
CS 570 Class Notes Fall 1989

Handout 9

InterProcess Communication Using Sockets

by Raj Yavatkar

1 Introduction

Pipes are a simple solution for communicating between a parent and child or be-

tween child processes. What if we wanted to have processes that have no common

ancestor with whom to set up communication? Unix provides an IPC mechnism

called sockets for this purpose. Two processes can separately create sockets and

then have messages sent between them. These two processes may reside on the

same machine or on separate machines interconnected using a computer network.

In Berkeley UNIX 4.3BSD, one can create individual sockets, give them names,

and send messages between them.

Sockets created by di�erent programs use names to refer to one another; names

generally must be translated into addresses for use. The space from which an

address is drawn is referred to as a domain. There are several domains for sock-

ets. We will use a domain called the Internet domain (AF INET) which is the

UNIX implementation of the DARPA Internet standard protocols IP/TCP/UDP.

DARPA Internet is a worldwide collection of several networks.

Communication follows some particular style. Currently, communication is ei-

ther through a stream or by datagram. Stream communication implies several

things. Communication takes place across a connection between two sockets. Be-

fore beginning the communication, two processes execute a series of steps to ensure

that both are ready to exchange messages. The result of this negotiation is a con-

nection. The communication over a stream is reliable, error-free, and, as in pipes,

no message boundaries are kept. Reading from a stream may result in reading the

data sent from one or several calls to write() on the sender's side or only part of

the data from a single call, if there is not enough room for the entire message, or

if not all the data from a large message has been transferred.

Datagram communication does not use connections. Each message is addressed

individually. If the address is correct, it will generally be received, although this

is not guaranteed. Often datagrams are used for requests that require a response

from the recipient. If no response arrives in a reasonable amount of time, the

request is repeated. The individual datagrams will be kept separate when they are

1

read, that is, message boundaries are preserved.

Actual transfer of data takes place using a protocol. A protocol is a set of

rules, data formats and conventions that regulate the transfer of data between

participants in the communication. In general, there is one protocol for each socket

type (stream, datagram, etc.) within each domain. The code that implements a

protocol keeps track of the names of the sockets, sets up connections and transfers

data between sockets, perhaps sending the data across a network.

One speci�es the domain, style, and protocol of a socket when it is created. For

example, the following Unix system call to sockect causes the creation of a stream

socket with the protocol in the Internet domain.

socket(AF INET, SOCK STREAM, 0);

The constants AF INET and and SOCK STREAM are de�ned in hsys=socket:hi.
After a socket is created, it must be given an appropriate name in its domain. In

the Internet domain, sockets are identi�ed using a 8-byte transport address con-

sisting of two parts: address of the host or machine on which the socket exists and

a port number, or a delivery slot, on that machine. The following structure de�ned

in �le \netinet.h" describes the socket address.

struct sockaddr_in { /* Internet family socket address */

short sin_family; /* adresss family */

short sin_port; /* 2 byte port number */

long sin_addr; /* 4 byte machine address */

char sin_data[8]; /* unused */

};

When a message must be sent between machines it is sent to the protocol routine

on the destination machine, which interprets the address to determine to which

socket the message should be delivered.

For a given protocol, a socket is thus identi�ed using the tuple

hprotocol; localmachineaddress; localporti.

An association is a temporary or permanent speci�cation of a pair of communicat-

ing sockets. An association is thus identi�ed by the tuple

hprotocol; localmachineaddress; localport; remotemachineaddress; remoteporti.

2

The protocol for a socket is chosen when the socket is created. The local

machine address for a socket can be any valid network address of the machine, if

it has more than one, or it can be the wildcard value INADDR ANY.

Figure 1 shows an example program for sending datagram to a well-known

server called the UDP echo server residing on machine s.

To determine a network address to which it can send the message, it looks up the

host address by the call to gethostbyname(). The returned structure includes the

host's network address, which is copied into the structure specifying the destination

of the message.

The port number can be thought of as the number of a mailbox, into which

the protocol places one's messages. Certain daemons, o�ering certain advertised

services, have reserved or \well-known" port numbers. These fall in the range from

1 to 1023. Higher numbers are available to general users. Only servers need to ask

for a particular number.

Port number for a well-known service may be obtained by using the system call

getservbyname(family, service).

1.1 Binding local names to sockets

A soocket is created without a name. Until a name is bound to a socket, processes

have no way to reference it and, therefore, no messages may be received on it. the

bind system call allows a process to specify local or its own half of the association,

hlocaladdress; localporti and the connect and accept calls are used to complete a

socket's association.

The bind system call is used as follows:

#include <sys/types.h>

#include <netinet/in.h>

struct sockaddr_in sname;

sname.sin_family = AF_INET;

sname.sin_port = PORTNUM;

sname.sin_addr.s_addr = INADDR_ANY;

bind(fdTo,(char *)&sname, sizeof(sname));

3

1.2 Connection Establishment

A connection is typically used for client-server interaction. A server advertizes a

particular server at a well-known address and clients establish connections to that

socket to avail of the o�ered service. Thus the connection estblishment procedure

is asymmetric.

A server creates a socket, binds it to a \well-known" port number associated

with the service, and then passively \listens" on the socket for requests to be served.

It is possible for any unrelated process to rendezvous with the server. A client

requests services from a server by initiating a \connection" to the server's socket.

The client uses the connect system call to initiate a connection. For example, the

following call establishes a connection to a socket whose address is speci�ed using

the variable \sname".

struct sockaddr_in sname;

int s; /* socket descriptor returned by system call socket */

sname.sin_family = AF_INET;

sname.sin_port = PORTNUM; /* well-known port no */

sname.sin_addr.s_addr = /* host address of the server */;

connect(s, &sname, sizeof(sname));

For the server to receive a conection, it must perform two steps after binding

its socket. The �rst is to indicate a willingness to listen for incoming connection

requests:

listen(fdTo,5);

The second parameter speci�es the maximum number of outstanding connec-

tions that may be queued by the system when server is busy.

Once a socket is marked as listening, a server may accept a connection:

struct sockaddr_in from;

int fromlen;

fromlen = sizeof(from);

newsock = accept(fdTo, &from, &fromlen);

4

A new socket descriptor is returned on receipt of a connection. The identity of

the client requesting connection is returned in the structure from and the length

of that information is returned in fromlen. Figure 2 shows program for a remote

login server that accepts requests for remote login from remote clients. Note that

\login" is a well-known servicve and therefore has a well-known port number.

Once a connection is established, both client and server may exachnge data

using several system calls.

1.3 Data Transfer

With a connection established, data may begin to
ow. To send and receive data

there are a number of possible calls. With the peer entity at each end of a connec-

tion anchored, a user can send or receive a message without specifying the peer.

As one might expect, in this case, then the normal read and write system calls are

usable,

write(s, buf, sizeof (buf));

read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);

recv(s, buf, sizeof (buf), flags);

The send and recv are virtually identical to read and write, and the extra
ags

argument is important only in special circumstances.

1.4 Connectionless Sockets

A datagram socket provides a connectionless communication interface. Under this

model, communicationg processes need not set up a connection before they ex-

change messages. Instead, sender speci�es a destination address in each message.

There is no gurantee that the recipient will be ready to receive the message and

there is no error returned if the message cannot be delivered. Messages are sent

and received using the system calls sendto and recvfrom.

Datagram sockets are created as before. If a particular local address is needed,

the bind operation must precede the �rst data transmission. Otherwise, the system

will set the local address and/or port when data is �rst sent. To send data, the

sendto primitive is used,

5

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

The s, buf, bu
en, and
ags parameters are used as before. The to and tolen

values are used to indicate the address of the intended recipient of the message.

When using an unreliable datagram interface, it is unlikely that any errors will be

reported to the sender. When information is present locally to recognize a message

that can not be delivered (for instance when a network is unreachable), the call

will return 1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive

is provided:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially

containing the size of the from bu�er, and modi�ed on return to indicate the actual

size of the address from which the datagram was received.

Figure 3 shows an example of a user-de�ned datagram-based server that echoes

back messages sent by a client.

In addition to the two calls mentioned above, datagram sockets may also use

the connect call to associate a socket with a speci�c destination address. In this

case, any data sent on the socket will automatically be addressed to the connected

peer, and only data received from that peer will be delivered to the user. Only

one connected address is permitted for each socket at one time; a second con-

nect will change the destination address, and a connect to a null address (family

AF UNSPEC) will disconnect. Connect requests on datagram sockets return im-

mediately, as this simply results in the system recording the peer's address (as

compared to a stream socket, where a connect request initiates establishment of

an end to end connection). Accept and listen are not used with datagram sockets.

6

/* Figure 1 */

/* a client program that communicates with the UDP echo server

using Internet datagrams */

/* include files omitted */

main()

{

struct sockaddr_in saTo;

int fdTo, fromlen;

struct servent *pServent;

struct hostent *pHostent;

char *snd_buf; /* must allocate memory */

int cch;

/* create a socket */

fdTo = socket(AF_INET, SOCK_DGRAM, 0);

/* first find the address of the server */

pServent = getservbyname("echo", "udp");

/* find the machine address given a host name */

pHostent = gethostbyname("s.ms.uky.edu");

/* fill in info inthe socket address sturcture */

bzero((char *)&saTo, sizeof(saTo));

bcopy(pHostent->h_addr, (char *)&saTo.sin_addr,pHostent->h_length);

saTo.sin_family = AF_INET;

saTo.sin_port = pServent->s_port;

/* send a message */

cch = sendto(fdTo, tmp_buf, strlen(tmp_buf), 0, &saTo, sizeof(saTo));

........

}

7

/* Figure 2 */

/* Remote login server program */

main()

{

struct sockaddr_in from;

int fd, rstat;

struct servent *pServent;

fdTo = socket(AF_INET, SOCK_STREAM, 0);

pServent = getservbyname("rlogin", "tcp");

bzero((char *)&from, sizeof(from));

from.sin_family = AF_INET;

from.sin_port = pServent->s_port;

from.sin_addr.s_addr = INADDR_ANY;

/* bind bind */

fd(fdTo,(char *)&from, sizeof(from));

listen(fd, 5); /* listen to requests */

while(1) {

fromlen = sizeof(from);

rstat = accept(fd, &from, &fromlen);

/* error checking */

/* fork off a chilld to handle this connection */

}

}

8

/* Figure 3 */

/* An example of a simple, datagram-based echo server that echoes

back client messages.*/

#include <stdio.h>

#include <sys/types.h>

#include <netdb.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define PORTNUM 2005 /* user defined port, not a well-known one */

main()

{

struct sockaddr_in saTo;

int fdTo, fromlen;

char *req_buf; /* must allocate memory */

int cch;

fdTo = socket(AF_INET, SOCK_DGRAM, 0);

bzero((char *)&saTo, sizeof(saTo));

saTo.sin_family = AF_INET;

saTo.sin_port = PORTNUM;

saTo.sin_addr.s_addr = INADDR_ANY;

/* bind fd */

bind(fdTo,(char *)&saTo, sizeof(saTo));

while(1) { /* server loop */

fromlen = sizeof(saTo);

cch = recvfrom(fdTo, req_buf, 80, 0, &saTo, &fromlen);

/* reply */

sendto(fdTo, req_buf, cch, 0, &saTo, sizeof(saTo));

}

}

9

