
� 1

COMP 242 Class Notes

Handout 2: Process Management

1. SCHEDULING AND CONTEXT SWITCHING

Reading chapters 3,4,5 Comer.

We saw earlier that an operating system gives the illusion of concurrency in a

single processor system by switching the CPU among di�erent processes, running

one for a period of time before moving to another. We now study two components

of this switching:

Context Switching, which consists of stopping one process and starting a new

one.

Scheduling, which consists of choosing a new process among the processes that

are eligible for execution.

1.1 Xinu Scheduling Policy

A scheduling policy determines how a new process is chosen for execution. The

policy should be distinguished from the mechanism used to enforce it. We describe

here the Xinu scheduling policy. The mechanisms are described later.

The Xinu scheduling policy has three components:

Each process is associated with a priority.

The highest priority ready process is always chosen for execution.

Among processes with equal priority scheduling is round-robin. By round-

robin we mean that processes are selected one after another so that all members

of a set have an opportunity to execute before any member has a second chance.

1.2 Process Table

The process table is a data structure maintained by the operating system to

facilitate context switching and scheduling, and other activities discussed later.

Each entry in the table, often called a context block, contains information about

a process such as process name and state (discussed below), priority (discussed

below), registers, and a semaphore it may be waiting on (discussed later).

In Xinu, the index of a process table entry associated with a process serves to

identify the process, and is known as the process id of the process.

1.3 Process State

The system associates a process with a state, which helps it keep track of what the

process is doing. Two of these states, used for context switching and scheduling,

are current and ready. Other states will be discussed later.

The single process currently receiving CPU service is in the current state; other

processes eligible for CPU service are in the ready state (Some processes are not

eligible for CPU service, for instance a process waiting on a semaphore).

1.4 Xinu Mechanism for Context Switching and Scheduling

The Xinu mechanism for context switching and scheduling consists of three com-

ponents, which are described below.

1.4.1 Ready List. The ready processes in the system are kept in a `queue' called

the ready list. This list is sorted by the priority of the processes; the lowest



2 �

priority process appears at the head of the list and the highest priority process is

at the tail. Processes of the same priority are sorted by the order in which they are

to get service. Thus when a new process is inserted, it is inserted not at the end

of the list, but at a point determined by its priority. The current process is not on

this list, its id is stored in a global integer variable called currpid.

1.4.2 resched. resched is a routine that is called by the current process when

rescheduling is to take place. It is called not only when the time quantum of the

current process expires but also when a blocking call such as wait is invoked by

the current process or when a new process (of potentially higher priority) becomes

eligible for execution. (We shall discuss later the exact conditions that determine

when a rescheduling takes place)

The routine does the following:

Choosing a New Process: It chooses the new process to execute based on the

scheduling policy described above. Thus it looks at the process at the tail of the

ready list. If the priority of this process is lower than the priority of the current

process, then the current process, if it is executable, retains control of the CPU and

the routine returns. (The scheduling policy dictates that a lower priority process in

the ready list will be executed only if there are no higher priority processes in the

list). Otherwise the process at the tail of the process is chosen as the new process

and the following steps are taken.

Change of State of New Process: The new process is removed from the ready list,

its state is changed from ready to current.

Allocation of Time: The new process is is allocated a time interval to execute

(we shall study later how this is done). This time interval is the maximum time it

will execute control before rescheduling takes place.

Change of State of Old Process: The routine resched is never called directly by the

user process. It is called indirectly by some other system provided routine such as

wait on a semaphore. This routine may change the state of the process. For instance

wait changes the state of process to wait (as we will discuss later). At the point

resched is called, the process is executable only if its state is still current. resched

uses this information to determine if the old process needs to be put in the ready

list. If the state is current it changes it to ready and inserts the process in front of

other processes with the same priority (so that it is picked last among processes with

the same priority, thus ensuring round robin scheduling among processes with the

same priority), and behind processes with lower priority (so that a higher priority

process is scheduled before a lower priority one). Otherwise it leaves the process

untouched since some other routine took care of changing the state of the process

and putting it in an appropriate list.

Call to ctxsw: Finally the routine ctxsw (discussed below) is called. This routine

does work that cannot be done in a high level language (compared to assembly

language) like C.

1.4.3 ctxsw. The routine ctxsw, described in the text (pg 60), does the following:

Saves the registers of the old process in the process table entry for it. Registers

R1-R5, the stack pointer, the program counter, and the process status are all saved.

(Compare this with register saves in a procedure call) It has to be careful while

saving a value for the PC. It does not save the address of any of the remaining



� 3

instructions in ctxsw (why?). Instead, it saves the return address of ctxsw. Thus,

when the old process is resumed, it starts executing after the statement in Resched

that calls ctxsw. The stack pointer must be adjusted to make it look as if a return

from ctxsw occurred. In the LSI version, this is done by popping the return address

from the stack. The parameters will be popped by the calling procedure.

Loads the registers of the new process from the saved values in the process table

entry for it. In particular, loads the saved stack pointer of the new process's context

block, switching stacks. Again, care has to be taken with the program counter.

This register can be loaded only after the rest of the state has been restored. The

routine uses the rtt instruction to transfer return control to the new process. This

instruction loads the PC and PS from values saved in the stack. Thus ctxsw makes

sure that these values are pused on the (new process's) stack before rtt is called.

(What routine will the new process be executing when control is transferred to it?)

1.4.4 The Null Process. The code in Resched, when deciding on a new process

to execute, does not bother to verify if the ready list is empty. It assumes that

one process is always available To ensure that a ready process always exists, Xinu

creates an extra process, called the null process, when it initializes the system. This

process has process id 0, its code consists of an in�nite loop, and it has priority

zero (why?).

2. PROCESS RESUMPTION AND SUSPENSION

Process suspension and resumption are used to temporarily stop a process from

executing and then restart it again.

2.1 Semantics

A process may suspend itself or another process may suspend it.

A process to be suspended should be in the ready or current state.

Suspended processes go into the suspended state.

A process can be resumed only if it is in the suspended state.

A resumed process goes to the ready state (why not to the current state?)

The resume call returns the priority of the suspended process at the time that

resume was called.

The suspend call returns the priority of the suspended process just before suspend

terminates.

The reasons for returning priorities are obscure, but the fact that the priority of

a process can change during a system call is interesting.

Look at transition diagram in �gure 5.1 in the text book.

2.2 Implementation

Process resumption and suspension are implemented by the procedures resume and

suspend respectively.

2.2.1 Procedure resume. Takes as argument the process id of the process to be

resumed.

Returns an error value if argument is not a valid process id or is not in the

suspended state.

Puts the process in the ready list.



4 �

Asks for rescheduling. (why?)

Stores the value of the priority of the resumed process before the process is

rescheduled (why does this value have to be stored?).

Disables interrupts while accessing the process table to read the priority of the

resumed process. If interrupts are not disabled, a clock interrupt may ask for

rescheduling. Thus some other process may change the priority of the resumed

process before the resuming process has a chance to read the priority.

2.2.2 Procedure suspend. Takes as argument the process id of process to be sus-

pended.

Returns an error value if process id is invalid or process is not in the ready or

current state. Otherwise returns the priority of the process just before suspend

terminates.

Changes state of process to suspended.

If process is in the ready state it is removed from the ready list. (Should it put

the process in some other list?)

If process is in the current state, it calls resched (why?).

disables interrupts while accessing process table.

3. PROCESS TERMINATION

A process may terminate a) when it �nishes execution of its procedure or b) as a

result of a kill request made by the same or another process.

Process termination involves releasing resources held by the process and removing

all traces of it.

3.1 Implementation

The procedure kill handles both kinds of process termination. It may be explicitly

called by a process that makes a kill request or it may be called implicitly when a

process terminates normally.

3.1.1 Tasks Performed. (Error checking, ensuring mutual exclusion while access-

ing process table, and other functions common to resume and suspend will not be

mentioned in the remaining implementation descriptions)

returns stack space.

frees process table entry, making it available for reuse.

remove process from any list it is on,

increments semaphore count if necessary,

reschedules if process killed itself. reschedule needs the \freed" process stack for

passing arguments to ctxsw. Fortunately, this is not a problem, since interrupts

are disabled between the time the stack is freed and ctxsw �nishes processing the

arguments. As a result, the freed stack will not be overwritten by another process

while the arguments are accessed.

4. PROCESS CREATION

An existing process requests for a new process to be created.

The new process does not begin execution but is in the suspended state.



� 5

4.1 Implementation

Implemented by routine create (procaddr, ssize, priority, name, nargs, args).

4.2 Arguments:

procedure to be executed

stack size

priority

name

number of args and args

4.3 Tasks Done

Create stack space

Create process table entry

Fill priority, name, registers and other �elds of process table entry. (what values

should the PC and initial state contain?)

Simulate a call to procedure to be executed. Copy arguments to the stack of

the new process and �ll return address of a routine (userret) that calls the kill

procedure. Thus kill also handles normal termination.

Returns process id.

5. SYSTEM CALLS

These are procedure calls that a user program may make to access the services

provided by the OS. So far we have seen four system calls: create, kill, resume, and

suspend. We now discuss some other miscellaneous calls:

5.0.1 Getpid. This routine returns the process id of the process making the calls.

5.0.2 Getprio (pid). Returns the priority of a process.

5.0.3 Chprio (pid, newprio). Change the priority of a process.

6. NEED FOR MULTIPROCESSING

Why do we need multiprocessing, when computation, instead of being speeded, may

actually be slowed down in a single processor system (because of context switching

overhead and overhead of making system calls such as create and terminate)? Why

is sequential processing not su�cient?

Multiprocessing is useful for several reasons, which are discussed below.

6.1 Time Sharing

In the absence of multiprocessing, a single application is run at a time. Thus a

single user is serviced at a time. Multiprocessing is necessary for time sharing

systems, which allow several users to get service simultaneously.

6.2 Di�erent Applications per User

It is also useful to have several applications running simultaneously on behalf of the

same user. For instance an editor and a compiler could run together. The editor

could be higher priority so that the compiler runs only when the editor is waiting

for user input.



6 �

6.3 Several Processes per Application

A single application can be broken up into several parts, each one associated with

a separate process. This division of labour often makes the program easier to

write. As an example consider a screen manager that displays several windows

simultaneously and accepts user input from each window. In a sequential processing

system, exactly one process is assigned to this application. It would maintain a

\context block" for each window and \switch" among these blocks based on user

input. The program for this process would look as follows:

initialize all windows.

loop

wait for user input

determine the window to which it applies

load state of window

service input

save state

end loop

In a multiprocess system, a process could be associated with each window. The

state of a window is stored in the variables of its process, and the operating system

is responsible for saving and restoring this state and switching among the processes.

Moreover, it can support urgent windows (\abort missile launch") by giving higher

priority to processes that manage them. Thus each process is concerned only with

servicing input, and not with saving and restoring state.

Perhaps more compelling examples are found in the Web context. Multiprocess-

ing allows a Web browser to execute di�erent animations (shown on a Web page) as

separate threads. In the absence of multithreading, the browser would be responsi-

ble for context switching between the animations. Similarly, multiprocessing allows

an HTTP server to execute di�erent pieces of user-supplied code as independent

threads or "servlets".

6.4 Concurrent Computing

The di�erent processes can execute on di�erent computers in a multiprocessing

system. Thus computation may be speeded up. As an example consider a checkers-

playing application that evaluates di�erent board positions. Each board position

could be evaluated by a di�erent process running on a di�erent computer. Similarly,

independent animations can be executed concurrently by di�erent processors.


