
COMP 242 Class Notes
Section 4: Interrupt Processing

1 Time Management

We shall now study how the operating system manages a list of “events”, ordered by the time at which they
should occur. Some of these events are scheduled by the operating system itself, others are scheduled by
user processes. We study both kinds of events below.

1.1 Preemption Events

An operating system schedules preemption events to guarantee that equal priority processes receive round-
robin service, discussed earlier. These events are scheduled at context switches, and ensure that a process
cannot run continuously for more than a time determined by the granularity of preemption. Thus if a
process becomes current at time ‘t’, then a preemption event is scheduled for time ‘t + QUANTUM’, where
QUANTUM is a constant whose value determines the granularity of preemption. A preemption event is
cancelled if a process relinquishes control of the CPU before its time expires.

An operating system has to be careful in selecting a suitable granularity of preemption. Setting it too
low, say 0.01 seconds, would be inefficient since the processor would spent too much time rescheduling.
Setting it too high, say 100 seconds, would allow compute-bound jobs to ‘hog’ the computer. In Xinu the
granularity of preemption is 1 second. Older versions of Unix also used this granularity but BSD uses 0.1
second. Few processes, however, use their allocated quantums, since they make frequent calls to I/O and
other routines that call resched.

1.2 Wakeup Events

A user process schedules a wakeup event when it asks the operating system to suspend it for a period
specified by the process. A wakeup event is scheduled to occur at the end of the period. (Why are wakeup
events useful?)

In Xinu, a process schedules wakeup events by calling either sleep10(n) or sleep(n). The parameter of
the former specifies time in one tenths of seconds, while the parameter of the latter specifies it in seconds.
Thus the former can be used to schedule delays of upto 2**15 - 1 tenths of seconds (3276.7 seconds) and
the latter 32767 seconds.

1.3 Implementation

We shall now see how an operating system supports wakeup and preemption events. Like some other OS
features we have seen earler, these events require hardware support in the form of a real-time clock. We
shall study first this hardware and then other features required to support time management.

Real-Time Clock

A real-time clock is a hardware device that pulses regularly an integral number of times each second,
and interrupts the CPU each time a pulse occurs. It is important to distinguish this device from the time-of-
day clock that keeps the current time. A time-of-day clock also emits pulses at regular intervals. However,
unlike the real time clock, it does not interrupt the CPU after each pulse. Instead, it increments a counter,

1

which the CPU may read to determine the current time. A real-time clock is also different from the CPU
clock, which is not visible to an operating system.

The number of times a clock pulses in a second is called clock rate. Typical clock rates are 10Hz, 60Hz,
100Hz, and 1000Hz. In Xinu, the clock rate of the real-time clock is 60Hz.

It is important that clock interrupts be serviced promptly to ensure that they are not lost. The hardware
helps by giving a clock the highest priority among the various devices that can interrupt. (In x86 archi-
tectures, power outage and interprocessor interrupts are given higher priority than clock, but these are not
really devices.) Interrupts are serviced in the order of their priority, and a higher level interrupt can preempt
a lower-level one. The software helps by keeping making clock interrupt processing efficient by reducing
the number of procedure calls made.

Even if clock interrupt processing can keep up with the clock rate, it is important that the processor
not spend all its time processing clock interrupts. This may happen with slow CPUs such as the LSI-11.
Therefore it is necessary to adjust the clock rate to match the system.

Ideally, the hardware clock should be slowed down, but this is inconvenient or impossible. Instead,
a slower clock can be simulated by the interrupt dispatcher. The dispatcher can divide the clock rate by
ignoring a certain number of interrupts before it processes one. For instance, the clock dispatcher in Xinu
ignores five pulses before it processes one. Thus the clock rate of 60 Hz is divided by 6 to 10 Hz. This slower
simulated rate is called the tick rate, and determines the smallest size of the granularity of preemption and
timed delays. (Is this small size a problem?)

Not all computers are connected to a real-time clock. Systems like Xinu that are designed to run on such
systems need to check through software if a clock exists. In Xinu the routine setclkr performs this checking
task. It executes a loop 30,000 times, and if the clock interrupts during this time, it sets a global flag clkruns
to true.

Delta List Processing

We now look at a data structure required to maintain wake-up events. The system keeps a queue of
sleeping processes ordered by the time at which they are to be woken up. An element of the queue needs to
keep some information about the time at which it is to be woken up. This information is kept in the ‘key’
field of a process table entry. The field could contain:

absolute time of the wake-up event,
time relative to the current time,
the delta (difference) between the times of its wake-up event and the wake-up event of the process in

front of it in the queue.
(All times are in units of clock ticks).
Thus if there are four processes with wake-up events scheduled at times 1017, 1027, 1028, 1032, then at

time 1000 the keys could contain one of the following three possibilities:

1017 1027 1028 1032--absolute
17 27 28 32--relative
17 10 1 4--delta

A disadvantage of keeping absolute times is that the key fields and the counter that keeps the current
time might overflow. A disadvantage of keeping relative times is that every key element needs to be updated
on each clock tick. Therefore deltas are kept, and the queue is called the delta list.

The delta list is associated with the procedure insertd (pid, head, key), which, given the relative time of
the wake-up event of process pid in key, inserts the process in the appropriate place in the delta list ”head”

2

with the appropriate delta stored in the key field. To find the place of the process, the procedure keeps
subtracting from key the delta of the processes it visits, till it comes across a process q whose delta is greater
than key. It inserts p in front of q with its key equal to the current value of the parameter key. It also subtracts
key from q’s delta. Thus if at time 1000, a wake-up event for time 1030 was to be inserted, then the following
are the values of key as various elements in the list are visited:

initial: 30
visits 1st process: 30 > 17 so key = 30 - 17 = 13
visits 2nd process: 13 > 10 so key = 13 - 10 = 3
visits 3rd process: 3 > 1 so key = 3 -1 = 2
visits 4th process: 2 < 4, so insert process with delta 2, and modify next delta to
4 - 2 = 2.

Sleep10

Given the delta list and procedure insertd, the implementation of sleep10 (n) is easy. It needs to block
the process by changing its state and putting it in the delta list. To do so, it:

calls insertd(currpid, clockq, n), where clockq is a global variable.
changes state of process to SLEEP and calls resched
It also takes the following steps for efficiency reasons, which are crucial to make clock interrupt pro-

cessing fast:
It indicates in global variable slnempty that the delta list is non-empty (the clock dispatcher uses this

variable for efficient processing)
It stores address of the key of the process at the head of the queue in variable sltop (to save the dispatcher

from doing this job at clock interrupt time)

Sleep

The routine sleep(n) calls sleep10(10*1000) n div 1000 times and then once sleep10(10* (n mod 1000)).
Thus the argument of each of these sleep10 is less than 32767 and together all calls delay 10*n tenths of
seconds.

1.3.1 Clock Dispatcher

This is the routine called on each clock interrupt. We shall first look at the functions of the dispatcher and
then its implementation.

Functions of the Dispatcher

The clock dispatcher provides the following functions:
conversion of clock rate to tick rate
service of preemption event scheduled for current clock tick.
service of wake-up event(s) scheduled for current tick.
deferred processing (discussed below)

3

Deferred Processing

Interrupts are disabled while a clock routine is manipulating global data such as the delta and ready lists.
This situation presents a problem in Xinu on LSI 11/2 since interrupts from fast communication devices
cannot be serviced. As a result data can be lost.

To prevent such loss of data, the dispatcher supports deferred processing. When a clock is in the de-
ferred mode (similar to the delay mode of the output dispatcher discussed under input/output) clock ticks
are accumulated without servicing events. The dispatcher schedules these deferred events when it next goes
into the normal mode. Special procedures are provided to set the mode of the dispatcher. The Xinu network
routines call these procedures. They put the clock in a deferred mode at the start of the transfer of data and
back into the normal mode at the end of this transfer.

Implementation

The clock dispatcher takes the following steps:
Is this the 6th interrupt? If yes go ahead, otherwise return.
Are clock interrupts deferred? If yes, increment the count of deferred clock ticks and return, otherwise

go ahead.
Are there any sleeping processes (is slnempty true)? If yes process wake-up events otherwise go ahead.
Process preemption events.

Processing Wake-Up Events

Processing of wake-up events is done as follows:
The delta key stored of process at head of the delta list is decremented. Recall that the address of this

key is kept in sltop.
If the key goes to zero, then this process and all other processes with a delta of 0 compared to this

process are put in the ready list, and resched is called.
The variables sltop and slnempty are reevaluated.

Processing of Preemption Events

Processing of preemption events is easy.
A global variable PREEMPT keeps the number of clock ticks before the current process is to be pre-

empted. This variable is decremented.
If the variable goes to zero, then resched is called, which reschedules and resets PREEMPT to QUANTUM–

the granularity of preemption.

2 Input/Output

A cpu is connected to one or more devices with which it can communicate information. Examples of these
devices are disks, terminals and magnetic tapes. Each of these devices defines a hardware interface which

4

may be used by a program to communicate with it. This interface, however, is low-level and unusable by
most programs. Therefore an operating system provides a high-level input/output interface which user
programs use to interact with devices. This interface serves two purposes:

It embellishes the low-level hardware interface. This feature is consistent with an operating system’s
goal of ‘beautifying’ the physical machine to give a more pleasant virtual machine.

It provides fair, safe, and efficient policies to share a common pool of devices.
The hardware interface provided by a device, the (high-level) I/O interface that embellishes it, and the

implementation of the I/O have both some device independent and dependent components. We shall first
study the device independent parts of the three, and then the device dependent aspects as we cover each
device individually. Our discussion will be centered around the XINU OS and 11/2 hardware.

2.1 Hardware Aspects

Device Registers

A device is associated with several device registers, which in the LSI 11 are accessible as part of the
physical memory. In the 11/2 the last 8K of addresses are used to name these registers. While these registers
appear to a process as part of real memory, they are actually part of the device. They are used for four
purposes:

To transmit control information from the cpu to a device.
To transmit status information from a device to the cpu.
To transfer output data from cpu to a device.
To transfer input data from a device to the cpu.
These four functions need not be served by four different registers. For instance, in the LSI 11, the

control and status information of the terminal device are stored in one register. Moreover, not all devices
provide both output and input registers. For instance a cardreader is associated only with an input register.

The device registers are assigned contiguous addresses. We shall call the lowest of these the device
address of the device. The address of any device register can be computed from this address.

Polling vs Interrupts

The cpu needs some mechanism to determine when an I/O operation completes. Two mechanisms
are provided: polling and interrupts. Polling means checking the status information of all busy devices
periodically to see if the operation has completed. (A ready bit determines if a device has completed an
operation or not.) Polling has the disadvantage of busy waiting.

Because polling is time consuming, it is more common to request the device to cause an interrupt instead
when the device becomes ready. In the 11/2 an interrupt causes the following:

The current PC and PS are pushed on the stack.
A new PC and PS are loaded from an area in memory called the interrupt vector of the device. This

area is addressed by the interrupt vector address of the device. In the 11/2 addresses from 0 to 0777 are
used for interrupt vectors.

The code addressed by the new PC is executed. This code, called the interrupt handler of the device,
eventually returns control to the place at which the user’s program was interrupted.

Some devices may be associated with separate input interrupt vectors and output interrupt vectors.
Such devices may be associated with distinct input handlers and output handlers that may be used to

5

provide separate handling of input and output. We shall see later how the input and output interrupt vectors
of a device are initialized.

2.2 Input/Output Primitives

We now study the high-level input/output primitives. We first look at some of the issues in the design of
these primitives and then examine the primitives provided in Xinu.

2.2.1 Issues

There are several similarities between process-device communication and process-process communication.
Therefore some of the issues we see here are reminiscent of those we saw in interprocess communication.

Synchronous vs Asynchronous

An I/O primitive is synchronous if it delays the process until the operation completes. Some other
process may, however, utilize the CPU. It is asynchronous if it only initiates the operation and lets the
process continue execution while the device performs the operation.

The arguments for and against these two kinds of primitives are similar to the ones we saw in interpro-
cess communication. Synchronous communication is normally preferred because of its ease of use.

Device Dependent/Independent

Another issue is whether a general set of primitives be provided that may be used for all devices or if
each device should be associated with its own set of primitives. Device Independent I/O promotes unifor-
mity and allows one device to be substituted for another. Its disadvantage is that a general set of primitives
may not fit the needs of a current or future device. For instance the operation seek is applicable to disks but
not to terminals.

Binding Time Issues

A process refers to a device through a device descriptor. This descriptor needs to be bound to an actual
device. This binding may take place at:

program writing time, if device descriptors are device addresses
system generation time, if device addresses refer to devices indirectly (via a table) that is initialized at

system generation time
program start time, if the command interpreter does the binding
execution time, if the program or the operating system can change the binding at run time.
Early binding is efficient whereas late binding is flexible.

Pseudo Devices

6

An operating system often provides pseudo devices that are built on top of actual devices. For instance
Unix-inspired operating systems provide files, which are pseudo devices built on top of a disk. NT also de-
fines as pseudo devices filters for communicating with servers. Supporting pseudo devices has the advantage
that resources other than real devices can be accessed through a device-independent interface.

When pseudo devices are provided, device descriptors refer to both actual and pseudo devices.

Size of Data

When device independent I/O is provided, it is important to decide the increment of data transferred:
byte or block. Some devices work with single bytes while others work with blocks. A general purpose OS
will need to provide both kinds of sizes.

2.3 XINU I/O Primitives

getc(descrp): receive a single character from device
putc(descrp, ch): send a single character to device
read(descrp, buff, count): get count number of characters into buff.
write(descrp, buff, count): send count number of characters from buff to device
control(descrp, func, addr, addr2): ‘control’ device
seek(descrp, pos): special form of control that positions device and is applied only to randomly accessed

devices.
open(descrp, nam, mode): inform device that data transfer will begin
close(descrp): inform device that data transfer has ended
Not all of these operations apply to all devices. For instance, none of these apply to the clock. These

operations apply only to devices that may be considered sequential streams of data. Moreover, open and
close are not needed for terminal devices and seek is not possible on such devices.

2.4 Implementation

We now study (device-independent aspects of the) implementation of the Xinu I/O primitives.

Device Drivers

Each device is associated with several device drivers that implement the abstract I/O primitives for the
device. For instance, a terminal device is associated with the device drivers ttygetc, ttyputc, ttyread ..., which
implement the getc, putc, read ... abstract operations on terminal devices.

A device driver provides a device-specific implementation of an abstract operation. Different device
types are associated with different device drivers, while devices of the same type can share device drivers.

Device Switch Table

Xinu provides a device switch table which maps abstract operations to device drivers, maps device descrip-
tors to device addresses, and specifies contents of interrupt vectors. Each device is associated with an entry
in the table which contains the following information about the device:

the device descriptor,

7

the addresses of the device drivers of the device,
device address,
addresses of input and output interrupt vectors,
addresses of input and output interrupt routines,
buffer pointer, and
minor number, which distinguishes between different devices of the same type and allows them to share

the same device drivers.
The device switch table is indexed by device descriptors.

Mapping Abstract Operations to Device Drivers

The device switch table is used to map abstract operations such as read into calls to device drivers such
as ttyread. For instance the body of the procedure read(descrp, buff, count) uses descrp to locate the appro-
priate device switch table entry, get the address of the ‘read’ driver for the device and calls the driver with
the arguments devptr, buff, and count, where devptr is the address of the device table entry, and can be used
by the device driver to access information in the entry. The bodies of other operations are similar.

Null and Error Entries in Device Table

A device table entry contains a procedure address for every abstract operation. However, some opera-
tions are not necessary for certain devices and others are erroneous. Therefore Xinu provides two routines
ionull and ioerr. The former does nothing and returns a status of OK. Entries for unnecessary operations
such as an open of a terminal device point to this procedure. The latter returns an error status. Entries for
erroneous operations such as a seek of a terminal device point to this procedure.

Initializing the Device Table

The declaration of both the device table and its initial values (which do not change) is contained in a
file called conf.c (see pages 154-155 of text). This file is automatically generated at system generation time.
Thus the device table is initialized by the time the system is compiled.

Note that conf.c does not declare the structure of a device table entry, but only the contents. The former
is found in another file (conf.h).

2.4.1 Interrupt Processing

Structure of Interrupt Handlers

In the writing of interrupt handlers we face the following two contradictory goals:
they should be written in high-level languages so that they are easy to understand and modify
they should be written in assembly language for efficiency reasons and because they manipulate hard-

ware registers and use special call/return sequences that cannot be coded in high-level languages
To satisfy both goals Xinu employs the following two-level strategy. Interrupts branch to low-level inter-

rupt dispatch routines that are written in assembler language. These handle low-level tasks such as saving

8

registers and returning from the interrupt when it has been processed. However, they do little else – they
call high-level interrupt routines to do the bulk of interrupt processing, passing them enough information
to identify the interrupting device.

Xinu provides three interrupt dispatchers: one to handle input interrupts, one to handle output interrupts,
and one to handle clock interrupts. Input and output dispatchers are separated for convenience, and a special
clock dispatcher is provided for efficiency reasons.

NT provides an even more modular structure. A single routine, called the trap handler, handles both
traps (called exceptions by NT) and interrupts, saving and restoring registers, which are common to both. If
the asynchronous event was an interrupt, then it calls an interrupt handler. The task of this routine is to raise
the processor priority to that of the device interrupting (so that a lower-level device cannot preempt), call
either an internal kernel routine or an extrenal routine called an ISR, and then restore the processor priority.
These two routines roughly correspond to our high-level interrupt routine and the trap handler corresponds
to our low-level routine. Thus, NT trades off the efficiency of 2 levels for the reusability of 3 levels.

The device table entry for an input or output interrupt handler points at the high-level part of the interrupt
handler, which is device-specific, and not the low-level part which is shared by all devices (except the clock).

Identifying the High-Level Routine

If all input (output) interrupts branch to the same input (output) dispatch routine, how does the dispatcher
know which device-specific interrupt routine to call? The input (output) dispatch routine needs some way
to discover the device that interrupted it, so that it can use this information to call the appropriate high-level
routine. There are several ways to identify an interrupting device. Here are two of them:

The dispatcher may use a special machine instruction to get either the device address or the interrupt
vector address of the device. Not all machines have such instructions.

The dispatcher may poll devices until it finds one with an interrupt pending.
The 11/2 has no special instruction to help identify the interrupting device. Therefore, the following

‘trick’ is used, which is common to other operating systems for the same architecture. The device descriptor
(not the device address) is stored in the second word of the interrupt vector. Recall that this word stores the
value to be loaded into the PS register when the interrupt routine is called. Xinu uses the lower order 4 bits,
which are used for condition codes, to store the descriptor of the device. These four bits are then used to
identify the high-level routine.

Interrupt Dispatch Table

An interrupt dispatch table is used to relate device descriptors with (high-level) interrupt routines. The
table is indexed by a device descriptor and each entry contains the following information:

the address of the input interrupt routine
an input code which is passed as an argument to the input interrupt routine
the address of the output interrupt routine
an output code which is passed as an argument to the above routine
The input (output) dispatch routine uses the device descriptor to access the appropriate dispatch table

entry and calls the input (output) interrupt routine with the input (output) code as an argument code. The
input and output codes can be anything the high-level routines need. In Xinu, they are initially the minor
number of the device. Thus only one interrupt routine is needed for all devices of the same type. The minor
number is used to distinguish between these devices.

9

Initialization of Dispatch Table and Interrupt Vectors

A routine called ioinit(descrp) initializes both the dispatch table entry and the input and output vectors
of the device. The dispatch table is initialized as follows:

the addresses of the input and output interrupt routines are obtained from the device table
the input and output codes are assigned the minor number of the device
The input (output) vector is assigned as follows:
the PC points to the input (output) dispatcher shared by all devices
the condition four bits of the PS are assigned the device descriptor and the priority bits the highest pos-

sible priority so that interrupts are disabled.

Input and Output Dispatchers

The input (output) dispatcher does the following tasks:
saves the value of PS on the stack (why?)
saves the value of register r0 and r1, which are the only registers it will modify
gets device descriptor from saved value of PS
stores address of the input (output) routine in a register
pushes the input (output) code on stack
does a jsr to the interrupt routine
restores r0 and r1 from the stack
pops the arg, saved values of r0 and r1 and PS from stack
executes a ‘return from interrupt’ instruction that restores the PC and PS value current when the interrupt

routine was called.

Rules for Interrupt Processing

There are several rules for interrupt processing: First, they should ensure that shared data are not manip-
ulated simultaneously by different processes. One way to do so is to make interrupt routines uninterruptible.
Thus the PS value stored in the interrupt vector of a device disables interrupts. This value is loaded when
the interrupt handler is invoked. As a result, the interrupt routine is uninterruptible while the PS maintains
this priority.

However, the PS may be changed while the interrupt routine is executing if it calls resched, which may
switch to a process that has interrupts enabled. Therefore, the interrupt routine has to ensure that it completes
changes to global data structures before it makes any call that results in context switching.

An interrupt routine should also make sure that it does not keep interrupts disabled too long. For instance,
if the processor does not accept a character from an input device before another arrives, data will be lost.

Finally, interrupt routines should never call routines that could block the current process (that is the
process executing when the interrupt occurred) in some queue. Otherwise, if the interrupt occurs while the
null process is executing, the ready list will be empty. However, resched assumes that there is always some
process to execute! Some process should always be runnable to that interrupts can be executed. Thus inter-
rupt routines need to call only those routines that leave the current process in the ready or current state, and
may not call routines such as wait.

10

Rescheduling while Processing an Interrupt

We assumed above that interrupt routines could call resched. We now answer the following questions:
First, is it useful to do so? Second, is it safe?

It is useful to call resched from an interrupt routine. An output routine after removing a character from
a buffer may signal a semaphore to allow another process to write data to the buffer space that it makes
available. Similarly, an input routine might send data it obtains from the device to a process. In each case,
the routine resched is called.

It is also safe to call resched. Intuitively it may not seem so, because switching to a process that has
interrupts enabled could lead to a sequence of interrupts piling up until the stack overflowed. However, such
a danger does not exist for the following reason: A process that is executing an interrupt handler cannot
be interrupted again (why?). (Some other process, however, can be.) Thus a process’s stack will hold the
PS and PC value for only one interrupt and there will never be more interrupts pending than the number of
processes in the system.

3 The Terminal Device

We now study an implementation of the I/O interface described earlier for the terminal device. We first
study the hardware, and then the drivers and interrupt routines for the device.

3.1 Hardware

Serial Line Unit

From the computer’s point of view the terminal device consists of a serial line unit (SLU) attached to
the system bus. A cpu may have more than one such unit attached to it. Each SLU is connected to a terminal
via a cable consisting of three wires: one carries data from the transmitter of a terminal to the receiver of
the device, another carries data from the transmitter of the SLU to the receiver of the terminal, and the third
provides an electrical ground.

Signals on data wires consist of a series of positive or negative pulses corresponding to the 1’s and 0’s
being transmitted. They are serial because they travel down the wire one bit at a time, and asynchronous
because the transmitter sends a character whenever one is available; there is no synchronization between the
transmitter and receiver to control the start of a character.

In order to permit the receiver to recognize the start of a character, a start bit is transmitted directly
before each character. To improve reliability one or two stop bits are sent directly after each character. A
character may be prefixed by a parity bit for error detection purposes.

Errors occur when the receiver cannot make sense out of the signals it receives. A framing error occurs
when a receiver’s samples of a pulse contain both 1’s and 0’s. Character overrun errors occur when the
CPU does not extract a character from a receiver before another is received. A break error occurs when
the line remains idle in the wrong state for an extended period (greater than the time required to transmit a
character). Receivers report break errors as framing error. Some systems use the break condition to trigger
special handling. For example, the 11/2 can be wired so breaks on the console terminal line cause the pro-
cessor to halt. The Xinu downloader uses this mechanism to gain control of the system.

11

Device Registers

An SLU is associated with four 16-bit device registers: the receiver control and status register
(RCSR), the received data buffer (RBUF), the transmitter control and status register (XCSR), and the
transmitted data buffer (XBUF). The higher bytes of all registers except RBUF are unused.

The XBUF register is used to output data to a terminal. Writing a character to the XBUF register address
causes the SLU to capture the character and start transmitting it on the serial output line.

The RBUF register is used for receiving input data. The CPU reads from the RBUF address to retrieve
a received character. The low-order byte of the register contains the character and the higher order byte is
used to indicate overflow, framing, and parity errors (see section 2.1.10 in the text). Accessing the register
has the side effect of clearing the receiver and enabling it to receive the next character.

RCSR is used to control the receiver and receive status information from it. Only two bits of the register
are used: bit 6 is the interrupt bit and bit 7 is the ready bit. If the interrupt bit is set, the SLU will post an
interrupt when a character is received. The ready bit is set by the SLU when a character has been received
and is ready for the CPU to access it. This bit may be used for polled input.

XCSR is similar to RCSR; it contains a ready bit and an interrupt bit. The ready bit is set when the
transmitter finishes transmission of a character and is ready to receive another. This bit may be used for
polled output. If the interrupt bit is on, an interrupt is posted when the transmitter is ready. In addition to
these two bits, XCSR also contains a break bit. When this bit is set to 1, the transmitter forces the output
line into a break condition.

3.2 The Terminal Driver

We now study the device drivers for the terminal device. Together, these drivers are referred to as the
terminal driver. A terminal driver implements two interfaces: an I/O interface that processes may use
to interact with a user and a user interface that users may use to interact with processes. We saw the I/O
interface earlier. The user interface has the following main characteristics:

characters are echoed
backspace and line-kill are supported
user is allowed to start and stop output
In the raw mode characters are passed directly to the process without any special processing. In the

cbreak mode characters are echoed and special start and stop characters are supported. In the cooked mode
back space and line-kill characters are supported in addition. We shall study these modes in greater detail
when we look at their implementation.

Control Functions

A process may invoke the following control functions:
turn on BREAK in transmitter
turn off BREAK
look ahead 1 character
set input mode to raw
set input mode to cooked
set input mode to cbreak
return number of input chars

12

turn on echo
turn off echo
set ‘fill character’–the character to echo when input buffer is full

Device Driver Organization

Tty (and other device) driver routines can be divided into two sets: the upper-half and the lower-half.
The upper half routines are called by the device-independent I/O routines such as read and write. They do
not manipulate the device directly. Instead, they enqueue requests for transfer, and rely on routines in the
lower-half to perform transfers later. The drivers use interrupt-driven processing to avoid the drawbacks of
polling; therefore, the lower-half routines are the interrupt routines called by the input and output interrupt
dispatchers.

The upper- and lower-half routines exchange data by writing to and reading from two circular buffers:
the input and output buffers. These are needed because communication between the cpu and an SLU de-
vice is asynchronous. An input buffer contains characters received from the terminal by the input interrupt
routine but not read by any upper-half routine. The output buffer contains data written by a upper-half rou-
tine but not transferred by the output interrupt routine.

Synchronization of the Upper and Lower Halves

Both the input and output buffers are instances of bounded buffers. For the input buffer, the (lower-
half input) interrupt routine is the producer and the upper-half input routines such as ttyread and ttygetc
are the consumers. For the output buffer, the upper-half output routines such as ttywrite and ttyputc are the
producers and the (lower-half) output interrupt routine is the consumer.

Producers and consumers of bounded buffers need to synchronize their accesses so that a producer waits
for a non-full buffer and a consumer waits for a non-empty buffer. But the lower-half interrupt routines
cannot wait (recall the rules for interrupt processing). Therefore, only the higher-level input and output
routines wait, on semaphores isem (input buffer non-empty) and osem (output-buffer non-full) respectively.
The input interrupt routine signals the former when it inserts a character into the input buffer and the output
routine signals the latter when it removes a character from the output buffer. Thus the count field of isem
(initialized to 0) indicates the number of characters in the input buffer and the count field of osem (initialized
to size of output buffer) keeps the number of empty positions in the output buffer.

The inability of an input interrupt routine to wait for a non-full input buffer leads to buffer overflow
problems. In the Xinu implementation, the input interrupt routine simple discards a character received when
the buffer is full.

The inability of the output interrupt routine to wait for the output buffer to be non-empty, however,
does not cause any problems. When the output interrupt routine finds an empty buffer, it simply disables
interrupts and goes into the idle state. Higher-half output routines are responsible for enabling interrupts
when they deposit characters into the output buffer. Enabling an interrupt when the device is idle causes an
interrupt to be posted and the output interrupt routine to be executed.

Watermarks

The above strategy of the signalling osem whenever a character is output is inefficient. A process can
deposit characters into the buffer much faster than the SLU can remove it from the buffer. Thus, when one

13

or more processes have large amounts of data to output, the buffer is almost always full, with the processes
waiting for it to be non-full. Under these conditions, a signal to osem can cause a higher-priority process
waiting for a non-full buffer to unblock and produce another character, make the buffer full again, and thus
block again. Thus, each character output can cause an expensive reschedule! Even when processes are of
the same priority, a printing process would use (character consumption rate/character production rate) of its
time quantum before being blocked.

To alleviate this problem, the output interrupt routine uses a popular technique consisting of water-
marks. The output routine runs in two modes: normal and delayed. When in the normal mode, it signals
osem every time it outputs a character. It goes from normal to delayed when it finds the buffer full beyond
the high watermark. Under the delayed mode it does not signal osem but keeps a count of the number
of times it should have done so. It goes from delayed to normal mode when the buffer has drained to the
low watermark. At this point the routine msignal is called to make up for the lost signals. This technique
reduces the reschedules since no signals are generated during the delayed mode.

In Xinu the high and low watermarks are defined by the constant OBMINSP. The output interrupt routine
goes into delayed mode when OBMINSP + 1 space is left. It goes from delayed to normal mode after
OBMINSP characters are output in the delayed mode. (What are the high and low watermarks under this
scheme?)

Echo Buffer

In addition to the input/output buffer, the terminal driver maintains an echo buffer, which contains a
queue of characters to be echoed. This buffer is filled by the input interrupt routine and emptied by the
output interrupt routine. (When deciding on the next character to output, should the output routine service
the echo or output buffer?)

Data Structures

The terminal driver defines a control block for each terminal device connected to the cpu. These control
blocks are kept in a control block table indexed by the minor number of the device. Each control block
contains the following data:

The input and output buffers for the device, and the corresponding semaphores isem and osem.
An echo buffer which contains a queue of characters to be echoed. This buffer is filled by the input

interrupt routine and emptied by the output interrupt routine.
Control Parameters, which are parameters set by the control functions and include information such

as the mode of the terminal and whether characters should be echoed.
Terminal Parameters, which may vary from terminal to terminal, and include information such as

whether the terminal allows erasing of characters, whether control characters are to be echoed as CTRL-X,
and whether the line-kill command is to be supported.

User Parameters, which are parameters set by user commands such as the ‘stop output’ command.
Internal Parameters, miscellaneous information such as whether the output routine is in the normal or

delayed mode and the number of characters in the current line. (see pg. 163-164 of text).

3.2.1 Upper-Half Tty Input Routines

The upper-half tty input routines consist of ttygetc and ttyread which are the consumers of characters filled
into the input buffer.

14

Ttygetc(devptr)

The routine ttygetc(devptr) performs the following operations:
waits for isem
removes character at the tail of the input queue.

Ttyread(devptr, buff, count)

The routine ttyread (devptr, buff, count) may be used to read count number of chars from the input buffer
or all the pending characters (what is the use of this operation?). It does the following:

If count = 0 then all the available characters are copied from the input buffer to buff, and the count of
isem is adjusted.

If the count is not zero then as many characters as possible are copied from the buffer to buf (adjusting
count of isem) The rest are obtained through getc.

3.2.2 Upper-Half Tty Output Routines

The upper half routines consist of ttyputc and ttywrite, which are the producers of data into the output buffer.

Ttyputc(devptr, ch)

The routine ttyputc(devptr, ch), used to input a single character, does the following:
If the input character is NEWLINE then it recursively calls itself to print a RETURN before the NEW-

LINE *.
Waits for osem (free space)
Deposits character in output buffer.
‘Signals’ lower-half output routine by enabling output interrupts
The routine ttywrite(devptr, buff, count), used to output count number of characters, does the following:
Copies as many characters as it can in the space available, making sure that the count of osem is adjusted

appropriately.
Uses ttyputc to output the rest.

3.2.3 Lower-Half Output Routines

The routine ttyoin(iptr), which consumes characters from both the output buffer and the echo buffer, does
the following:

If there is a character in the echo buffer, it removes it from the buffer and assigns it to the XBUF register
and returns.

If the user has typed a ‘stop output’ command, determined by a user parameter, then the routine disables
output interrupts and returns.

If there are no characters in the output buffer, it disables output interrupts and returns.
Otherwise, it removes the character from the tail of the output buffer and signals osem 0, 1, or OBMINSP

times (what determines how many signals are generated?).

15

3.2.4 Lower-Half Input Processing

The input interrupt routine is far more complicated than the output interrupt routine because it has to imple-
ment the user interface functions. We shall study this routine by looking separately at the actions required
to support the three modes: raw, cbreak, and cooked.

Raw Mode

In the raw mode, the terminal driver does not provide any user interface function, and passes the input
characters directly to the process wihout any intermediate processing. The following steps are performed:

Extracts the character from RBUF.
If the input buffer is full, it throws away the character and returns.
If the input character has an error, puts the the error value 0200 in the buffer.
Otherwise inserts character into the buffer.
Signals the semaphore isem.

Cbreak Mode

Consider now the cbreak mode. The following steps distinguish it from the raw mode:
If the input character is a ‘normal’ char, then it is put not only in the input queue but also the echo queue.
If the input character is a RETURN, then it converts it into a NEWLINE before putting it into the

queues.* 1

If the input character is a stop or start output character, then an appropriate user parameter is changed,
which is used by ttyoin. A start output character enables output interrupts.̆*..

Otherwise, the input character is put in the echo and input queues.

Cooked Mode

In the cooked mode, the erase and line-kill commands are available to users. These commands allow
a user to perform line editing. Characters are made available to a program only when the user types a
RETURN or NEWLINE. Thus a user may edit a line of characters before they are consumed by a program.
We now look at the steps taken in this mode to support these commands:

A cursor is maintained to keep the count of the number of characters in the current line.
If the user inputs the erase character then the head of input buffer and the cursor are decremented and

the last character echoed is erased.*̆..
If the user inputs the line-kill character then the head of the input buffer is adjusted and the cursor reset.

Also the RETURN-NEWLINE combination is put in the echo queue.*̆..
If the user input the NEWLINE or RETURN character then the character is echoed, it is put in the input

buffer, isem signalled (cursor + 1) times, and the line cursor set to 0.
If the user inputs a regular character, then the line cursor is incremented, and the character is put in the

input buffer. Semaphore isem is not signalled.

1* This action occurs only if an appropriate terminal parameter is set in the control block.

16

Echoing Characters

The following steps are taken to put a character in an echo queue:
If the characters is either a NEWLINE or a RETURN the RETURN-NEWLINE combination is inserted

in the echo queue.*
If the character is a control character (ascii value less than ascii of BLANK) or the del character, then a

printable representation of 2 characters (̂followed by (char + 0100)) is stored.
Any other character is put directly into the echo queue.

Erasing Characters

Erasing a character is simple. Normally a backspace character is echoed. However if a terminal param-
eter says ‘erasing backspace’ is supported, then, in addition, a blank followed by a back space is echoed.
Care has to be taken to erase over the two character representation of control characters.

3.2.5 Miscellaneous

Device Driver Control

The implementation of the control (devptr, func, addr) operation is simple. Most functions simply
change the appropriate control parameter. The only non-trivial function is the TCNEXTC function, which
looks ahead 1 character. It waits on isem, reads the character at the tail of the input buffer without changing
the tail pointer, and signals isem since the character was not actually consumed.

Tty Control Block Initialization

A procedure ttyinit is called to do device-specific initialization of the dispatch table entry, device regis-
ters, and control block of each SLU device.

It manipulates the dispatch table entry as follows:
For efficiency reasons, it changes the input and output code of in the dispatch table from the minor

number to a pointer to the control block.
It initializes the control block as follows:
Sets the terminal parameters.
Initializes control parameters.
Initializes other parameters.
It sets the device registers as follows:
Clears RBUF so that a new character can be received in it.
Enables input interrupts.
Disables output interrupts.

17

