
� 1

COMP 242 Class Notes

Section 7: User Interface

1. USER INTERFACE

So far we have seen how an operating system provides resources and services to
processes. We will now study how an operating system provides resources and
services to users.
An operating system provides services to users through one or more (batch or

interactive) programs which may be invoked by users. Some of these, called com-

mand interpreters, provide a command language which is used to express a
user's request. We shall study these in detail. Others, invoked usually through a
command interpreter, provide services such as manipulation of �les and processes.
(eg: `ls', `chmod', `rm', `ps' and `kill' in Unix). Some of these such as the Windows

Directory Explorer may even be interactive and provide an alternative to command
interpreters. We shall discuss only command interpreters.

1.1 Command Interpreters

A command interpreter, through its command language, de�nes the operating sys-
tem from the point of view of non-programmers.

1.1.1 Built-In vs Separate Program. In older systems a command interpreter was
built-in to the system as a module of the kernel. Multics introduced (and Unix
popularized) the idea of command interpreters that are separate from the kernel
and invoked like utility programs.
Treating a command interpreter as a utility program gives a user the
exibility

to replace an existing command interpreter with another program. This feature
has encouraged the evolution of command interpreters in Unix. (Bourne shell, C
shell, etc)

1.1.2 Built-In vs User-de�ned Commands. A command may be built-in, or user-
de�ned. A user-de�ned command names a utility program that is executed to
process the command. For instance the command `cd' is built-in and processed
entirely by the command interpreter, while the command `ls' results in the execution
of the `ls' program. The arguments of user-de�ned commands are interpreted by
the invoked programs.
For each user-de�ned command, the command interpreter asks the operating

system to create a new process executing the speci�ed program. The command
interpreter may wait for the child process to terminate before accepting another
command, in which case we say the child process has been created in foreground,
or start the new process and accept the new command while the child process is
executing, in which case we say the child process is executing in background. The
user is given the option to specify whether a command should be executed in the
background or foreground. For instance, in Unix, the command:

cc prog.c

executes the compiler in foreground, while the command

cc prog.c &

2 �

executes the compiler in background.
Why support both background and foreground processes? Background processes

are useful for starting several activities, for instance editing and compiling, concur-
rently. Foreground processes are useful for waiting for an activity to start before
beginning another. For instance, a user would want the following commands exe-
cuted sequentially:

chmod 740 prog.c

ls

In systems that do not support windows, a user may want the interactive processes

mail

edit foo

to be executed sequentially, in order to enforce `mutual exclusion' on the input and
output streams.
How does a command interpreter create new processes and wait for their termi-

nation?
The following pseudo code illustrates how this is done in Unix.

loop

GetCommand (object_file, parameters)

(* execute the program specified in object_file} *)

if fork() = 0 then (* child process *)

exec (object_file, parameters)

elsif foregroundDesired then

wait()

end

The fork call creates a child process that is identical to the calling process in the
sense that it gets a copy of the core image and the open �le table of the calling pro-
cess. The call returns the process id of the child process in the parent process, and
the id 0 in the child process. This return value is used by the two processes to do dif-
ferent activities: The child process executes the system call exec (object �le), which
replaces the core image of the calling process with the contents of object �le. The
parent process either waits for the child process to terminate or directly processes
the next command, depending on whether a foreground or background process is

desired.

1.1.3 Macro Substitution. A command interpreter may do some useful prepro-
cessing of operands of (user-de�ned and built-in) commands. This preprocessing
normally consists of macro substitution. For instance a `*'may be replaced by a
string containing the �le names in the current directory. Macro processing pro-
motes automation (since the user-de�ned program does not have to do the substi-
tution), uniformity (the symbol `*' has the same meaning for di�erent commands),
and ease of use (most programs would probably not take the trouble of de�ning
the `*' symbol on their own, macro substitution thus provides a user with a useful
facility that would otherwise go unsupported).

� 3

1.1.4 Input/Output Redirection. The input source and output destination of a
program must be bound at some point; the logical name used by the program must
be associated with a physical name of a �le or device. A simple, but in
exible,
scheme is to do the binding at compile time. A more
exible scheme is to do so at
invocation time, thus providing the user control over the binding. Some command
interpreters provide such binding. For instance the Unix C shell processes the
command:

sort

by binding the logical input and output to the input and output streams of the
terminal, the command

sort < data.in

by binding the input to the �le `data.in' and the output to the terminal, and the
command,

sort < data.in > data.out

by binding the input to the �le `data.in' and the output to `data.out'.
How does the command interpreter do the binding of logical input and output?

Let us �rst consider input. In Unix, the child process, before executing the desired
object �le, checks if the input is to be redirected to some �le in �le. If so, it executes
the following code:

i <- open (in_file);

dup2 (i, 0); (* 0 is standard input *)

close (i)

which opens in �le, then copies the contents of the ith entry in the processes' �le
table into the 0th entry, and �nally removes the ith entry. After execution of this
code, the descriptor for standard input points to in �le. Similarly, standard output
can be redirected to some �le.

1.1.5 Pipes. A command interpreter may also bind the standard input of a pro-
cess to the standard output of another process. This facility is useful for creating
new applications by combining together existing applications. Thus a user may
execute the command:

ls | more

to get a paged listing of a directory. This command is more useful than the sequence
of commands:

ls > temp

more < temp

rm temp

The latter scheme is more longwinded. Moreover, it results in the unnecessary
creation of a temporary �le on disk. Finally, it reduces the concurrency and does
not allow lazy evaluation.
How are pipes set up? The example command

4 �

ls | more

illustrates the mechanism. The shell calls the procedure pipe, which creates a pipe
and returns two descriptors i and o for reading from and writing to the pipe. It then
forks two processes p and q for executing the ls and more programs respectively.
Process p, before execing the �le ls calls dup2 (o, 1) to duplicate the descriptor
o onto its standard output descriptor, and then closes i and o. Process q does a
similar set of steps to connect its standard input to i.

1.1.6 Starting and Resuming a Process. A command interpreter may allow a user
to stop a process and then later resume it. This feature allows a user to multiplex
between several activities. Thus a user can stop an editor, read mail, and then
resume at the point it was stopped. (Is this feature useful in a system that allows
several processes to run simultaneously in di�erent windows?)

1.1.7 Parameters. A process may de�ne several parameters that allow speci�-
cation of options. Some of these are local, they are associated with a program and
apply to all execution instances of it. An example of a local parameter is the `-l'
parameter de�ned by the `ls' program. Others are global and are de�ned for all
processes. An example is the Unix home directory. Any process that inputs �le
names may de�ne this parameter. (We shall, in this discussion, ignore non-local
parameters that are non-global. An example of such a parameter may be the `sup-
press warning' parameter shared by all compilers. We shall treat them as global
parameters.)

A process may be associated with a large number of parameters. Therefore it
is important that default mechanisms be provided to relieve the user from speci-
fying all the parameters of a process. One popular mechanism is for a process to
receive some parameters from an initialization �le associated with its program.
For instance the C shell program is associated with the `.cshrc' �le and the mail
program with the `.mailrc' �le. Initialization �les allow a user to specify parameter

values once for each program instead of once for each process. They may be used to
specify default settings for both local parameters and global ones. An initialization
�le may be considered a mechanism for supporting IS-A or type inheritance: it
is associated with a program (class) and each instance of that program (i.e. each
process that executes that program) reads the �le and thus essentially inherits the
parameters.

A method for specifying default global parameters involves IS-PART-OF or
structure inheritance, wherein a child process inherits the global parameters of
its parent, which can later be overriden. These parameters may be stored in the
process table entry of a process, and the kernel, when it starts the process, makes
a copy of the parent process' parameters. Alternatively, a process, (in particular a
command interpreter) when it starts another, may tell the kernel the value of global
parameters. These may then be copied in a well known location in the process. Unix
supports the second method. In Unix, the set of global parameters and their values
are called a process' environment. The exec call can take as an argument the
desired environment. Unix also supports automatic copying of global parameters
from a well known location in the parent process to a well know location in a child
process, when the environment of the child process is not explicitly speci�ed.

� 5

How does a process receive its inherited global parameters? In Unix, when a C
program of the form:

main (argc, argv, env)

int argc;

char **argv, **env;

{ ... };

is executed, env points at an array of strings of the form (parameter name=parameter
value).
So far we have seen how default parameters of a process are speci�ed. How does

a user change these default values? The answer depends on the process. The Unix
C shell illustrates one approach. It allows global (environment) parameters to be
changed via the setenv call. Thus to change the home directory, a user can execute

the command:

setenv HOME /usr/joe

The command:

setenv p

de�nes a new global parameter p, which is inherited by all processes started by the
shell (and can be changed like other parameters), and the command

setenv

prints all the global parameters and their values.
Unix allows local parameters to de�ned, changed, and examined via the set

command. The command:

set q

de�nes a new local parameter q, the command

set q=5

gives it the value 5, and the command

set

prints all the current local parameters and their values.
What does it mean to let the user de�ne a new parameter (which we said de�ned

an option), if the shell does not know about this parameter and thus cannot use its
value? If the parameter is an environment parameter, then even if the shell does
not know about it, some other process started by the shell may be able to use its
value. Moreover, the local and environment parameters de�ned by the shell also
serve as shell variables, whose values can be used in the command line. A user
thus create a new variable and change or use its value later, as shown below:

set d=/usr/joe/242/test.c

cc $d

ls $d

lpr $d

6 �

History

A command interpreter may allow a user to examine previous commands and
allow them to be resubmitted with changes. For instance the C shell allows com-
mands of the form:

!v

which says repeat the last command starting with a `v', and the command

vi !$

which says use the previous operand. This history mechanism uses the principle of
locality applied to user activity. In a phase, a user is interested in a small number
of commands and operands. The C shell allows the user to specify the size of this
\working set", that is, the number of previous commands it remembers at one time.
Studies have shown that the working set of a user does not change much over

time. Bala Krishnamurthy at Purdue investigated command usage among a variety
of users - faculty, industry, research, secretary and student - and found that the
average number of commands executed over 85 percent of the time was 15. The
most frequently used commands for faculty were ls, vi, cd, set, more, stty, echo,
pg, fg, logout, mail, ps, rm, pwd, date, tset, jobs, hostname, dirs. For other classes
of users, the set was not very di�erent. This is a strong argument for Mac-style
permanent menu bar containing these often used commands.

Control Flow

A command interpreter may provide constructs for control
ow. For instance,
the Unix C shell allows speci�cation of the kind:

foreach i (*.c)

cp $i newdir

end

copies all C source �les (ending with the su�x `.c') to directory "newdir".

Command Procedure

A sequence of commands may be stored permanently in a �le called a command

script or command procedure, which may later be executed to invoke these
commands. For instance the command:

who | grep $1

may be stored in a command script called `wg'. The `$1' stands for the 1st argument
of the command script. Later the command script may be invoked as:

� 7

wg fred

which is equivalent to

who | grep fred

Control constructs and command procedures give the user a powerful facility to
program a sequence of actions.

Command Languages vs Programming Languages

Notice the similarity between some of the constructs such as the foreach provided
by command languages and those provided by programming languages. Given this
similarity, an interesting issue, we will not study here, is whether we can support a
uni�ed command/programming language?

