
COMP 242 Class Notes
Section 8: Protection

1 Protection

An operating system needs to provide protection mechanisms to prevent undesirable operations such as:
A process being able to manipulate hardware translation tables, access arbitrary main memory locations,

or perform arbitrary operations on files on disk.
An external agent being able to read or modify the information being communicated between two ma-

chines on a network.
An arbitrary user being able to log on to a computer.
These mechanisms can then be used to make a system secure. Note that the presence of protection

mechanisms is not enough to make a system secure, since these mechanisms may be improperly used or
may not be sufficient.

1.1 A Model of Access Control

Access control concerns itself with the first question: how should we control the operations performed by
a process on files and other resources supported by the OS? We study below a model of access control that
provides such protection. The model we describe is quite general; it may be used protect not only files, but
also directories, devices, segments and other shared entities.

Each shared entity will be called an object. An object provides certain operations, which a process may
invoke to manipulate the object. A process can invoke an operation on an object only if it has appropriate
access right or privilege to do so.

We can represent the state of all access rights by constructing an access matrix of the following form:

/dev/console fred/prog.c fred/letter /usr/ucb/vi
fred’s P getc, putc, read, write getc, putc, read, write getc, putc, read, write execute
fred’s Q getc, putc, read, write getc, putc, read, write getc, putc, read, write execute
jane’s R getc, putc, read, write getc, read execute

In this table, there are four objects: the console, the text file ”prog.c” in user fred’s directory, the file
“ fred/letter”, and the object file for an editor; and three processes: P, Q and R. Processes P and Q are
running on behalf of user fred, whereas process R is running on behalf of user jane.

Each entry in the table indicates the access rights of a process on an object. Thus all three processes
can invoke the execute operation on the editor but cannot read or modify it. Processes P and Q, running on
behalf of user fred can both read and modify fred’s prog, while process R, running on behalf of user jane,
can only read the file.

In the above table, we have assumed that the access rights are defined in terms of the specific operations
of an object. Thus the ‘getc’ operation on an object is associated with the ‘getc’ access right. It is often useful
to define an object-independent set of access rights associated with a general set of operations to which the
specific operations on an object are mapped. For instance the ‘Read’ access right may be associated with
the ‘getc’ and ‘read’ operations on a terminal device.

The following is a possible set of general access rights, when the objects are restricted to files, devices,
and directories:
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Read
Write
Append
Insert
Execute
Delete
Lock
Modify Rights
Set Owner
Create Group
Add Member

The last two rights allow creation of user groups (discussed later) and addition of members to it, respectively.
The mapping from specific operations on devices and files to this general set is obvious. The mapping from
specific operations on directories to the general set is not obvious, and will be discussed later.

The following is the definition of the access matrix for our example in terms of the general set of access
rights:

/dev/console fred/prog.c fred/letter /usr/ucb/vi
fred’s P RW RW RW X
fred’s Q RW RW RW X
jane’s R RW R X

In several systems, all processes running on behalf of the same user have the same access rights defined
by the access rights of the user. In such systems, the rows of the table describe the access rights of users
instead of processes. Thus the access matrix changes to:

/dev/console fred/prog.c fred/letter /usr/ucb/vi
fred RW RW RW X
jane RW R X

In the rest of the discussion we shall assume this form of an access matrix.
Whenever a process attempts to access an object, the operating system can refer to the access matrix

to validate the access. Checking for privileges on each access might be an expensive operation. For files
and other objects associated with ‘open’ and ‘close’ calls, the system may ask the process to indicate which
operations it will invoke when it opens the object. At this point, the system checks if the process has the
appropriate access rights. Later, when the process actually makes an access, the system needs to only check
if it is one of the accesses indicated by the ‘open’ call.

It is important to note that the access matrix is purely a logical construct and is seldom stored in the form
described (why?). It is often divided into smaller portions. Here are two popular methods of doing so.

1.2 Capability Lists

One way to partition the matrix is by rows. Thus we have all access rights of one user together. These are
stored in a data structure called a capability list, which lists all the access rights or capabilities that a user
has. The following are the capability lists for our example:
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Fred --> /dev/console(RW)--> ˜fred/prog.c(RW)--> ˜fred/letter(RW) --> /usr/ucb/vi(X
Jane --> /dev/console(RW)--> ˜fred/prog.c(R)--> ˜fred/letter() --> /usr/ucb/vi(X)

When a process tries to gain access to an object, the operating system can check the appropriate capability
list.

This arrangement has several drawbacks:
If each capability list has an entry for all objects, many entries will indicate that no access is allowed. For
instance, most of Fred’s personal files may be protected from Jane. This waste of space may be eliminated
by only listing those objects for which a user has some access.
The set of objects accessible by one user, specially privileged users, may be very large. It can be expensive
to search capability lists for such users, unless we use capability-based addressing, presented later when we
discuss capabilities in more detail.
An initial capability list must be generated for a new user. It is not clear what the initial list should look like.

1.3 Access Lists

The dual of capability lists is access lists, which divide the access matrix by columns. An access list is
associated with each object, and lists all users and their privileges over the object. Thus the access list for
our example is:

˜fred/prog.c --> fred(RW) --> jane(R)
˜fred/letter --> fred(RW)
/usr/ucb/vi --> fred(X) --> jane(X)

This arrangement also has some disadvantages. The set of all possible users is likely to be very large,
and many users will have identical access rights over an object. Therefore it is useful to group users into
classes. All members of the same class can be given the same privileges for the object. Unix follows this
approach. It partitions users into three classes:

The owner of the file
Users in the same group as the owner
Other users
Thus ” fred/prog.c” can be given the access rights:

self RW
group R
others no access

Multics and AFS allow the access list to contain individual user names as well as larger grouping. Thus
if Fred wants Jane to be able to read and write ” fred/prog.c” he can define the access list as follows:

{self} RW
{group} R
{others} no access
{Jane} R
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1.4 Inheritance

Essentially, Multics supports inheritance in the subject dimension, that is, it allows access specifications
made for groups of subjects to be inherited by members of the group. One may want to also support
inheritance in the object and right dimensions.

In the case of the object dimension, we can allow access rights to be associated with groups of objects,
which apply to all members of the group that do not override them. Objects can be grouped based on their
type (the IS-A relationship) or their structure (IS-PART-OF). For instance, we can give the Append right to
all objects that are of type Bibliography unless a specific instance overrides it. Similarly, we can give the
Write right to all objects (files/directories) in a particular directory unless a particular object overrides it.

AFS partially supports such inheritance - in the context of access lists. It associates a directory with
both file rights and directory rights. The file rights apply to all files in the directory. Moreover, when a new
directory is created, it gets a copy of the (file and directory) rights of its parent. Thus, the file and directory
rights specified for a directory apply to all of its descendents.

This approach is not true inheritance, however, since one cannot change the rights of a specific file.
(AFS reduces this problem by looking at both the Unix file rights associated with a file and the AFS file
rights associated with the containing directory. Access is allowed only if both sets of rights allow it. In the
case of Unix rights, only the owner rights are examined. Again this is not true inheritance and is more a
hack for backward compatibility with Unix.) Moreover, a directory does not truly inherit the rights of its
parent in that if the rights of the parent of a directory are changed, the rights of the children directories are
not changed, even if no explicit access specifications have been made for these directories.

What about the right dimension, does it make sense to apply one access definition to multiple rights?
Consider the Write right. If a subject can write to an object, he can also insert into it. Thus, it should
not be necessary to give insert rights to subjects once write rights have been given. We can use the imply
relationship here to reduce the number of access definitions that have to be made and stored. Some potential
imply relationships are:

Write => Insert => Read => Append
Create Group => Add Member

Note that implication and inheritance are similar in that one access definition applies to multiple cases.
However, the latter does not support overriding. It is semantically inconsistent to give the Write right but
not the Insert right to a subject.

We can also consider inheritance in the right dimension. We can group the rights into right groups such
as Object Rights (Write, Read, Append, Insert, Execute) and Administration Rights (Modify Rights, Set
Owner, Create Group, Add Member). We could then give a subject (group) all rights in a right group to
an object (group). For instance, we can give all members of the 242 group all Data Rights to all objects in
the directory 242notes. An access definition specifying a more specific right (Write) can then override one
specifying a more general right (Data Rights).

We now have the multiple inheritance problem - that is, one may inherit conflicting definitions from
different sources. This problems is, in general, hard to resolve in an elegant way and we will not consider it
any further.

All kinds of inheritances can be supported by both access lists and capability lists. In particular, object
inheritance is a powerful way to reduce the problem of long capability lists. One can store only entries
corresponding to groups of objects rather than individual objects. This is analogous to storing entries corre-
sponding to groups of users in access lists.
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1.5 Negative Rights

So far, we have assumed that an access matrix contains either positive rights or no rights. We have not
assumed the existence of explicit negative rights. Without inheritance, negative rights are not needed: the
absence of a right (in the access matrix, capability list, or access list) implies denial of access. With in-
heritance, however, the rule changes. If a right is given to a general group but not a specific member, the
member inherits the right even though no right was explicitly given to it. For instance, if the Write right
is given to 242 but not student joe in the class, then we assume that the right is given to joe (and all other
students in the class). Absence of negative rights does not create any problem when a whole group is to be
given some access right but becomes painful to use when all but a few members of a large group have to be
given the right. For instance, what if the Write right is to be given to 242 but not student joe in the class?
Without negative rights, I would have to explicitly give all but one member of the group the positive right,
and thus not make use of the power of inheritance. Therefore, systems that support inheritance also allow
explicit specification of negative rights denying access. Continuing with the example, I could give all but
one member of the group 242 the write rights to an object by giving the group 242 the positive Write right
and the particular member the negative Write right.

1.6 Directories and Access Control

The semantics of the abstract set of access rights in the context of files and devices is straightforward, but
not for directories. The following is a possible definition of these access rights for directories:
Read: determine the names of the files in the directory
Write: modify local file names, add and delete files. However, the user is not allowed to open the directory
for writing, for which no operation exists. The only way to modify a directory is by service calls.
Append: add new files.
Delete: remove this directory.
Modify Rights: modify access rights to this directory
Set Owner: set the owner of the directory
Execute: open files in this directory and set it as the working directory of a process. This right is used to
protect the files in the directory. A file can be opened only if a user has the ‘execute’ access right on all
directories in the absolute name of the file. (Should relative names be used instead?)

Not all systems define one set of rights for both directories and files. In particular, AFS defines two sets
of rights - file rights (Read, Write, Lock) and directory rights (Lookup, Insert, Delete, Administer). This
approach not only decreases uniformity in the system but also does not allow a file to inherit the rights of its
directory. Thus, AFS does not allow a file to inherit the read (Lookup) right of its directory. A symptom of
this non uniformity is that the Insert right is defined for directories but not files.

1.7 Aliases and Indirect Files

If a file has several aliases, a process might use different absolute names to open it. Thus it may be able to
open it under one alias but not another. However, even if a process is able to ‘open’ a file, it must still have
appropriate access over it.

If a process can open a file under more than one alias, is it possible that it may be granted access under
one alias but another? The answer depends on whether privileges are associated with with a name or with
a file. If they are associated with a name, then they are stored, along with the name, in the directory of the
file. Otherwise, they are stored with the file. In the former case, the alias chosen for the file influences its
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accessibility while in the latter case it does not. Unix chooses the second alternative whereas AFS supports a
hybrid of the two alternatives by looking at both rights stored in the file and the rights stored in the directory.

Let us now consider indirect files. How should we interpret access rights on indirect files? We could
ignore them completely or we could require that a process have appropriate access rights on both. The latter
alternative becomes awkward if indirect files can contain both file and directory names, since sometimes the
access rights are interpreted as file rights and sometimes as directory rights. Berkeley Unix 4.2 chooses the
former alternative. Any attempt to modify the access rights of an indirect file results in modification of the
file to which it points.

1.8 The Access Matrix Again

Consider the final version of the access matrix we defined. It described for each user and object in the system
a set of object-independent access rights. All processes started by a user inherited the access rights of the
user.

There are several problems with this version of the access matrix:
All processes started by a process have all the access rights of the user. This is undesirable since a

process, typically, needs access to a small set of objects to do its job. For instance a process executing
a calendar program needs to access, among the different files in the system, only the ‘calendar file’ that
defines a set of appointments, a process executing the compiler needs to access the input source files, the
object files, and a few temporary files, and a process that prints the contents of a file needs access only to that
file. Giving a process more rights than it needs to do its job violates the ”need-to-know” or ”least privilege”
principle, which says that a process must have the least privilege needed to do its job, or in other words, it
should have access to only those objects it needs to know about.

The access rights of a process are fixed while it is executing. This again is undesirable, since the set of
objects a process needs to access, typically, changes dynamically. For instance, a compiler after reading a
source file, no longer needs access to that file.

A process cannot amplify its access rights to include those that are not available to the user on whose
behalf it is executing. Such amplification is necessary to do certain kinds of tasks. For instance a mail
program invoked in Unix needs to be able to create a mail file in the directory /usr/spool/mail, which is
writeable only by root.

The access rights are object-independent and thus not of a fine enough granularity. For instance Unix
supports the access rights: read, write, and execute. Often it is important to distinguish between different
kinds of reads. As an example consider a bibliography created by some user who has also put, for each item,
an annotation describing his view of the referenced paper. He may want to allow his colleagues to read the
reference items, but not the annotations. (Some of bibliography items may reference papers written by his
colleagues!) Unix, however, does not distinguish between these two kinds of object-defined ‘reads’. Thus
the author of the database has to either give no read access to the file or full read access.

1.9 Modes

Most architectures allow a process to execute in at least two modes: kernel and user. In the kernel mode a
process can set up translation tables, change the processor state that determines the mode of the processor,
use the kernel translation table and execute other privileged instructions, while in the user mode it uses the
process’ translation table and instructions. Thus these architectures allow a process to switch between the
access rights of the user and the kernel.
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1.10 Multics Rings

Multics supported an extension of the privileged mode idea via an access control mechanism based on a
ring structure. In that system, the hardware supported not two modes (kernel and user) per process, but up
to 64. The access rights of a process changed when it executed not only kernel procedures, but also ordinary
procedures stored in users’ segments.

Each mode was called a ring, and was associated with a set of access rights. The rings in the system
were hierarchically arranged: the innermost ring had the most power and the outermost ring the least. In
general the access rights associated with ring i were a superset of the access rights of ring i+1.

In Multics, each object is accessed via a segment, and each segment was associated with one of the
rings. A segment description contained an entry that defined the ring number. In addition, it contained three
access bits to control reading, writing, and execution. With each process a current-ring-number counter was
associated, which determined the current access rights of the process. A process executing in ring i could
read and write a segment in ring j, j >= i, but could not read or write a segment in ring j, j < i. It could,
however, execute a segment in any ring, when its current-ring-number was changed to that of the executed
segment.

Here is a use of the rings facility, assuming there are four rings. Ring 0, the most powerful mode, would
be devoted to the kernel. Ring 1 could contain the mail program, which needs to be able to create files in
arbitrary directories. Ring 2 could contain a grading program used to evaluate student programs, and ring 3
could contain the student programs.

This scheme, as stated above, is unsatisfactory for two reasons: First, a process in an outer ring should
not be able to execute any instruction in an inner ring. In particular a user process should not be able to
execute any instruction in the kernel, which is kept in ring 0. Instead, it should be able to execute an inner
segment at certain special entry points. Second, every segment in an inner ring should not be executable by
all the outermost rings. For instance student programs, in our example, should not be able to call the grading
program.

To overcome these drawbacks, Multics supports a modification of the scheme outlined above. It stores
in a segment descriptor, instead of a single ring number, the following fields:

Access bracket: A pair of integers, b1 and b2, such that b1 <= b2.
Limit: An integer b3, such that b3 >= b2.
List of gates: The entry points (gates) at which the segments may be called.
If a process executing in ring i tried to execute a segment with access bracket (b1, b2), then the call was

allowed if b1 <= i <= b2, and the current ring number of the process remained i. Otherwise, a trap to the
kernel occurred and the situation was handled as follows:

If i <= b1, then the call was allowed to occur and the current-ring-no of the process was changed to b1.
Thus the access rights of the process are reduced. If parameters are passed that refer to segments in a ring
lower than b1, then these segments were copied into an area accessible in ring b1.

If i > b2, then the call was allowed to occur only if i <= b3, and the call had been directed to one of the
designated entry points in the list-of-gates. If the call was successful, the current-ring-no of the process was
changed to b2. This scheme allowed processes with limited access rights to call procedures in lower rings
with more access rights, but only in a carefully controlled manner.

For R/W, these rules imply that a process with ring i that tries to R/W a segment with access bracket
(b1, b2), is allowed to do so if i <= b2 and the segment access bits give the user executing the segment R/W
access.

Now, in our example, the kernel would be associated with the access bracket (0, 0), limit 3, and the list
of gates containing entry points of the system calls and the grading program could be associated with the
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access bracket (2, 2), and the limit 2.

1.11 PC Rings

The notion of rings required hardware support, which for Multics was provided by the Honeywell 645
computer. Hardware support for the basic notion of rings is also supported by the PC architecture (Intel 286
and beyond).

PC rings differ from the Multics rings in several ways:
The PC got rid of b2, whose purpose is to allow ungated access to a segment from segments of less

privilege. It is not clear we need this flexibility; as we see above, the values of b1 and b2 are the same in all
of the examples.

In Multics, the limit, b3, is the same for all gates (entry procedures). PC allows each gate to determine
its limit. Thus, the limit is stored, not with the segment descriptor, but with a special gate descriptor. Here
is my understanding of what happens. The gate descriptor is associated with its own segment number, l,
which serves as its limit. A call is allowed to a gate as long as the caller’s segment is within the limit, and
the caller’s ring number is changed to the ring no. of the called segment. (The PC book I read seemed to
imply that the ring no. of the segment cannot be smaller than the limit, in which case we would not have
amplification. But it says there is amplification, so I am going to assume that the ring no. of the segment
can be anything.)

A separate stack is created when amplification occurs. If it was not, a caller of less privilege (hence
untrusted) could allocate too small a stack space for a called procedure of more privilege, thereby corrupting
the more trusted level.

Multics protected ”direct” accesses to a segment. However, it was possible to do illegal indirect accesses.
Assume, a segment s1 invokes a procedure, p, in a more privileged segment, s2, passing it an address, a.
Now s2 may be able to access a in ways s1 could not potentially violating security constraints. For instance,
p may be a procedure that copies data into a, and s1, the creator of a, may have no access to a because it
refers to data in a more privileged segment. To prevent this situation, the PC records in an address, a, the
ring number of the object that created a. The effective ring number of a process p trying to access address a
is the larger of the current ring number of the process and the ring number of a.

In some cases, when a process executes a segment, its ring number is not changed to the ring number of
the segment. If the segment is typed as ”conforming” segment, the ring number is unchanged. Exception
handlers and libraries not requiring special privilege are meant to be put in conforming segments

The ring schemes allow amplification, but still had the disadvantage that the ring (hierarchical) structure
did not allow enforcement of the need-to-know principle. If an object was to be accessible in ring i, but not in
j, then it was necessary that i < j. But this meant that every object accessible in ring j was accessible in ring
i. The ring scheme is particularly useful in layered systems, where successively lower layers require higher
privilege. For instance, the PC ring mechanism is meant to allow ring 0 to contain memory management,
process management, device I/O, and interprocess communication; ring 1 to contain display management,
and file management, ring 2 to contain custom extensions of the OS such as network file system, and ring 3
to contain user routines.

1.12 Unix SETUID

Unix provides a simplified version of the Multics access control mechanism to change the access rights of
a process dynamically. A process can switch between user and kernel mode. Moreover, in user mode, a
process executing with the access rights of one user, when it executes a file owned by another user gets the
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access rights of the second user if a bit (called SETUID) in the object file is on (that is, in the PC language,
it is a non-conforming file.) This feature supports rights amplification and easily handles the mail example.
The mail program is owned by root and has its SETUID bit on. When the command interpreter subprocess
forked to process the ‘mail command’ executes the mail program it acquires the access rights of root and
can create/modify a file (owned by the receiver) in the directory ‘/usr/spool/mail’.

1.13 Java Downloaded Code

A hierarchical mechanism is also provided by Java to reduce the rights of a process when it executes down-
loaded code. Access control for a process that allows code to be dynamically downloaded into it needs to
distinguish between local and downloaded code and provide restricted rights to downloaded code to ensure,
for instance, that it does not destroy or leak the contents of local data. Thus some methods must be protected
from downloaded code. Two approaches have been used to restrict access of dowloaded Java applets. One
approach relies on the fact that separate class loader objects are used to load local and remote code and that
the stack frame of each method points to the object that loaded it. As a result, when a protected method is
called, the browser can provide restricted access if the stack contains a method that was called (directly or
indirectly) by downloaded code. The other approach relines on the fact that the loader can determine the
name space of downloaded code. It creates restrictive proxy classes for the protected classes, and makes
sure that downloaded code sees the proxy classes instead of the protected classes. The division between
protected and non protected methods is hardcoded. In the stack introspection method, the hardcoding is
done by ensuring the method checkPrivilege() is called before the method is executed. In the name space
approach, the hardcoding is done by defining proxy classes for protected methods.

It seems that PC or Multics rings should be able to capture this form of hierarchical access. Let us
try to capture it using PC Rings. Local code can be considered to reside at a level that is more privileged
than downloaded code. The gate descriptors for protected methods do not allow access from the non-
privileged level, while those for non-protected level do allow access from that level. When a process executes
downloaded code its ring number is reduced to the non-privileged level. (No ring number is actually kept
with a process, instead the stack or name space is used to record the privilege level.)

However, this simulation does not really work. The reason is that in a ring based system access to an
object is determined by the properties of the method directly accessing the object, not the properties of the
methods that called this method. For instance, in Java a method to read a file can be called by a method
that mails the file if the latter was not directly or indirectly called by downloaded code. In PC or Multics,
the privilege levels of the history of calls is not kept by the system - the current ring no of a process reflects
the privilege level of the current method. (The only exception is changing the effective ring number of an
address to the maximum of the caller’s and address’s ring number.)

1.14 Bell LaPadula Model

The Bell-LaPadula Model (BLM), also called the multi-level model, was proposed by Bell and LaPadula for
enforcing access control in government and military applications. As in the ring model, it supports hierar-
chical access control. Unlike the ring model, it assumes users rather than software modules are arranged in
layers. The main differences from the ring architecture is that there is no notion of execute, read, write, and
append are handled differently, and instead of a single dimensional ring number, there is a two dimensional
security level.

The following discussion is taken from HongHai Shen’s thesis.
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In the applications for which this model is intended, subjects and objects are often partitioned into
different security levels. A subject can only access objects at certain levels determined by his security
level. For instance, the following are two typical access specifications: “Unclassified personnel cannot
read data at confidential levels” and “Top-Secret data cannot be written into the files at unclassified levels”.
This kind of access control is also called mandatory access control, which, according to the United States
Department of Defense Trusted Computer System Evaluation Criteria is “a means of restricting access to
objects based on the sensitivity (as represented by a label) of the information contained in the objects and the
formal authorization (e.g., clearance) of subjects to access information of such sensitivity”. The converse of
mandatory access control is discretionary access control, which is defined as “a means of restricting access
to objects based on the identity of subject and/or groups to which they belong. The controls are discretionary
in the sense that a subject with a certain access permission is capable of passing that permission (perhaps
indirectly) to any other subject”.

The Bell-LaPadula model supports mandatory access control by determining the access rights from the
security levels associated with subjects and objects. It also supports discretionary access control by checking
access rights from an access matrix.

Each object is associated with a security level of the form (classification level, set of categories). Each
subject is also associated with a maximum and current classification level, which can be changed dy-
namically. The set of classification levels is ordered by a < relationship. For instance, it can be the set
top-secret, secret, confidential, unclassified,where

unclassified < confidential < secret < top-secret

A category is a set of names such as Nuclear and NATO. Security level A dominates B if and only if A’s
classification level is greater than or equal to B’s classification level, and A’s category set is a superset of
B’s. For instance,

top-secret, {Nuclear, NATO}

dominates

secret, {NATO}

because

top-secret > secret

and the set

{Nuclear, NATO}

contains

{NATO}

In the model, an access request (subj, obj, acc) is granted if and only if all of the following properties are
satisfied:

simple security property (no read up): if acc is read, then level(subj) should dominate level(obj).
*-property - called the star property (no write down): if acc = append, then level(obj) should dominate

level(subj); if acc = write, then level(obj) should be equal to level(subj).
discretionary security property: the (subj, obj) cell in the matrix contains acc.
Like Multics, this model has the problems of hierarchical access control and does not always support

the need to know principle except in rigid military situations.
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1.15 Capability-Based Systems

The systems we have studied so far support access lists. We now study in detail systems that support
capability lists (e.g: Hydra, CAP, iMAX for INTEL 432, IBM System 38, Amoeba). These systems, often
called capability-based systems since the central concept they support is the notion of a capability, provide
a very flexible protection mechanism.

Each process is associated with a list of capabilities called a C-list. Each capability in that list indicates
the type of the object (e.g: file, device, directory), a rights field, which is a bit map indicating which of the
legal operations on this type of object are applicable, and an object field which is a pointer to the object
itself (in Unix, the equivalent of an inode number). Thus the following is an example of a C-list:

Type Rights Object
File R– Pointer to File3
File RWX Pointer to File4
File RW Pointer to File5
Directory –X Pointer to Directory3

How does the system check that a process can perform an operation on an object? Here are some
alternatives:

First, the process, when it performs an operation on an object, indicates both the object and the operation,
and the system checks the C-list to see if the operation can take place. The disadvantage of this scheme, as
we have seen earlier, is that on each operation on an object the kernel has to search through a possibly long
list of capabilities.

Second, the list of capabilities of a process are stored in the process’ address space, and thus can be
named by the process. Now when a process asks the system to perform an operation on an object, it also
presents the capability to the kernel, which can then check if the operation is valid. It does not have to search
the C-list for the capability;

A problem with this approach is that, since capabilities are stored in the process’ address space, it can
manufacture capabilities and thus perform arbitrary operations on arbitrary objects.

A better approach, used in Hydra, is to use a combination of these two approaches. The C-list of the
process is stored in the kernel address space. A process refers to a capability via the index of the capability
in the C-list. (Just as a Unix process names a file via an index in the file table). Now, instead of capabilities,
descriptors for them are stored in the process’ address space. When a process needs to perform an operation
on an object, it names the capability for it via the descriptor for the capability. Thus the system does not
have to search the C-list. Moreover, a process cannot manufacture capabilities.

Another approach is to keep the C-list in the process’ space, but encrypt each capability with a key
unknown to the process. This approach is used in the Amoeba distributed system.

Yet another approach is to define a a hardware that distinguishes between memory words that store ca-
pabilities and those that do not. The hardware can then enforce that capabilities are manipulated only in the
kernel mode. Two methods are used to distinguish between words that contain capabilities and those that
do not. In a tagged memory these two kinds of words are distinguished by a tag bit, while in a partitioned
memory, they are distinguished by the segments in which they reside (thus the segment descriptor contains
a bit that indicates whether it contains capabilities). The use of either tagged or partitioned memory archi-
tectures forces an inconvenient tradeoff. If the addressable unit is large, one can afford a tag bit in each unit.
If the byte or the bit is the unit of addressing, it is out of the question to associate a tag bit with each unit.
Partitioned memory avoids this kind of storage overhead. However the need to separate capabilities and

11



non-capabilities requires the use of many more small segments than in non-capability systems. As a result,
many more units have to be transferred between memory and disk, leading to I/O congestion. The CAP
system uses partitioned memory whereas intel 432, IBM system 38 and other capability-based architectures
used tagged memory.

All approaches other than the first one use the notion of capability-based addressing, that is, objects are
addressed through capabilities (rather than pointers or file descriptors, for instance.)

User-Defined Types

In the other systems we have seen so far, the type of the protected object was defined by the kernel.
As a result an ‘object-independent’ set of access rights could be defined by the kernel, which supported the
predefined operations applicable on these predefined types. Capability-based systems go a step further and
allow definition of user-defined types, which have user-defined operations applicable on them. Objects of
these types were associated with a set of type-independent rights called kernel rights, which are defined by
the kernel for all objects (e.g: read, write) and a set of type-dependent rights called auxiliary rights, which
control which of the user-defined operations can be invoked on the object. Thus a capability has fields for
both these kinds of rights.

Here is an example to clarify the idea of user-defined types: Assume that a user would like to provide
a new type that defines a bibliography database in which entries can be examined, modified, deleted, and
inserted. Then he could define the database as a user-defined type:

protected_type Bibliography {
contents: file;
procedure Examine (obj: capability) { ... };
procedure Insert (obj: capability) { ... };
procedure Delete (obj: capability) { ... };
procedure Modify (obj: capability) { ... };
};

The declaration specifies the name of the type to be protected, the structure of the internal representation of
data part of this type, and the operations associated with this type. The operating system uses this declaration
to register a new type in its database of user-defined types.

Now a process can ask the operating system to create a new object of this type. In response, the operating
system allocates space for the field ‘contents’, which is the internal representation of the object, creates a
new capability and returns the newly created capability to the caller. The process may then use this capability

Type Rights Object
Bibliography ——EIDM Pointer to the Internal Repn

to perform any of the four operations on this object. Note that the capability does not contain the read (R) or
(W) rights. As a result, a user of this capability cannot examine or modify directly the internal representation
of the data of a protected object, and has to do so indirectly by invoking the type-specific operations.

How is a type named? A type is itself considered a protected object, of the predefined type TYPE, and
is named by a capability for it. It is associated with the operation create, which may be invoked to create an
instance of the type. This capability is named in the modified type declaration:
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capToBibliography: protected_type Bibliography {...}

is of the form shown below and can be used to create a new instance of the type:

Type Rights Object
TYPE —Create Pointer to Defn of Bibliography

newBib := create (capToBibliography, arg1, arg2, ...)

If all types are objects, and each object has a type, then what is the type of TYPE? The type TYPETYPE?
In that case what is the type of TYPETYPE? TYPETYPETYPE?... We can get rid of this infinite sequence
by making TYPE a distinguished object that is an instance of itself. Like other instances of TYPE, TYPE is
also a type, and is associated with the operation create which creates instances of TYPE. This operation is
invoked implicitly by the declaration:

capToBibliography: {protected_type} Bibliography {...}

which gets translated into a call of the form

capToBibliography := create (capToTYPE, a1, a2, ...)

where the arguments specify the name of the type, the internal representation, and the operations.

Transferring Capabilities

Suppose a process has created a new instance of the type ‘Bibliography’:

capToBib := create (capToBibliography, ..)

and would like to share this object with other processes. How does it do so? The answer depends on the
way capabilities are represented:

It can simply pass the value of the variable capToBib to the other process via IPC. This approach would
work in a system in which capToBib is an encrypted word, if the key used to encrypt capabilities is common
to all processes.

It can make a special kernel call:

send_capability (receiver, capToBib)

which sends the capability to to process pid, which receives it via the call:

receive_capability (copyOfCap)

In tagged or partioned memory systems, the kernel would use hardware instructions available in kernel mode
to create the new capability. If C-Lists are stored in kernel space, then the kernel would create a new index
in the process table of ‘receiver’.

Selective Transfer of Access

It is often useful for a process to give to another process a subset of the access rights it has to an object.
For instance a process p that creates a new instance of ‘Bibliography’ via the call:
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capToBibliography: protected_type Bibliography {...}

has the right to examine, insert, modify, and delete bibliography items. It may want to give other processes
the right to only examine the items.

How is selective transfer of access achieved? One approach is to provide a kernel call

Copy (origCap, newRights) : capability

that returns a copy of origCap that includes only those rights specified by newRights. Another approach is
to make each procedure an object that can be executed, and require that a a process performing operation
p on object O provide capabilities to both O and p. Thus a process, to invoke the Examine operation on
instance O of ‘Bibliography’, would execute the following statement:

execute (capToExamine, Examine (capToO))

Hydra uses a combination of these two approaches. A process can execute operation p on object O only if it
has a capability c1 that allows execution of p and a capability c2 that allows operation p on O.

Changing Domains of Protection

We saw earlier the need to change the set of access rights available to a process, often called its domain,
as the set of objects it needs to access changes. Capability-based systems are particularly well-suited to
support this feature. The example of Hydra shows how this may be done.

In Hydra, the domain of a process changes on each procedure call. Capabilities that are to be shared
between the caller’s domain and the callee’s domain are passed as parameters. In addition the callee may
have some static capabilities that are available on each invocation. As an example, consider the definition of
the following procedure q:

procedure q (a1: capability) {
var c3: capability = create (...))
....

Now assume that some process A with capabilities c1 and c2 makes the call:

q (c1)

Then after the call, the domain of protection of the process includes the capabilities c1 and c3.
This feature can be used, for example, by a compiler to ensure that only the ReadSource procedure gets

the capability to read a source file.

Amplification

Assume that a process calls procedure:

Examine (capToObject: capability)
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passing it a capability to the object on which the operation is to be invoked. The procedure Examine, defined
with the type declaration of ‘Bibliography’, needs to read the internal representation of the object to perform
its duty. Thus it needs the kernel ‘R’ right on the object to do so. However, capToObject does not have this
right, since the internal representation of an object is not visible from outside. Therefore, the procedure
cannot perform the requested operation!

A solution, adopted in Hydra, is to associate each capability parameter of a procedure with a capability
template of the following form: When the procedure is called, the system checks if a capability argument

Type Check-Rights Rights
Bibliography ——E R–—

has the same type as the type of the associated template, and has the rights specified in the check-rights field
of the template. If both conditions are met, then the call is successful, and the system assigns to the corre-
sponding capability parameter a new capability that is the same as the capability argument, except that rights
are those specified in the template and not the argument. Thus if the capability argument corresponding to
the above template was:

Type Rights Object
Bibliography —E Pointer to Object

then the corresponding parameter is assigned the capability:

Type Rights Object
Bibliography R– Pointer to Object

Thus the callee may have greater freedom to operate on an object than the caller. In particular, as
illustrated by this example, the callee may be able to access the internal representation of an object while
the caller cannot.

1.15.1 Physical Analogy

For capability-based protection mechanisms a useful physical analogy is that each object is contained within
a house having several doors that open into different rooms, and capabilities are keys to these doors. The
object field in a capability is analogous to a pattern of notches on the key, and the access rights are a set of
auxiliary ‘bumps’ that permit access to particular doors of the house. When a house (object) is constructed,
the system gives the creating person (process) a key (capability) that will open all doors in the new house.
What transpires after this is up to the person using the initial key.

To make this world of locks and keys a secure and useful one, one arrives at the following considerations:
It must be impossible for a person to fabricate a key. Also, given a key, it must be impossible to alter the

notches to open a different house or a different door.
Given a key, it should be possible to make a copy of the key, either for oneself or for someone else.
Given a key, it should be possible to remove (but not add) one or more of the auxiliary bumps to remove

some of the key’s access rights.
For generality, one should be able to move and store keys in the same way as any other entity.
This analogy introduces some problems that need to be addressed by capability-based systems:
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The ‘do not copy’ problem

In the locked-house world, person A might wish to give person B a key to a door in a house, but might
want to preclude B from copying the key, for instance, to give it to a third party. Hence, one needs a
mechanism to stamp a ‘do not copy’ on a key.

This can be achieved in capability-based system by associating each capability with capability rights
in addition to the other rights. One of these rights determines if the capability can be copied.

The retraction problem

It is often important to be able to withdraw authority after it has been given. For instance, one might
have given 10 people keys to a door, and then later decide that person D should no longer have have a key.

One solution is indirection: Rather than handing out keys to the house itself, one might hand out keys to
a second house that contains a key to the first house. Hence one can withdraw the authority of a particular
person or a class people by destroying one of the secondary ‘key-holding’ houses.

Thus capability-based systems often support indirect capabilities (which are like indirect files) that,
from the holders point of view, can be used as direct capabilities. However, the creator of such a capability
can invalidate the capability by destroying the intermediate object.

The ‘what is this key’ problem

The closest physical analogy to this problem is having no information about the properties of a key on a
key chain. It represents a situation where the operating system has useful information that is not available to
programs. Therefore some systems provide a describe-capability operation that given a capability, returns
its type and access rights but not the internal representation of the object. This is essentially computation
reflection (for those of you familiar with it) supported by some languages such as Java.

1.16 Access Control for Distributed Systems

To understand the access-control needs of distributed applications, we need to look first at the reasons for
building such applications. Applications are distributed for a variety of reasons:

Remote Access: A client access remote resources using some remote server. For instance, a file-based
client accesses a file kept on a remote file server such as AFS or an interactive client accesses a remote
window server such as X.

Replicated Objects: A user manipulates a local replica of some remote object. For instance, a Notes
user manipulates a local replica of a Notes document.

Distributed Collaboration: Distributed users collaborate with each other, using the services of syn-
chronous applications such as a chat or whiteboard application or asynchronous applications such as email.

Downloaded code: Code is downloaded and executed on a remote machine. For instance, a Java applet
stored in an HTTP server is downloaded and executed on the machine of a Web browser.

With these applications in mind, let us try to answer the two main access control issues: what is the
form of the access matrix (that is, what is the nature of the subjects, objects, and rights) and what is its
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implementation.

1.16.1 Form of Access Matrix

: Let us first consider the nature of protected objects, subjects, and rights in an access matrix. In traditional
systems, the protected objects consist of operating-system files, which, of course, are used to create a variety
of application structures such as documents, spreadsheets, and programs. The access rights, then, become
file operations such as read, write, and execute. The subjects are usually users and user-groups. A process
that tries to perform an operation on a protected object inherits the rights of the user that started it, who, in
turn, inherits them from the group(s) to which he or she belongs.

All of these access-matrix entities are still relevant in a distributed system such as AFS, though their
implementation, as we shall see below, may change significantly. For instance, network file systems supports
an access matrix that includes both local and remote files as protected objects. In addition, several additional
access-matrix entities can be defined in a distributed system:

Servers as Protected Objects: A remote server can be made a protected object, guarding access to
resources managed by it. For instance, the X window server is a protected object, associated with a connect
right. Only a client with this right can connect to the server to manipulate the display managed by it.

Hosts as Subjects: A host name can be considered a subject that defines the rights common to all pro-
cesses executing on that host. For instance, in X, host names are used to specify the clients that can connect
to an X server. The idea of making host names as subjects is useful because hosts are often associated with
trusted users or institutions.

Distributed Rights: In a distributed system, an operation on a remote site requires two sub operations: (1)
transmission of the operation parameters to the remote site and (2) invocation of the operation on the remote
site. For instance, updating a remote replica with local information involves (1) sending local changes to
the remote site and (2) applying those changes at the remote site. Should a single (logically) centralized
right protect the complete operation or two different distributed rights, one at each site, be used to protect
each suboperation? Thus, in the example above, should we define a single right for the replication step, or
a separate right on the local object to determine if changes to it can be sent to the remote location and a
separate right on the remote object determining if these changes can be applied to it? In a single-site system,
it is typical for a complete, user-level operation to be associated with a single right. However, in our example
above, if the distriibuted sites are considered autonomous, then the second approach is more appropriate

Replicas as Subjects and Protected Objects, Replicated Rights: As we can see from the example above,
in a replicated system, a replica can be both a subject and an object, since replicas manipulate information
in other replicas. For instance, in Lotus Notes, a document replica can have read or write rights to another
replica , which allow it to copy and modify, respectively, the remote object The rights of replicas may
themselves be replicated to ensure access-control consistency across multiple sites.

Users as Protected Subjects and Objects: Similarly, in a collaborative system, users can be both subjects
and protected objects, since they exchange information with each other. For instance, in the Suite collabora-
tive system, users have rights to send information to or receive information from other users, with separate
rights for synchronous and asynchronous collaboration.

Procedures as Subjects and Objects: In a system supporting dynamic code downloading, we might want
control over the kind of procedures that are downloaded to a host and the actions they perform on the host.
The downloaded code can execute as procedures (e.g. applets) invoked by an existing process on the host.
Therefore, it may not be sufficient to let its rights be determined by the local user who started the process.
Instead, most web-based browsers use the identity of the downloaded procedure, or some authority, called a
principal, that has signed it, as the subject whose rights are checked when the code is executed.
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Beyond File Rights: Single-site systems provide use file rights such as read/write/execute for protecting
all resources. As we have seen above, distributed systems protect additional kinds of objects such as hosts
and users whose properties are not captured by memory or files. Therefore, they also support additional,
application-specific, rights such as the connect, send and receive rights we saw earlier.

1.16.2 Implementation of Access Matrix

Recall, that an access matrix may be implemented by access control lists or capabilities. These traditional
implementation approaches must must be extended in many ways to implement the access-control properties
of distributed applications mentioned above:

Network-wide capabilities: A capability no longer references a local object; thus a scheme for ad-
dressing a remote object must be implemented. To address this problem, Amoeba stores in a capability an
encryption of the access rights to and a network-wide id of a protected object.

Replicated access lists: A way must be found to replicate access control lists of replicas. Both Suite and
Lotus Notes use the mechanisms provided by the replication system for replicating objects to also replicate
access control lists of these objects.

Application-Defined Objects: Traditional operating systems do not support user-defined objects, thereby
restricting themselves to protecting predefined rights such as file rights. As we saw above, distributed sys-
tems must protect application-defined operations such as connect. Two approaches have been used to protect
application-defined objects. One approach, used in Hydra, is to develop a kernel that manages application-
defined objects, intercepting, and thereby guarding, all operations on these objects. An alternative approach
is to provide access control in user- space. X servers, Suite dialogue managers and Web browsers [Wallach
et al 97] are examples of user-level code implementing access control. The advantage of the second ap-
proach is that it can be used with existing, non object-oriented, operating systems and access checks do not
require context switches to the operating system. However, some form of authentication facility is required
to verify a subject’s identity.

Access Proxies: A general technique for implementing access-control in user-space is to implement for
each protected class a proxy class that has the same interface as the protected class, performs access checks,
and forwards operations to the protected class if these checks succeed.

Stack Check/Modified Name Space: Access control for a process that allows code to be dynamically
downloaded into it needs to distinguish between local and downloaded code and provide restricted rights to
downloaded code to ensure, for instance, that it does not destroy or leak the contents of local data. Java-
enabled Web browsers illustrate how such a mechanism can be supported. Two approaches have been used
by them to restrict access of dowloaded Java applets. One approach relies on the fact that separate class
loader objects are used to load local and remote code and that the stack frame of each method points to
the object that loaded it. As a result, when a protected method is called, the browser can provide restricted
access if the stack contains a method that was called (directly or indirectly) by downloaded code. The other
approach relines on the fact that the loader can determine the name space of downloaded code. It creates
restrictive proxy classes for the protected classes, and makes sure that downloaded code sees the proxy
classes instead of the protected classes.

Summary
The following table summarizes the differences between access control for single-site systems and dis-

tributed systems.
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Issue Single-Site System Distributed S
Types of Protected Objects Files Files, Servers
Types of Subjects Users, Groups Users, Group
Types of Access Rights Read, Write, Execute Read, Write,
Number of Rights per User-Level Operation One for complete operation One for each
Location of Protected Object Co-located with subjects Remote from
Capability Address Single-site address Network add
Capability Encrypted Not necessary Necessary
Access List Replication Not relevant Useful for en
Access Control Implementor Operating System Kernel Operating Sy

Differences between Access Control for Single-Site and Distributed Systems

1.17 The Confinement Problem

Consider a client using the services of some server that it does not trust. It needs to, however, disclose
some information to the server to get the job done. For instance, the server may help a client with tax
computations, given some financial data from the client. The client is worried that the server may record
this information and sell it to an interested party.

One step the system can take to protect the client is to ensure that there is no possible way for the
server to record information. This may be achieved by ensuring that the server does not write information
to any external file. However, the server may communicate the information to another process, called the
collaborator. Now the object of the system is to make sure that there is no way for the server to leak
information to the collaborator. Butler Lampson calls this the confinement problem.

The system may be able to ensure that the server cannot pass information to the collaborator by writing
to shared memory, a shared file, or using IPC facilities. However, more subtle communication channels
may exist between the server and the client. For instance, the server can try to communicate a binary bit
stream as follows. To send a 1, it does computation for a fixed interval of time. To send a 0, it goes to sleep
for the same interval of time. The collaborator can try to detect the bit stream by carefully monitoring the
system load. The load will be lower when a 0 is being sent and higher when a 1 is being sent. The covert
communication channel thus established is a noisy one, but enough redundant information can be sent to
extract the information.

Modulating the CPU usage is not the only covert channel. The paging rate can also be modulated (many
page faults for a 1, no page faults for a 0). Acquiring and releasing dedicated resources (tape drives, plotters,
etc) can be used for signalling. (Acquiring a resource can mean a 1, and releasing a resource a 0). In Unix,
the server could create a file to indicate a 1, and remove it to signal a 0. The collaborator can then use the
open call to see if the file exists. This call can be used even if the collaborator has no permission to use the
file.

Lampson also mentions a way for the server to leak the information to its human owner. Assume that the
client needs to pay for the services of the server. Then the server process will need to send its owner a copy
of the bill so that he knows how much to expect. The information can be encoded in the bill. For instance if
the actual computing bill is 100 dollars and the client’s income is 53K, then the server could report the bill
as 100.53.

Just finding all the covert channels, let alone blocking them, is extremely difficult.
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1.18 Cryptography

Consider two computers A and B communicating messages via a network that is also accessible to an intruder
computer I. The following are some of the security violations that can occur:

Passive Wiretapping: I reads a message.
Modification: I modifies a message.
Site Impersonation: I sends messages to A pretending it is B.
Cryptography is the only known solution to prevent security violations of this kind. It also has other

applications, as we shall study later.
The basic concepts in cryptography are encryption and decryption. Encryption refers to the transfor-

mation of intelligible information into an unintelligible form for the express purpose of rendering it useless
to an intruder. This transformation process is represented by a mathematical function (enciphering algo-
rithm)

C = E(P, KE)

where P is plaintext (or cleartext) to be encrypted, KE is an encryption key, and C is the resulting cypher-
text. Decryption is represented by a matching decryption function (decryption algorithm)

P = D(C, KD)

where KD is the decryption key.
In a cryptosystem a sender uses KE to encrypts messages, which the receiver decrypts using KD . An in-

truder’s role in such a system is to guess KD given the cyphertext, the encryption and decryption algorithms,
and possibly some side information.

The strength of a cryptosystem is measured by its resistance to attack, that is, how difficult it is to deter-
mine KD . Based on increasing amounts and types of available side information, attacks can be classified,
in order of increasing intensity, as follows:

Cyphertext only: The intruder has intercepted the cyphertext material and has general knowledge of an
opponent’s messages and statistical properties of the language (e.g., frequency of letters or words).

Known plaintext: The intruder has, in addition, substantial amounts of plaintext and corresponding
cyphertext.

Chosen plaintext: The intruder can see, in addition, cyphertext for any plaintext.
The requirement of most present-day commercial and government agencies is that the cryptosystem be

able to withstand a chosen plaintext attack.
Unfortunately, all current encryption methods have problems. The only known provably secure method,

called the ‘one-time pad’, involves the use of a random key that has the same length as the plaintext to be
encrypted. The key is exclusive-or’d with the message to produce the cyphertext. Given the key and the
cyphertext, the receiver uses the same method to reproduce the plaintext. After that the same key is never
used again. The intruder is then faced with the possibility of inspecting 2n messages, a great number of
which will be valid.

This method also has its problems.
on the key, it must be transmitted as well, a procedure that is just as difficult as the original problem of

secure transmission. One solution to this problem is to use computer-generated pseudo random numbers.
These numbers, however, are too easy to guess.

A currently popular encryption method, developed by the National Bureau of Standards, is called DES,
for ‘Data Encryption Standard’. The algorithm (encryption or decryption) can be performed efficiently
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with a special-purpose chip, but far less efficiently with a program. The key is 56 bit long; critics argue
that this length is too short and an exhaustive search will soon be possible using commercially available
general-purpose computers.

The one-time pad and DES are considered conventional; they share the property that the same key
is used for encryption and decryption. A non-conventional approach called public-key cryptography uses
different keys for encryption and decryption, and is used as follows: Every user U has a pair of keys, one for
encryption UE and one for decryption UD. It is impossible to guess UE from UD or vice versa. Cyphertext
encrypted with UE is decrypted with UD. Everyone’s E key is made public; it is saved in a public place
where anyone may access it. Let’s say A and B are two parties that want to send secure messages to each
other. A encrypts messages for B using B’s public key BE . B can decrypt the messages using his private key
BU , but no one else can do so since no one else knows BU . Similarly, B encrypts messages for A using A’s
public key AE . These messages are secret. However, B cannot be sure that A has sent the messages because
anyone could have used BE , B’s public key. Thus messages are not authenticated.

For authentication we need to assume that a user’s decryption key can be used to encrypt cleartext that
can be decrypted by his encryption key. Thus both of the following need to be true:

D(E(P, UE), UD) = P E(D(P, UD), UE) = P

Now let A encrypt its messages to B using A’s secret key AD. B can decrypt the messages by using A’s
public key AE . Now we have authentication: B is sure that A sent the message because only A knows AD.
However, we do not have secrecy: anyone else who gets this message can also apply A’s public key AE and
decrypt it!

These two ideas can be combined to create messages that are both secret and authenticated: A sends the
following to B:

C = E(D(P, AD), BE)

which only B can read by computing:

E(D(C, BU ), AE)

B is now sure that A has sent the message,
Thus we have both secrecy and authentication. (Would we have both if A sent instead the message

D(E(P, BE), AD)?)
Encryption and decryption algorithms that can be used in public-key systems are too complex to be

discussed here. Typically, a public-key system is based on a mathematical problem with the following two
properties: 1) it is hard to find a solution to the problem, and 2) it is easy to recognize a solution to the
problem. The encryption and decryption algorithms are such that the difficulty of finding a key is equal to
solving the problem and the difficulty of encryption and decryption is equivalent to recognizing a solution
to the problem. An example of such a problem is factoring the product of two very large prime numbers.
A popular method called RSA (for Rivest-Shamir-Adleman) is based on this problem. One important class
of such problems is the set of NP complete problems, which have the interesting property that solutions to
them are recognizable in polynomial time whereas the best known methods for finding these solutions take
exponential time, and a polynomial time solution to one of these problems would lead to polynomial time
solutions to all of them (including, as it turns out the factoring problem even though this problem has not
been shown to be NP-complete). An example of an NP complete problem is the knapsack problem: Given a
set of items a1...an, with sizes s1...sn with values v1...vn, is there a set of these items such sum of the sizes
is <= B (the capacity of the knapsack) and the sum of the values >= K (the total value required).
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1.19 User-Authentication

The problem of identifying users when they log in is called user authentication. Most authentication
methods are based on what the user knows (e.g: password), what the user has (a plastic card), or physical
characteristics of the user (e.g: finger prints).

1.19.1 Passwords

The most widely used form of authentication is to require the user to type a password. Unix uses this
approach. There are several ways to support passwords. We shall study some of these by studying the
different schemes that have been used in Unix. We first study how Unix establishes contact with a user.

The system starts up executing the init process. On each terminal port available for interactive use, init
forks a copy of itself, which attempts to open the port for reading and writing. (This new process has its own
process identifier) The open succeeds when a directly connected terminal is turned on or a telephone call is
accepted by a dial-up modem. Then the init process execs a program called getty.

Getty initializes terminal line parameters and prompts the user to type a login name, which getty collects.
It then executes a program called login, passing the login name as an argument. The login process prompts a
user for a password, and checks the input against an entry in the password file (/etc/passwd). If the password
is valid, login sets the user identifier (uid) of the process to that of the user logging in and executes the shell
specified in ‘/etc/passwd’.

We now study the different schemes used in Unix to check passwords.

The First Approach

Unix was first implemented with a password file that contained the actual passwords of all the users,
and for that reason this file had to be heavily protected agains being read or written. This approach caused
several problems:

There was no way to prevent the making of copies by privileged users.
Errors could cause the contents of the file to be accessed. In one case, one system administrator was

editing the password file while another was simultaneously editing the daily message that is printed on every-
one’s terminal. Due to a software design error, the temporary editor files of the two users were interchanged
and thus, for a time, the password file was displayed to every user when he logged on.

The contents of the file saved on magnetic tape were available to anyone with physical access to these
tapes.

The contents of the file, which also contained other informations such as user name, had to be duplicated
on other files so that non-privileged processes could access them. These files had to be updated whenever a
user was added to or dropped from the system.

The Second Approach

An obvious solution was to encrypt each user’s password P with some key K and store the encrypted
version:

E (P, K)
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in the password file. Now when the user tries to logs on to the system, the password he types is encrypted
and compared with the encrypted version in the password file. If the two match, the login attempt succeeds.
If the function E is hard to invert without a key, the password file could be read by everyone. If the function
E is hard to invert even with a key, then the password and login programs could also be read by everyone.
(Encryption functions that are hard to invert are called trap-door encryption algorithms)

A convenient and rather good encryption program available at that time was the M-209 program, which
simulated the M-209 cipher machine used by the US Army during World War II. Unfortunately, the cypher-
text produced by it was easily invertible, given the key. However, given the plaintext and the cyphertext, it
was very hard to guess the key. Thus the new version of Unix used the password, not as the plaintext, but
as the key, and a constant was encrypted using this key. The encrypted result was entered in the password file.

Attacks on the Second Approach

One approach to penetrating this scheme is to keep guessing the key until one succeeds. This method
can work well since most people will use short passwords composed entirely of ASCII characters. In a
collection of 3,289 passwords gathered from many users over a long period of time:

15 were a single ASCII character,
72 were strings of two ASCII characters,
464 were strings of three ASCII characters,
477 were strings of four alphanumerics,
706 were five letters, all upper-case or lower-case,
605 were six letters, all lower case.

On a PDP-11/70 the the amount of time needed to encrypt a potential password was 1.25 milliseconds.
The time required to try all combinations of 5 lower case letters ((26̆5). was 4 hours, of 6 lower case letters
was 107 hours, of 4 ASCII characters was 93 hours, of 5 ASCII characters was 500 days, of 6 ASCII
characters was 174 years. The search could be improved by trying first:
The app. 250,000 words in a dictionary spelled forwards and backwards
A list of first names, last names, street names, and city names (best obtained from some mailing list).
All valid license plates in the state.
Room numbers, social security numbers, telephone numbers etc.

Morris and Thompson, authors of the Unix password scheme, compiled a list of likely passwords using
the above heuristics, encrypted each of these using the known password encryption algorithm, and checked
to see if any of the encrypted password matched entries in their list. Over 86 percent of all passwords turned
up in their list!

1.19.2 Improvements

Slower Encryption

Obviously the M-209 program was far too fast. Unix switched to the DES encryption algorithm, which
is slow when implemented in software. The DES was implemented in the following way: The first eight
characters of user’s password are used as a key to encrypt a constant (0). Then the DES algorithm is iterated
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25 times and the resulting 64 bits are repacked to become a string of 11 printable characters.

Less Predictable Passwords

The password program was changed to urge the user to use harder passwords. If the user enters a alpha-
betic password shorter than 6 characters, or a password from a larger character set shorter than 5 characters,
then he is asked to enter a longer password.

Salted Passwords

Consider an intruder trying to gain access to as many users of as many Unix systems as possible. For
each password he tries, he can check the entries of all the users in the systems. Moreover, he can compile
a list of likely passwords, encrypt them, and save the results in some sorted file, so that any encrypted
password can be searched easily. As new passwords are added, he can check them against his compiled list
at no encryption cost.

Unix uses a technique of salted passwords that renders attacks of the above kind useless. When a
password is first entered, the password program obtains a 12 bit random number (by reading the real-time
clock) and appends this to the password entered by the user. The concatenated string is used as the key
for encryption, and both the 12 bit random number and the result of encryption are stored in the password
file. When the user later logs on to the system, the 12 bit quantity is extracted from the password file and
appended to the typed password. The encrypted result is required as before to be the same as the 64-bit
result of encryption stored in the password file.

Now an intruder cannot amortize the cost of one encryption over all the password entries to be searched.
Moreover, a complied file of encrypted passwords has to contain 2̆12e.ntries for each guessed password. Thus
if the intruder considers ‘UNC’ a good guess, he would need to encrypts all of the strings ‘UNC0000’...‘UNC111’.
Thus this method offers protection agains intruders who try to precompute a large number of encrypted pass-
word. However, it does not protect an individual user whose password is ‘UNC’. The intruder can read the
random number from the password entry for the user, append the random number to the password ‘UNC’,
encrypt the result, and check it against the 64-bit cyphertext stored in the password file. He does not have to
try all strings ‘UNC0000’...‘UNC111’.

One of the side effects of this modification is that it becomes impossible to find out whether a person
with passwords on several machines has used the same password on all of them.

The Threat of the DES Chip

As mentioned earlier, chips are available to do the DES encryption fast (3 times as fast as software).
To prevent the use of such chips, one of the internal tables of the DES algorithm is changed in a way that
depends on the random number. This table is hardwired into the commercially available chip. Obviously,
the intruder could design and build his own chip that takes the random number as input, but the cost would
be very high.

User Names
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Consider an intruder that is trying to guess both user names and passwords. He should not be able to
tell, after an unsuccessful attempt, which of his guesses was bad: the user name or the password. Therefore
Unix does the encryption of the password even if an invalid user name is typed.

1.19.3 Other Methods

The password method verifies a user’s identity by checking on a piece of information only that user is
supposed to know. A generalization of this idea is to have each user provide a long list of questions and
answers, which are stored in the computer in an encrypted form. These questions should be chosen so that
the user does not have to write their answers down. Examples (for Monty Python fans):
What is your quest?
What is your favourite colour?
How fast does a sea gull fly?

At login, the system asks one of these questions at random and checks to see if the answer is correct.
A completely different approach is to check is the user has some item, say a plastic card with a magnetic

strip on it. The card is inserted into the terminal, which then checks to see whose card it is. This method can
be combined with the password idea, as illustrated by automatic cash dispensing machines.

Another approach is to measure physical characteristics such as fingerprints.
Yet another approach is signature analysis.

1.20 Computer Authentication

In the previous discussion, we saw how a user identifies himself to the system. The following example
illustrates why it may be also important for the system to be able to identify itself to the user. A popular
method for gathering passwords uses the following strategy. A user executes leaves running on a terminal a
program that simulates the login behavior of the system: it prompts the user for a login name and a password.
When a trusting user enters the two items, the program writes this information in a file accessible by the
owner of the program, enters the error message ”Invalid Login”, and executes next the standard system user
authentication program. The user, thinking he had mistyped his password, repeats his actions, which lead to
a successful login. Thus he never realizes that his login name and password have been gathered by another
user.
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