
� 1

CS 242: Operating Systems

Transactions

Prasun Dewan

1. CONCURRENCY CONTROL

The synchronization primitives we have seen so far are not as high-level as we might

want them to be since they require programmers to explicitly synchronize, avoid

deadlocks, and abort if necessary. Moreover, the high-level constructs such as mon-

itors and path expressions do not give users of shared objects
exibility in de�ning

the unit of atomicity. We will study here a high-level technique, called concurrency

control, which automatically ensures that concurrently interacting users do not ex-

ecute inconsistent commands on shared objects. A variety of concurrency models

de�ning di�erent notions of consistency have been proposed. These models have

been developed in the context of database management systems, operating systems,

CAD tools, collaborative software engineering, and collaboration systems. We will

focus here on the classical database models and the relatively newer operating sys-

tem models.

2. TRANSACTION MODELS

The notion of concurrency control is closely tied to the notion of a \transaction". A

transaction de�nes a set of \indivisible" steps, that is, commands with the Atom-

icity, Consistency, Isolation, and Durability (ACID) properties:

Atomicity: Either all or none of the steps of the transaction occur so that the in-

variants of the shared objects are maintained. A transaction is typically aborted by

the system in response to failures but it may be aborted also by a user to \undo"

the actions. In either case, the user is informed about the success or failure of the

transaction.

Consistency: A transaction takes a shared object from one legal state to another,

that is, maintains the invariant of the shared object.

Isolation: Events within a transaction are hidden from other concurrently executing

transactions. Techniques for achieving isolation are called synchronization schemes.

They determine how these transactions are scheduled, that is, what the relation-

ships are between the times the di�erent steps of these transactions. Isolation is

required to ensure that concurrent transactions do not cause an illegal state in the

shared object and to prevent cascaded rollbacks when a transaction aborts.

Durability: Once the system tells the user that a transaction has completed suc-

cessfully, it ensures that values written by the database system persist until they

are explicitly overwritten by other transactions.

It is the isolation property that relates the transaction concept with concurrency

control. Therefore, we will focus mainly on synchronization schemes, which we will

also call concurrency schemes.

3. SERIALIZABILITY

Serializability is the classical concurrency scheme. It ensures that a schedule for

executing concurrent transactions is equivalent to one that executes the transac-

tions serially in some order. It assumes that all accesses to the database are done

2 �

using read and write operations. A schedule is called \correct" if we can �nd a

serial schedule that is \equivalent" to it. Given a set of transactions T1...Tn, two

schedules S1 and S2 of these transactions are equivalent if the following conditions

are satis�ed:

Read-Write Synchronization: If a transaction reads a value written by another

transaction in one schedule, then it also does so in the other schedule.

Write-Write Synchronization: If a transaction overwrites the value of another

transaction in one schedule, it also does so in the other schedule.

These two properties ensure that there can be no di�erence in the e�ects of the

two schedules. As an example, consider the schedule in Figure 1. It is equivalent

T1 T2

read (p1)

write(p1)

read (p1)

write (p1)

read(p2)

write(p2)

read(p2)

write(p2)

Figure 1

to a schedule in which T2 is executed after T1.

There are several approaches to enforcing serializability.

4. LOCKING

We could try and use locking to ensure serializability as shown in Figure 2.

T1 T2

lock(p1)

read(p1)

lock(p1)

write(p1)

unlock (p1)

lock(p2)

read (p1)

write(p1)

unlock(p1)

lock(p2)

read(p2)

write(p2)

unlock (p2)

read(p2)

write(p2)

unlock(p2)

Figure 2

� 3

Before accessing a resource, a process locks it, and after accessing it, the process

unlocks it. A transaction blocks another one only if the latter concurrently accesses

the same resource.

This approach works in the example shown in Figure 2 because both transactions

access the shared objects in the same order. When this is not the case, it does not

work. Consider the scenario of Figure 3.

T1 T2

lock(p1)

lock(p2)

read(p1)

read (p2)

write(p1)

write(p2)

unlock (p1)

unlock(p2)

lock(p2)

lock(p1)

read(p2)

read(p1)

write(p2)

write(p2)

unlock (p2)

unlock(p1)

Figure 3

This execution is allowed by the naive locking approach, but is not serializable.

Thus, a more complicated approach, described below, is necessary.

5. TWO-PHASE LOCKING

This approach, developed by Jim Gray, locks data and assumes that a transaction

is divided into a growing phase, in which locks are only acquired, and a shrinking

phase, in which locks are only released. The use of 2-phase locks is illustrated in

Figure 4.

A transaction that tries to lock data that has been locked is forced to wait and

may deadlock, as shown in Figure 5.

6. INCREMENTAL SHARING

In Figures 4 above, transaction T2 was able to see incremental writes of T1. This

approach increases the concurrency in the system but consider what happens if for

some reason transaction T1 aborts. In this situation, the atomicity requirement

implies that transactions such as T2 that have seen results of T1, transactions

that have seen writes of these transactions, and so on must also be aborted. This

problem is referred to as the problem of cascaded rollbacks, and locking schemes

sometimes avoid this problem by unlocking data only at the end of the transaction.

4 �

T1 T2

lock(p1)

read(p1)

lock(p1)

write(p1)

lock(p2)

unlock (p1)

read (p1)

write(p1)

lock(p2)

unlock(p1)

read(p2)

write(p2)

unlock (p2)

read(p2)

write(p2)

unlock(p2)

Figure 4

T1 T2

lock(p1)

lock(p2)

read(p1)

read (p2)

write(p1)

write(p2)

lock(p2)

lock(p1)

unlock (p1)

unlock(p2)

read(p2)

read(p1)

write(p2)

write(p2)

unlock (p2)

unlock(p1)

Figure 3

� 5

7. MULTIVERSION TIMESTAMP ORDERING

As we have seen above, a problem with 2PL is that it can lead to deadlocks. Reed's

multiversion timestamp ordering scheme solves this problem by ordering transac-

tions and aborting transactions that access data out of order. It also increases the

concurrency in the system by never making an operation block (though it does

abort transactions.)

It assigns transactions timestamps when they are started, which are used to

order these transactions. Moreover, it associates each data item with timestamped

versions and associates each version with readtimestamps. A readtimestamp is

associated with a data item whenever a transaction reads the data item and is

the same as the timestamp of the reading transaction. A timestamped version is

created whenever a transaction writes a new value to the data item and has the

timestamp of the writing transaction. The following steps occur when a transaction

accesses the database:

If the operation is a read, then it is allowed, and the version read is the one with

the largest timestamp less than the timestamp of the reading transaction. The

timestamp of the reading transaction is added to the item.

If the operation is a write, then a new version of the data item is created with the

timestamp of the writing transaction as long as no transaction with a more recent

timestamp has read a version of the item with an older timestamp than that of

the writing transaction. If this check fails, the writing transaction is aborted and

restarted.

This approach will support the schedule shown in Figure 1 by making sure T2

sees the values written by T1.

8. OPTIMISTIC CONCURRENCY CONTROL

The previous schemes do incremental synchronization checks on each read/write{ by

using explicit locks or timestamps. There are several disadvantages of incremental

checks:

Incremental checks can be expensive, specially when they involve accessing slow

secondary memory.

They are an unnecessary overhead when there are no con
icts (consider readonly

transactions).

They can reduce concurrency unnecessarily (because locks are kept longer than

necessary to avoid cascaded aborts) or lead to cascaded aborts (consider Figure 1).

Optimistic concurrency control divides a transaction into a read phase, a vali-

dation phase, and a writing phase. During (a) the read phase, a transaction reads

database items, and performs writes on local bu�ers, with no checking taking place,

(b) validation phase, the system does synchronization checking, and (c) the write

phase, the local writes are made global. It assigns each transaction a unique times-

tamp at the end of its read phase. A transaction TI is validated if one of the

following conditions can be established for all transactions TJ with later times-

tamps:

Transaction TI completes its write phase before transaction TJ begins its read

phase.

Transaction TJ does not read any of the items written by TI and transaction TI

6 �

�nishes its write phase before transaction TJ begins its write phase.

Transaction TJ does not read or write any items written by TI.

Transactions are aborted when validation cannot be done. In the example of

Figure 1, one of the two transactions would be aborted. This approach works well

when there are no con
icts (hence the term optimistic) but wastes work when there

are con
icts. Aborting of transactions is a severe problem when the transactions

are long and interactive, when manual/automatic merging is a better alternative.

9. VARIABLE GRANULARITY LOCKING

In the design of a locking-based concurrency control mechanism, the granularity of

locking must be determined. One simple, popular approach is to support coarse-

grained concurrency control which allows only one user to execute commands. In

comparison to schemes that chooser �ner locking granularity, it is space eÆcient in

that it stores only one lock per application, and time ineÆcient in that it requires

only one lock to be checked on each access. However, it limits the concurrency

in the application when di�erent components of an object can be manipulated

independently. It is sometimes useful to support a compromise between �ne-grain

and coarse-grain locking by o�ering variable-grained locking. A simple method for

supporting variable-grain locking is to allow transactions to lock both leaf and non-

leaf nodes. A lock on a non-leaf node applies to all the leaf-level items in the subtree

rooted by the node. We can de�ne two types or modes of locks: shared locks and

exclusive locks, which do not allow other transactions from writing and accessing,

respectively, the locked data structure.

This approach has two related problems. First, it is ineÆcient in that when

a transaction tries to lock a node, the system must check the lock status of all

nodes in the subtree rooted by the node and the path from the node to the root.

Second, it does not allow transactions to use exceptions in lock speci�cations such

as lock all nodes in this tree with shared locks except this one in the exclusive mode.

Transactions are forced to either take a conservative approach and lock the entire

tree using a stronger lock than necessary or use a large number of locks.

Gray et al [Gray granularity] describe a scheme that addresses these problems.

In addition to the basic or explicit locks, shared and exclusive, it associates non-leaf

nodes with intention locks. An intention lock on a node served two purposes: First,

it summarizes the locked status of its descendents, thereby reducing the need to

check their individual locked status when the node is to be locked. Second, it allows

exception-based speci�cation.

Now a transaction is required to put intention locks on all ancestors of a node

before it puts a basic or explicit (shared or exclusive) lock on the node. Three kinds

of intention locks are de�ned:

Intention Shared (IS) - it is put on a node if some descendent of the node is to

be locked in the shared mode.

Intention Exclusive (IX) - it is put on a node if some descendent of the node is

to be locked in the exclusive mode.

Shared Intention Exclusive (ISX) - it is put one a node if all children of a node are

to be locked in the shared mode except for some children that are to be explicitly

locked in the exclusive mode.

Thus, before putting a shared (exclusive) lock on a node, a transaction must put

� 7

an IS or ISX (IX or ISX) lock on all parents of the node. Conversely, it must release

the locks in a leaf to root order.

The following compatibility matrix determines if a transaction can lock a node

that is already locked by another transaction:

IS IX S SIX X

IS Y Y Y Y N

IX Y Y N N N

S Y N Y N N

SIX Y N N N N

X N N N N N

Compatibility Matrix

10. NESTED TRANSACTIONS

So far, our units of concurrency (transactions) have been required to also be units

of atomicity, consistency, isolation, and durability. These properties are not or-

thogonal and several concurrency schemes support concurrency units (also called

transactions) with only some of these properties

Nested transactions is one such concurrency scheme. It supports top-level trans-

actions with all of the ACID properties. In addition, to support concurrent execu-

tion of independent actions (such as modi�cation to two di�erent procedures of a

program) within these transactions, it allows a top-level transaction to root a tree

of nested transactions.

Like top-level transactions, nested transactions have the following properties:

A transaction is serializable with respect to its siblings, that is, accesses to shared

resources by sibling transactions have to obey the read-write and write-write syn-

chronization rules.

A transaction is a unit of recovery, that is, it can be aborted independently of its

siblings (modula the problem of cascaded aborts).

A transaction is a unit of atomicity, that is, either all or none of the e�ects of its

actions occur.

In addition, they have the following properties which stem from the fact that

unlike top-level transactions they have parents:

A nested transaction's actions are not considered to con
ict with its parent's ac-

tions. Thus, it can lock a resource locked by its parent as long as none of its siblings

have locked it (in an incompatible mode).

A nested transaction can lock a datum in some mode only if its parent has locked

the datum in the same mode.

A parent transaction's actions are considered to con
ict with its child's actions but

not vice versa. Thus, it cannot access a resource if a child's lock prohibits the

access. Thus, the child's lock wins.

An abort by a child transaction does not automatically abort the parent transac-

tion. The parent is free to try alternative nested transactions.

8 �

A commit by a child transaction releases the locks held by it to its parent and

makes its actions be part of the action set of its parent transaction. Thus, when

the parent commits, it commits not only those actions it performed directly but

also those performed by its descendents.

Notice, a nested transaction is not a unit of consistency or durability since it

does not on its own leave the database in a consistent state.

11. TRANSACTIONS ON OBJECTS

So far, we have considered concurrency schemes for synchronizing accesses to shared

databases - that is, shared objects supporting only read/write operations. Object

transactions are concurrency schemes for synchronizing accessed to shared objects

on which arbitrary operations can be supported.

How should concurrency schemes be adapted when accesses are made to shared

objects? The answer depends on how much of the application semantics is available

to the concurrency scheme. To understand the nature of such a concurrency scheme,

let us introduce the notion of a dependency relation, D (X,Y), which is a relation

formed between transactions based on the order in which they execute certain kinds

of operations, de�ned by X and Y, on a shared object. A transaction Tj depends

on transaction Ti with respect to a dependency relation D(X,Y)

Ti <D(X,Y) Tj

if Ti performs an X operation before Tj performs a Y operation.

Consider �rst the situation when the concurrency scheme has no semantic in-

formation, that is, has no information regarding the e�ect of an operation on an

object. In this situation, we must assume that an operation can perform arbitrary

actions. Let us de�ne one operation kind, any, and the dependency relation:

D = D(any, any)

Then, a transaction schedule is serializable if this dependency relation does not

introduce any cycles, that is, if transaction Ti performs an operation on an object

before transaction Tj, then Tj does not perform an operation on the object before

transaction Ti.

Also, assume that we wish to prevent cascaded aborts. Then we need to ensure

that a transaction performs an operation on a shared object only if all transactions

that have accessed the object have committed.

Now assume that we know which operations are reads and which are writes. We

can de�ne four dependency relations:

D1 = D(R, R)

D2 = D(R, W)

D3 = D(W, R)

D4 = D(W, W)

The dependency D1 is insigni�cant in that it cannot be observed. So to guarantee

serializability of a schedule, we just have to ensure that it does not create cycles in

the dependency relation D2 U D3 U D4, which is more liberal than D = D1 U D2

U D3 U D4. Thus, this scheme will allow the schedule of Figure 6 but not Figure

7.

� 9

T1 T2

R(O1)

R(O1)

W(O1)

Figure 6

T1 T2

R(O1)

W(O1)

W(O1)

Figure 7

To ensure that there are no cascaded aborts, we have to ensure only that no

D3 dependencies exist among overlapping transactions, which is again more liberal

than ensuring no dependencies exist.

Finally, assume that we know type-speci�c semantics of the operations. In this

case, it is possible that we can have an even more liberal scheme for ensuring

serializability and no cascading aborts. Consider the example of a queue supporting

the QEnter (q, e) (abbreviated as E(e)), and QDelete (q) (denoted below as D(e)),

where e is the ID of the element inserted/deleted. Each element is assumed to have

a unique ID assigned when it is entered into the queue. We can de�ne the following

dependency relations:

D1 = D (E(e), E(e'))

D2 = D (E(e), D(e'))

D3 = D (E(e), D(e))

D4 = D (D(e), E(e'))

D5 = D (D(e), D(e'))

In this case, the dependencies D2 and D4 are insigni�cant. Thus, assuming that

queue, Q, has elements A and B, schedule of Figure 8 is serializable: If we were

to model QEnter as a write and QDelete as a read followed by a write, then this

schedule would not have been allowed. Since T1 <D2 T2 dependency is insigni�-

cant, this schedule is indeed serializable. Similarly, to prevent cascaded aborts, we

have to ensure no D3 and D5 dependencies occur among interleaving transactions.

The dependency D1 is insigni�cant since it is similar to the W,W dependency.

A locking-based scheme for supporting this scheme must support locks of the

form LockClass(data) where LockClass corresponds to operation type and data

corresponds to explicit or implicit operand of the operation. The compatibility

matrix of Figure 9 describes a locking scheme for Queues: Here we assume, that

QEnter must ask for a lock on the element to be added, which is held till the end of

T1 T2

E(C)

D(A)

E(D)

Fugure 8

10 �

E(e) D(e)

E(e) NA NA

E(e') N Y

D(e) N NA

D(e') Y N

Fugure 9

transaction to avoid cascaded aborts. Similarly, QDelete must ask for a lock on the

head of the queue, which is also held until end of transaction. This scheme allows

a transaction entering items to interleave its steps with one removing items.

We may further re�ne our transaction model by de�ning a weaker notion of

consistency than serializability. This constraint is too strong in some situations. Let

us return to our example of queues. We may want to use the queue as simply a bu�er

between producer and consumer processes. FIFO queues used as bu�ers ensure

that items are removed in the order in which they are entered. We may be satis�ed

with weakly-FIFO queues{ queues that allow items to be removed out of order but

ensure there is no starvation - that is, an inserted item will eventually be removed

by moving to the front of the queue and when it does so, it will be eventually

removed. For such data structures, we can ignore the D1 and D5 con
icts, that

is, we can allow transactions to overlap their entries and removals in a non-serial

way. Thus, the only relationship we serialize is the D3 relationship to avoid cascaded

aborts and to order transactions synchronizing on queue items. The locking scheme

changes to Figure 10: This scheme allows transactions entering and deleting items

E(e) D(e)

E(e) NA NA

E(e') Y Y

D(e) N NA

D(e') Y Y

Fugure 10

to interleave their steps but is not serializable. To prevent cascaded aborts and

order transactions synchonizing on a queue item, a transaction is not allowed to

dequeue an element enqueued by an uncommitted transaction. A modi�ed queue

remove is supported to increase the concurrency in the system: If the entry at

the front of the queue has been entered by an uncommitted transaction, then it is

not removed to avoid cascaded aborts. Entries behind it are searched in the order

in which they were entered for an uncommitted one, and that is removed. If no

uncommitted entry is found, then the queue is searched for an entry made by the

removing transaction, and that entry is removed. If no such entry is also found,

then the remove operation blocks.

This scheme allows:

entries made by a transaction to be interleaved in the queue,

dequeue order of items entered by the same transaction to be di�erent from

enqueue order. It depends on the commitment and abort order among (a) the

� 11

enqueues, (b) dequeus, (c) dequeues and enqueues. As in a traditional queue, it

also depends on the order in which the items were dequeued.

Let us take some examples:

This scheme allows entries to be removed in an order that is di�erent from the

one in which they were entered, even if they were entered by the same transaction.

Assume a queue is empty, and T1 adds item a and then T2 adds item b and then

T1 adds item c. The queue is now: [a[1], b[2], c[1]], where i[j] says item i entered

by Tj has not been committed. Now if they both commit, the queue is: (a, b, c).

Thus, serializability of the queue is not maintained.

Now let us say transaction T3 removes the item at front of the queue, and then

T4 removes the next two items. The queue is now: [a(3), b(4), c(4)]. (i(j) says

item i has been removed by uncommitted transaction Tj.) If now T3 aborts and

T4 commits, the queue becomes: a. Thus, c is removed from the queue before a,

even though it was inserted after it by the same transaction!

Consider another situation: [a[5], b[6]]. If T6 commits, the queue is: [a[5], b].

Now if T7 dequeues and commits, and then T5 commits, the queue is: [a]. Thus,

as before, b is removed before a though it was added after it. The two items are

removed in order in which their enquing transactions committed.

If as above, T6 commits after T5, but both commmit before T7 dequeues, the

queue is: [b]. Thus, items are not always removed in the enqueue commmitment

order.

Though items are removed out of order, no item remains in the Q forerever as

long as:

the transaction that enters an item takes a �nite amount of time to �nish suc-

cessfully (without abort).

a transaction that tries to remove an item takes a �nite amont of time to �nish

successfully (without abort).

only a �nite number of transactions that try and remove a queue item abort.

