
� 1

COMP 242 Class Notes

Section 10: Organization of Operating Systems

1. ORGANIZATION OF OPERATING SYSTEMS

We have studied in detail the organization of Xinu. Naturally, this organization

is far from the only one used in current operating systems. In many respects it

is the simplest of the ones adopted. In this discussion we �rst look at the main

characteristics of the Xinu organization and then study variations of it that are

supported in other operating systems.

1.1 Xinu

All operating system services are provided by the kernel.

The kernel is a bunch of library routines linked to user programs.

The kernel routines are \encapsulated" in �les.

The user processes and the kernel share a common physical memory.

The set of procedures that can be executed is determined when the OS is started.

An advantage of this organization is that it is simple. Moreover, information to

be communicated among user processes and between a user process and the kernel

does not have to be copied.

Some disadvantages are:

The kernel routines are encapsulated in �les instead of module-like structures.

Address spaces are not protected.

The total address space available is limited to the size of physical memory.

Procedures cannot be dynamically loaded.

1.2 Pilot

Pilot is an operating system targeted towards personal computers. It is di�erent

from Xinu in the following respects:

The kernel routines are encapsulated within Mesa modules and monitors.

The user processes and the kernel share a common virtual memory instead of

physical memory.

Programs can be dynamically loaded and linked.

Thus an important disadvantage of this organization is that address spaces are

not protected by the OS. (This problem is alleviated to some extent by strong type

checking in Mesa) This disadvantage has to be weighed against the advantage of

eÆcient sharing of information.

1.3 Unix

Unix is di�erent from Xinu in the following main respects:

There is a distinction between kernel and rest of the operating system since some

of the OS functions are provided through user processes such as the swapper.

Processes execute in separate virtual address spaces.

Kernel code executes in a special privileged mode and a separate virtual address

space.

Dynamic loading of programs is supported (but not dynamic linking since address

spaces are not shared)



2 �

1.4 Server-Based Operating Systems

While Unix does support the distinction between kernel and rest of the operating

system, the major functions of the operating system such as �le management and

terminal I/O are implemented in the kernel. Several operating systems are more se-

rious about providing OS functions through utility processes. They provide servers

for a large number of operating system services such as memory management, �le

management, I/O etc. 242-Xinu is sort of an example of a server-based system

since the terminal service is provided by user-level processes. It is not a typical

example because the terminal servers can access the kernel address space and can

also be considered kernel processes (discussed below).

Providing OS services through servers supports the separation of policy from

mechanism. The kernel provides a minimal set of services that are mechanisms

used by servers to enforce policy. This separation is important in systems that

expect to evolve since policy changes do not involve modi�cation of the kernel. It is

also useful in building distributed operating systems, since servers can be accessed

from remote machines (if the IPC is distributed).

One potential disadvantage of providing an OS function through a server is slow-

ness of response. Invocation of a service through a server includes the following

steps:

A kernel call made by the client to send a request to the server.

A kernel call made by the server to receive the message.

Possible copying of data from client's address space to server's address space.

A kernel call made by the server to send results to the client.

A kernel call made by the client to receive the results if the original request was

asynchronous.

Possible copying of data from server's address space to client's address space.

If the service is invoked through a kernel then only one kernel call is made and

no copying of data between client and server address spaces is needed. (Data may

be copied to and from the kernel's address space in either case.)

An important question in server-based operating systems is: how much of the

OS functionality can be provided through servers? Clearly some functionality is

essential in the kernel. The kernel needs to be able to run processes, in particular

the servers. It also needs to support interprocess communication primitives that

allow clients to make requests and servers to deliver results. Often a kernel (or at

least a part of it) is guaranteed to be always resident in memory. Moreover, kernel

code executed more eÆciently than user-level server code. Therefore, code that

reacts to interrupts is also included in the kernel.

Finally, an operating system such as Unix allows the kernel to run in a special

privileged mode that can change memory mapping registers, use physical addresses,

etc. Therefore OS functions that require this mode are also provided by the kernel.

In a server-based operating system how does a process get in touch with a server?

Some services (such as name-services) could be associated with well known port

numbers as in Unix. A process could be born with references to communication

ports of other services (such as standard input and output). These references may

be inherited from its parent or speci�ed by the user through command arguments

or an initialization �le. Still others (such as �le services) it could get by contacting a



� 3

name server, which allows a server to register a service name and a port reference,

and answers queries that ask for a port reference corresponding to a service name.

1.5 Kernel Processes

So far we have assumed that the kernel is a bunch of procedures encapsulated within

�les or modules and monitors. We now discuss a di�erent approach that structures

the kernel as a bunch of cooperating kernel processes. Each of these processes

could be responsible for a logical subset of the services o�ered by the kernel. Thus

one process could be responsible for scheduling, another for managing disk I/O, a

third for processing information received from other computers and so on.

There are some advantages of supporting kernel processes:

The kernel is well-structured since kernel services are encapsulated within the

processes that provide them. This encapsulation is similar to the one provided by

modules and monitors. (Recall the Lauer and Needham paper on the duality of

operating systems).

Kernel code does not have to run as part of user processes. In a system that

does not support kernel processes, all kernel code runs as part of user processes.

For example in Xinu, when a service call is made, the kernel code to service the

call runs as part of the process that made the call. In a system that supports

kernel processes, the service call would result in a message to a kernel process,

which would then execute the appropriate code. In some ways the latter approach

is more `elegant'.

In a multiprocessor system kernel processes could execute concurrently.

The idea of kernel processes may seem contradictory to our discussion of the

minimum functionality provided by a kernel. If a kernel is responsible for supporting

processes and interprocess communication, how can it use these facilities itself?

Here are two solutions:

Kernel processes and communication among them may be supported by the pro-

gramming language. Charlotte, a distributed operating system developed at Madi-

son, uses this approach.

A portion of the kernel, which we shall call the nugget, could support kernel

processes and communication among these processes, and higher layers could be

implemented as communicating kernel processes. This approach is implemented in

Sun Unix.

Should kernel processes be any di�erent from ordinary user processes? It is

important to execute kernel code eÆciently, therefore these processes should be

lightweight processes.

2. DISTRIBUTED OPERATING SYSTEMS

So far we have concentrated on the organization of uniprocessor systems. As we saw

earlier, a (symmetric) mutiprocessor OS is structured like a uniprocessor system -

though we do need changes to scheduling and other components of the system. We

now consider the organization systems running on multiple computers with local

memories and connected by a network.



4 �

2.1 Long-Haul Networks

As we saw before, these networks are collections of widely scattered computers

connected by a common communication network. Communication in such systems

is relatively slow (9.6 to 56 Kbps) and unreliable and typically through telephone

lines, microwave links, and satellite channels.

Long-haul networks provide several services to their users:

The ability to mail information from one site to another.

The ability to post news on bulletin boards, which may be read by any user

on the system.

The ability to �nd information about users on di�erent computers through ser-

vices such as �nger.

The ability to copy �les from one system to another.

The ability to logon at a remote site. The local computer directs user input to

the remote site and displays output received from the remote computer.

WWW access.

The notion of a long-haul network requires the ability to communicate among

remote processes. It also requires schemes such as replication/caching for over-

coming the lack of speed and reliability of the network and also the absence of a

global clock. It does not, however, require a special organization and any operating

system that communicate across the network can o�er these services.

2.2 Local-Area Networks

A local-area network consists of independent computers con�ned to small geo-

graphical area. Since this area is small, the communication network can be fast

(3-100 Mbps) and reliable.

A local-area network o�ers, in addition to the services o�ered by long-haul net-

works, sharing of expensive devices such as printers and large secondary store. This

sharing is important when the nodes are workstations { powerful personal com-

puters that come with high-quality displays and small or no local disks. Typically,

a network of workstations has one or more special machines connected to large

disks that run disk server or �le server processes. These processes allow processes

on other machines to use the disks for storing �les. Thus LANs are built on top of

server-based operating systems.

A disk server provides each client with a small virtual disk since the only service

it normally provides is sharable secondary storage. A disk server provides each

client with a small virtual disk and primitives to read and write blocks on the

virtual disk. The client can use these primitives to build its own �le system on

top of the virtual disk. A �le server, on the other hand, allows access at the �le-

level, and provides primitives to open, read, and write �les. (Often a workstation

that provides sharable secondary store is called a disk server machine or a �le

server machine, since the only service it normally provides is sharable secondary

storage.)

Each approach to shared secondary storage has its advantages. A disk server

is simple and supports customized �le systems. A �le server gives higher-level

primitives and allows sharing of �les among its di�erent clients.

A network of computers will often have several machines connected to sharable



� 5

secondary storage. Therefore it is useful if �les could be shared among these ma-

chines also. (Note this feature is di�erent from providing special programs that

can transfer �les from one computer to another.) There are two complementary

schemes for naming �les in a system that supports such sharing. The simpler

scheme incorporates the machine name in the �le. It is not convenient to move �les

around in this system. The alternative scheme makes the �le location transparent

to the user. Under this approach the operating system maintains tables and uses

algorithms which allow it to �nd a �le anywhere in the network.

A popular example of a transparent �le system is the Network File System (NFS)

developed by Sun. It allows a directory belonging to a remote disk to be mounted

on a local directory, much in the way the root directory of a logical disk (also called

�le system) can be mounted on some other directory. For instance the command:

mount A:/a/b l

mounts the directory `/a/b' on machine `A' to the local directory `l'. Now the �le

`/a/b/f' on `A' can be accessed as `l/f'.

2.3 Multicomputers

Local-area (and long-haul) networks run independent, possibly di�erent, operating

systems that o�er limited services for sharing. An alternative approach is to present

a single operating system that manages all the computers. The operating system

can run di�erent processes of an application on di�erent computers. In addition, if

a particular site becomes overloaded, the operating system can migrate processes

running on the computer to other sites. There are several potential bene�ts of mi-

gration: load balancing, move process to data and other resources being accessed

frequently, fault tolerance, execution on specialized hardware, etc. Migration re-

quires a mechanism to gather load information, a distributed policy that decides

when a process should be moved, and a mechanism to a�ect the transfer. Migration

has been demonstrated in systems such as Locus, Demos/MP, and Charlotte.

Migration poses several problems. A system cannot simply copy the state associ-

ated with the migrating process to the destination process since some of this state

may be host relative. (e.g. process id's, pending Unix signals and messages). A

process may therefore be migratable only under certain conditions. Some systems

do not guarantee that all calls will behave the same when the process is migrated.

Even if there is no host relative state, the system must ensure that all messages

directed to the migrated process reach the new destination. In some systems such

as Charlotte, there are explicit bound ports established between communicating

processes. When a process with existing links moves, the system can update the

information at the other end of the bound port. The situation is compounded by

the fact that two processes at opposite ends of bound ports might simultaneously

move. In a system with input ports, a forwarding message can be left at the original

host, which is returned to the sender. Because of these problems, some systems

only migrate new processes (in the scheduler Q) and not those that have already

executed and built-up site speci�c state. One of the potential drawbacks in process

migration is migration cost: the time taken to migrate a process might be less than

the time required to complete the process. A related problem is latency: during

migration, the process does not respond to the user. Two solutions have been pro-



6 �

posed to address this problem: One is to do precopying - the process continues to

run at the original computer until is completely copied to the remote computer.

Another one, adopted by Accent, is lazy copying, the complete memory image of a

process is not copied when it is migrated. Instead, the state is copied on reference,

and studies show this works well because programs tend to use only a small part of

their state. This approach also solves the migration cost problem. Processes might

be moved only during certain states, e.g suspended, to ensure that their interactive

response time does not su�er. Migration might also increase the cost of accessing

resources that were on the original machine. These resources can be migrated with

the process.

The bene�ts of migration, thus, have to be weighed against the overheads in-

volved.

How is the operating system on a multicomputer organized? Typically, each

machine has a copy of the kernel, which provides the minimum functionality that

includes communication between remote processes. Most of the operating system

tasks are handled by servers which reside on di�erent machines. Often a service is

provided by a team of distributed servers instead of a centralized server, for several

reasons:

Each computer connected to devices needs servers on that machine to manage the

devices, as in 242-Xinu, which creates terminal servers on each machine connected

to a tty device.

Requests to local servers may be satis�ed faster that remote servers.

A centralized server may become a bottleneck.

A service may be lost if the machine running the centralized server goes down.


