
� 1

COMP 242 Class Notes

Section 5: Process Coordination

1. PROCESS COORDINATION

Process coordination consists of synchronization and mutual exclusion, which were

discussed earlier. We will now study di�erent techniques for process coordination.

We �rst make a few de�nitions related to process coordination.

Critical Section

Instructions that must be executed while another activity is excluded will be

called a critical section. For instance in an earlier example we saw that the

statement:

A[n++] = item

could be executed by only one of the processes AddChar1 and AddChar2. This

statement is a critical section.

Starvation and Deadlock

Consider the following situation: Process p1 is in a critical section c1 waiting for

process p2 to get out of a critical section c2. Process p2, meanwhile, is waiting for

process p1 to get out of c1. Both p1 and p2 are stuck: each is waiting to get into a

critical section being executed by the other. This sort of circular waiting is called a

deadlock. In Europe, it is known by the more striking name of \deadly embrace".

Another problem related to process coordination is starvation. This problem

arises when one or more processes waiting for a critical section are never allowed

to enter the region.

Di�erent process coordination techniques are often judged on the basis of their

ability to prevent these two problems.

1.1 Disabling Context Switching

Needed by operating system to implement its functions (for instance to implement

resume and other system calls).

In Xinu it consists of disabling interrupts and not making any call that may result

in rescheduling.

Major drawbacks of this technique as a general tool for mutual exclusion:

Allows only one activity on a single computer. Thus it stops all processes when

one of them executes the critical section.

Disables clock and other device interrupts. Thus lengthy computations in a

critical section are not desirable.

Technique fails on a multiprocessor system.

2 �

1.2 Busy Waiting

Another possible technique for mutual exclusion is to use busy waiting. We can

introduce a Boolean variable called mutex that is set to true when an activity is in

a critical section, to false otherwise. A process executes the following code before

it enters a critical section:

while mutex do

do nothing

end;

mutex <- true;

and the following code when it exits the region:

mutex <- false

Unfortunately, this code is wrong. If two processes start executing the while loop

at the same time, they might both get past the loop and enter their regions. The

problem is that the checking and setting of the Boolean are done in two statements.

A process that has tested the Boolean variable may be rescheduled before it sets

the variable.

Let us assume that the `test and set' can be done in one instruction, so that the

code looks like:

while (TestAndSet(mutex)) do

do nothing

end;

where TestAndSet looks like:

atomic function TestAndSet (var Lock: Boolean): Boolean;

begin

TestAndSet <- Lock;

Lock <- true

end TestAndSet;

Several computers o�er such an instruction. Even then the solution is not good

since the CPU may spend a lot of time executing the while loop which does no

useful work. In particular, if the `waiting' process is a high priority process waiting

for a lower priority process to set the Boolean variable to false, the CPU will spend

all its time executing the loop.

1.3 Semaphores

An abstract entity (not provided by hardware)

Named by a unique semaphore id.

Consists of a tuple (count, queue), where count is an integer and queue is a list

of processes. The following invariant is true for semaphores: a nonnegative count

means that the queue is empty; a semaphore count of negative n means that the

queue contains n waiting processes.

Associated with four operations, which are described below.

The four operations are:

Wait: decrements count, and enqueues process if count is negative.

� 3

Signal: increments count and make a process ready if waiting.

Create: generates a new semaphore.

Delete: destroys an existing semaphore.

The last two operations are non-standard and allow semaphores to be created

and destroyed dynamically.

1.3.1 Implementation. The implementation of semaphores in Xinu consists of the

following:

Semaphore lists and wait state.

Semaphore Table

The routines wait, signal, create, and delete.

Semaphore Lists and Wait state

A process waiting on a semaphore is put into the wait state and the semaphore

list associated with the semaphore. This list implements the queue associated with

the semaphore.

Semaphore Table

The table contains an entry for each semaphore which in turn contains:

integer count of the semaphore

head and tail of list associated with the semaphore.

A semaphore is identi�ed by the index of its semaphore table entry.

The Routine Wait

Decrements count of the semaphore.

If count is negative puts process in the wait state and the list associated with

the semaphore. Also calls reschedule.

The Routine Signal

If count is negative puts process at head of semaphore list in ready list, and

reschedules.

Increments the count of the semaphore (before calling reschedule)

The Routine Create

Takes as argument the initial count of the semaphore.

Return error if count is negative. (why?)

Create a table entry for the semaphore by �nding an unused one and initializing

4 �

it. Each table entry, at startup time, is associated with a semaphore list. So the

latter does not have to be created.

Returns index of the semaphore.

The Routine Delete

Frees table entry.

Puts waiting processes in ready list.

Calls reschedule.

1.4 Monitors

Provided by Programming Languages such as Concurrent Pascal, Modula, Modula-

2, Mesa, and Java.

Like a Module: Declares data (access to which is to be mutually excluded),

procedures that manipulate these data, and an initialization code. The procedures

can be exported to other modules which may import them.

Unlike a Module in following respect: Can declare certain procedures as entry

procedures, which have the property that no matter how many processes are run-

ning, only one process is allowed to execute an entry procedure at a time. Thus if

a monitor declares two entry procedures e1 and e2, then while e1 is being executed

by a process, another process cannot call e1 or e2. A process that invokes an entry

procure while the monitor is `busy' (that is some other process is executing an entry

procedure in it) is put on an entry queue.

List Problem

The following program shows the use of monitors to implement the `list' problem,

explained earlier, involving two processes that add items to a list;

monitor List;

export AddChar;

var

/* shared data */

n: integer;

a: array 0..1 of char;

/* an entry procedure */

entry procedure AddChar [item: char];

begin

a[n++] <- item;

end;

/* initialization code */

� 5

begin

n <- 0;

end;

Monitors provide a `higher-level' solution to the mutual exclusion problem than

semaphores:

We need not worry that some other piece of code implements the shared data,

Thus shared data can be manipulated only by invoking the procedures exported

by the monitor. The monitor ensures that only one entry procedure accesses data

at a time.

A process does not have to remember the �nal signal operation.

Bounded Bu�er Problem

Monitors, as described so far, provide a solution to the mutual exclusion prob-

lem, but not the synchronization problem. To accommodate a solution to the latter,

they are associated with conditions associated with the wait and signal opera-

tions. A call to wait places the process in a condition queue associated with the

signal. It is removed from this queue when some other process does a signal on

the condition. Thus, a signal is like a semaphore in that it is associated with a

queue in which processes may wait for signals. The di�erence is that it is a more

lightweight mechanism not associated with a count variable. Any state associated

with a condition must be explicitly managed by the monitor programmer.

We can use a monitor or to implement the bounded bu�er problem (also called

the producer-consumer problem) stated as follows:

Any number of producer and consumer processes are running. A producer puts

data in a bu�er whose size is �nite (hence a bounded bu�er). A consumer removes

data from this bu�er. A producer blocks when the bu�er is full and a consumer

blocks when the bu�er is empty.

The following is a monitor solution to this problem:

monitor BoundedBuffer;

export GetBuffer, PutBuffer;

const

size = 10;

type

Datum = ... /* the data type of the contents of the buffer */

var

buffer: array 0..size-1 of Datum;

count: 0..size; /* number of elements in buffer */

nextIn, nextOut: 0..size-1; /* index of next datum to place in buffer or remove

*/

nonEmpty, nonFull: condition;

entry procedure PutBuffer (what: Datum);

6 �

begin

if count = size then

wait nonFull;

end;

buffer [nextIn] <- what;

nextIn <- (nextIn + 1) mod size;

count <- count + 1;

signal nonEmpty

end;

entry procedure GetBuffer(var result: Datum);

begin

if count = 0 then

wait nonEmpty

end;

result <- buffer[nextOut];

nextOut <- (nextOut + 1) mod size;

count <- count -1;

signal nonFull;

end;

begin /* initialization code */

count <- 0;

nextIn <- 0;

nextOut <- 0;

end}

A producer waits on the signal nonFull before adding new data, and signals

nonEmpty when it successfully adds data. Conversely, a consumer waits on nonEmpty

before consuming new data, and signals nonFull when it successfully adds new data.

Assume that a consumer is waiting on a condition, and a producer does a signal.

When is the consumer allowed to execute? If immediately, then we may have two

processes in the monitor at the same time, and our careful mutual exclusion is

ruined. If later, then some other process may have taken the last datum, and the

assumption made by the �rst consumer that an execution of the wait nonEmpty

statement guarantees a non-empty bu�er is wrong.

Not all de�nitions of monitors in the literature agree on the answers to these

questions. The following is a common approach. We associate a monitor with an

urgent queue. Thus a monitor is associated with an entry queue, a condition queue

for each condition, and an urgent queue. Processes that are blocked are placed in

these queues. Here are the rules that govern the placement and removal of processes

from these queues:

New processes wait in the entry queue.

When a process exits a monitor (that is, �nishes execution of an entry procedure),

a process from the urgent queue is allowed to execute if the queue is not empty.

Otherwise, a process from the entry queue is removed if the queue is not empty.

A process that does a wait enters the appropriate condition queue.

� 7

When a process executes signal, the signalled condition queue is inspected. If

some process is waiting on the queue, the signaller enters the urgent queue and

some waiting process is allowed to execute. If no process is waiting in that queue,

then the signaller proceeds without leaving the monitor. The signal is ignored.

All queues are ordered �rst in, �rst out.

These rules ensure that a waiting consumer is unblocked immediately when a

producer signals NonEmpty, and the producer is blocked in the urgent queue until

the consumer has taken the datum. We have maintained the rule that at most one

process occupies the monitor.

People who use monitors have noticed that the signal operation is almost always

the last operation in an entry procedure. The above rules will often make the

signaller wait in the urgent queue and then return to the monitor just to get out

of it. Thus these rules, while they work, are often ine�cient. Thus some people

require that signal must be the last operation executed in an entry procedure.

Another alternative is to make the signal operation a hint to a waiting process;

it causes execution of some process waiting on the condition to resume at some

convenient future time. There is no guarantee that some other process will not

enter the monitor before the waiting process. Under these semantics, the waiting

process has to reestablish the condition for which it was waiting still holds when it

wakes up. The proper pattern for usage is:

while not <ok to proceed> do}

wait c

instead of

if not <ok to proceed> then

wait c

Thus in the bounded-bu�er problem, the code

if count = 0 then

wait nonEmpty

is replaced by

while count = 0 do

wait nonEmpty

The last alternative results in an extra evaluation of the <ok to proceed> predi-

cate after the wait. In return there are fewer process switches compared to the �rst

alternative, and it is more
exible than the second alternative. Moreover, it allows

dequeueing of all processes waiting on a signal. (why?). Thus a special operation

broadcast can be de�ned on signals.

The queues maintained under the hint semantics are the same as above except

that it is the signalled process that goes into the urgent queue rather than the

signalling process.

In the Mesa solution, a separate module must be de�ned for each bounded bu�er.

Java overcomes this problem by allowing a single class to be de�ned for all instances

of a synchronized resource.

In Java, a class may declare certain methods to be declared as entry proce-

dures (by using the keyword synchronized). Each instance of a class with entry

8 �

procedures behaves as a monitor. Java implements a simpli�ed version of these

hint-based monitor semantics. A Java object, is associated with a single condition

variable and queue, in which both signalled and new processes are placed. It sup-

ports both signal (called notify) and broadcast (called notifyAll) operations.

In either case, the noti�ed process is supposed to check for itself if its condition

has been satis�ed. (How would you implement the bounded bu�er problem with

these semantics?) To address deadlocks, Java also supports wait operations with

timeouts.

1.5 Path Expressions

While monitors can handle both mutual exclusion and synchronization, the mech-

anisms for supporting these two forms of process coordination have important dif-

ferences. Mutual exclusion is speci�ed by high-level declarations indicating which

procedures are entry procedures and the code for supporting it is generated by the

compiler. On the other hand, process synchronization is implemented by low-level

code scattered throughout the monitors that is as low-level as the semaphore code.

In particular, it is subject to the problem that a wait may not be associated with

a matching signal.

Path expressions overcome this problem by allowing coordination constraints to

be speci�ed by high-level declarations that are de�ned in a single-place, provide

a uni�ed mechanism for supporting both mutual exclusion and synchronization,

and are implemented by compiler-generated code. Like monitors, they extend the

abstraction of a module - instead of de�ning entry procedures and conditions, the

programmer associates a module with a path expression that de�nes the coordina-

tion constraints of the module.

A path expression is much like a regular expression - the \alphabet" consists of

operation (procedures) de�ned by the associated module. The operators are , for

concurrency, ; for sequential execution, N: (path exp) to specify upto N concurrent

activations of path exp, and [path exp] to specify an unbounded number of con-

current executions of path exp. Let us illustrate the semantics of path expressions

using the bounded bu�er example:

module BoundedBuffer;

export GetBuffer, PutBuffer;

const

size = 10;

type

Datum = ... /* the data type of the contents of the buffer */

var

buffer: array 0..size-1 of Datum;

nextIn, nextOut: 0..size-1; /* index of next datum to place in buffer or remove

*/

procedure PutBuffer (what: Datum);

begin

� 9

buffer [nextIn] <- what;

nextIn <- (nextIn + 1) mod size;

end;

procedure GetBuffer(var} result: Datum);

begin

result <- buffer[nextOut];

nextOut <- (nextOut + 1) mod size;

end;

begin /* initialization code */

nextIn <- 0;

nextOut <- 0;

end;

This is the same implementation as the one we saw for the monitor case except

that all code specifying coordination constraints has been removed. An interesting

consequence is that the variable count shared by GetBuffer and PutBuffer has

disappeared, allowing these two procedures to execute concurrently.

Let us try some path expressions to specify coordination constraints for this

module. The three expressions

PutBuffer, GetBuffer

[PutBuffer, GetBuffer]

[PutBuffer], [GetBuffer]

all specify that an arbitrary number of activations of the two procedures can be

executed concurrently. Thus they do not place any constraints on the module. The

expression

PutBuffer; GetBuffer

on the other hand speci�es that each activation of GetBuffer be preceded by an

execution of PutBuffer but there can be concurrent activations of this serial se-

quence. Thus, it ensures that the number of completed executions of GetBuffer

never exceeds the number of completed executions of PutBuffer. It does not,

however, prevent multiple executions of GetBuffer or PutBuffer to be active si-

multaneously. The expression

1 : (PutBuffer; GetBuffer)

ensures that there can only be one activation of this sequence at any one time.

Thus, it ensures that the two procedures alternate (staring with PutBuffer) and

implements a bounded bu�er of size 1.

The expression

N: (1: (PutBuffer); 1 : (GetBuffer))

ensures that:

we can have at most one concurrent execution of PutBuffer at any one time;

we can have at most one concurrent execution of GetBuffer at any one time;

each activation of GetBuffer is preceded by an activation of PutBuffer,

10 �

the number of completed PutBuffer executions is never more than N greater

than the number of completed GetBuffer operations.

Thus, it implements a bounded bu�er of size N.

Path expression can also easily specify a multiple readers/single writer constraint:

1 : ([read], write)

This expression indicates that there can be an unbounded number of reads or a

single write concurrently active at any time.

While path expressions are high-level, they cannot specify all kinds of process

coordination constraints. For instance, there is no way to specify a more fair read-

ers/writers constraint that ensures that a writer is not starved. In general, there is

no way for specifying constraints that depend on information other than the history

of operations invoked so far.

1.6 Synchronous Message Passing

Synchronous message passing o�ers another mechanism for process synchronization.

To illustrate, a bounded bu�er can be de�ned using message-passing primitives.

The bu�er is managed by a special \bounded bu�er" process, with which producers

and consumers communicate to produce and consume bu�ers, respectively:

loop

select

when count > 0 receive GetBuffer (...) ...

when count < size receive PutBuffer (...) ...

end

end loop.

Here we are assuming RPC, select, and guards. The process de�nes two input

ports, one for producers and another for consumers, and uses select to receive both

produce and consume requests. The variable count keeps the number of �lled

bu�ers. A consuming process is blocked if the bu�er is empty and a producing

process is blocked if it is full.

Notice a process executing such a loop statement is similar to a monitor. Each

receive in an arm of a select corresponds to an entry procedure declaration in a

monitor. A process services one receive at a time, just as a monitor executes one

entry procedure at a time. The guards correspond to waits on conditions. The

Lauer and Needham paper on duality of operatings system structures contains a

more detailed discussion on this topic.

