, this procotol is optimised for the �rst case: it is not possible to do better

in this case. A bulk transfer protocol would require additional open and close

messages and an additional argument ack unless it is piggybacked on the reply

message. On the other hand, this protocol may result in more messages to be

communicated for other cases since it makes a client wait for an ack for a previous

packet before sending the next one. As a result, the server machine must ack all

packets except the last one. A bulk data transfer protocol allows multiple packets

to have outstanding acks and allows one server message to serve as an ack for a

sequence of client messages. Thus, this protocol follows the principle of making

the usual case e�cient while making the unusual cases possible but not necessarily

e�cient.


