
CS 570 Class Notes Fall 1989
Handout 9

InterProcess Communication Using Sockets
by Raj Yavatkar

1 Introduction

Pipes are a simple solution for communicating between a parent and child or be-
tween child processes. What if we wanted to have processes that have no common
ancestor with whom to set up communication? Unix provides an IPC mechnism
called sockets for this purpose. Two processes can separately create sockets and
then have messages sent between them. These two processes may reside on the
same machine or on separate machines interconnected using a computer network.
In Berkeley UNIX 4.3BSD, one can create individual sockets, give them names,
and send messages between them.

Sockets created by different programs use names to refer to one another; names
generally must be translated into addresses for use. The space from which an
address is drawn is referred to as a domain. There are several domains for sock-
ets. We will use a domain called the Internet domain (AF INET) which is the
UNIX implementation of the DARPA Internet standard protocols IP/TCP/UDP.
DARPA Internet is a worldwide collection of several networks.

Communication follows some particular style. Currently, communication is ei-
ther through a stream or by datagram. Stream communication implies several
things. Communication takes place across a connection between two sockets. Be-
fore beginning the communication, two processes execute a series of steps to ensure
that both are ready to exchange messages. The result of this negotiation is a con-
nection. The communication over a stream is reliable, error-free, and, as in pipes,
no message boundaries are kept. Reading from a stream may result in reading the
data sent from one or several calls to write() on the sender’s side or only part of
the data from a single call, if there is not enough room for the entire message, or
if not all the data from a large message has been transferred.

Datagram communication does not use connections. Each message is addressed
individually. If the address is correct, it will generally be received, although this
is not guaranteed. Often datagrams are used for requests that require a response
from the recipient. If no response arrives in a reasonable amount of time, the
request is repeated. The individual datagrams will be kept separate when they are

1

read, that is, message boundaries are preserved.
Actual transfer of data takes place using a protocol. A protocol is a set of

rules, data formats and conventions that regulate the transfer of data between
participants in the communication. In general, there is one protocol for each socket
type (stream, datagram, etc.) within each domain. The code that implements a
protocol keeps track of the names of the sockets, sets up connections and transfers
data between sockets, perhaps sending the data across a network.

One specifies the domain, style, and protocol of a socket when it is created. For
example, the following Unix system call to sockect causes the creation of a stream
socket with the protocol in the Internet domain.

socket(AF INET, SOCK STREAM, 0);

The constants AF INET and and SOCK STREAM are defined in 〈sys/socket.h〉.
After a socket is created, it must be given an appropriate name in its domain. In
the Internet domain, sockets are identified using a 8-byte transport address con-
sisting of two parts: address of the host or machine on which the socket exists and
a port number, or a delivery slot, on that machine. The following structure defined
in file “netinet.h” describes the socket address.

struct sockaddr_in { /* Internet family socket address */

short sin_family; /* adresss family */

short sin_port; /* 2 byte port number */

long sin_addr; /* 4 byte machine address */

char sin_data[8]; /* unused */

};

When a message must be sent between machines it is sent to the protocol routine
on the destination machine, which interprets the address to determine to which
socket the message should be delivered.

For a given protocol, a socket is thus identified using the tuple

〈protocol, localmachineaddress, localport〉.
An association is a temporary or permanent specification of a pair of communicat-
ing sockets. An association is thus identified by the tuple

〈protocol, localmachineaddress, localport, remotemachineaddress, remoteport〉.

2

The protocol for a socket is chosen when the socket is created. The local
machine address for a socket can be any valid network address of the machine, if
it has more than one, or it can be the wildcard value INADDR ANY.

Figure 1 shows an example program for sending datagram to a well-known
server called the UDP echo server residing on machine s.

To determine a network address to which it can send the message, it looks up the
host address by the call to gethostbyname(). The returned structure includes the
host’s network address, which is copied into the structure specifying the destination
of the message.

The port number can be thought of as the number of a mailbox, into which
the protocol places one’s messages. Certain daemons, offering certain advertised
services, have reserved or “well-known” port numbers. These fall in the range from
1 to 1023. Higher numbers are available to general users. Only servers need to ask
for a particular number.

Port number for a well-known service may be obtained by using the system call
getservbyname(family, service).

1.1 Binding local names to sockets

A soocket is created without a name. Until a name is bound to a socket, processes
have no way to reference it and, therefore, no messages may be received on it. the
bind system call allows a process to specify local or its own half of the association,
〈localaddress, localport〉 and the connect and accept calls are used to complete a
socket’s association.

The bind system call is used as follows:

#include <sys/types.h>

#include <netinet/in.h>

struct sockaddr_in sname;

sname.sin_family = AF_INET;

sname.sin_port = PORTNUM;

sname.sin_addr.s_addr = INADDR_ANY;

bind(fdTo,(char *)&sname, sizeof(sname));

3

1.2 Connection Establishment

A connection is typically used for client-server interaction. A server advertizes a
particular server at a well-known address and clients establish connections to that
socket to avail of the offered service. Thus the connection estblishment procedure
is asymmetric.

A server creates a socket, binds it to a “well-known” port number associated
with the service, and then passively “listens” on the socket for requests to be served.
It is possible for any unrelated process to rendezvous with the server. A client
requests services from a server by initiating a “connection” to the server’s socket.
The client uses the connect system call to initiate a connection. For example, the
following call establishes a connection to a socket whose address is specified using
the variable “sname”.

struct sockaddr_in sname;

int s; /* socket descriptor returned by system call socket */

sname.sin_family = AF_INET;

sname.sin_port = PORTNUM; /* well-known port no */

sname.sin_addr.s_addr = /* host address of the server */;

connect(s, &sname, sizeof(sname));

For the server to receive a conection, it must perform two steps after binding
its socket. The first is to indicate a willingness to listen for incoming connection
requests:

listen(fdTo,5);

The second parameter specifies the maximum number of outstanding connec-
tions that may be queued by the system when server is busy.

Once a socket is marked as listening, a server may accept a connection:

struct sockaddr_in from;

int fromlen;

fromlen = sizeof(from);

newsock = accept(fdTo, &from, &fromlen);

4

A new socket descriptor is returned on receipt of a connection. The identity of
the client requesting connection is returned in the structure from and the length
of that information is returned in fromlen. Figure 2 shows program for a remote
login server that accepts requests for remote login from remote clients. Note that
“login” is a well-known servicve and therefore has a well-known port number.

Once a connection is established, both client and server may exachnge data
using several system calls.

1.3 Data Transfer

With a connection established, data may begin to flow. To send and receive data
there are a number of possible calls. With the peer entity at each end of a connec-
tion anchored, a user can send or receive a message without specifying the peer.
As one might expect, in this case, then the normal read and write system calls are
usable,

write(s, buf, sizeof (buf));

read(s, buf, sizeof (buf));

In addition to read and write, the new calls send and recv may be used:

send(s, buf, sizeof (buf), flags);

recv(s, buf, sizeof (buf), flags);

The send and recv are virtually identical to read and write, and the extra flags
argument is important only in special circumstances.

1.4 Connectionless Sockets

A datagram socket provides a connectionless communication interface. Under this
model, communicationg processes need not set up a connection before they ex-
change messages. Instead, sender specifies a destination address in each message.
There is no gurantee that the recipient will be ready to receive the message and
there is no error returned if the message cannot be delivered. Messages are sent
and received using the system calls sendto and recvfrom.

Datagram sockets are created as before. If a particular local address is needed,
the bind operation must precede the first data transmission. Otherwise, the system
will set the local address and/or port when data is first sent. To send data, the
sendto primitive is used,

5

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

The s, buf, buflen, and flags parameters are used as before. The to and tolen
values are used to indicate the address of the intended recipient of the message.
When using an unreliable datagram interface, it is unlikely that any errors will be
reported to the sender. When information is present locally to recognize a message
that can not be delivered (for instance when a network is unreachable), the call
will return 1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive
is provided:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once again, the fromlen parameter is handled in a value-result fashion, initially
containing the size of the from buffer, and modified on return to indicate the actual
size of the address from which the datagram was received.

Figure 3 shows an example of a user-defined datagram-based server that echoes
back messages sent by a client.

In addition to the two calls mentioned above, datagram sockets may also use
the connect call to associate a socket with a specific destination address. In this
case, any data sent on the socket will automatically be addressed to the connected
peer, and only data received from that peer will be delivered to the user. Only
one connected address is permitted for each socket at one time; a second con-
nect will change the destination address, and a connect to a null address (family
AF UNSPEC) will disconnect. Connect requests on datagram sockets return im-
mediately, as this simply results in the system recording the peer’s address (as
compared to a stream socket, where a connect request initiates establishment of
an end to end connection). Accept and listen are not used with datagram sockets.

6

/* Figure 1 */

/* a client program that communicates with the UDP echo server

using Internet datagrams */

/* include files omitted */

main()

{

struct sockaddr_in saTo;

int fdTo, fromlen;

struct servent *pServent;

struct hostent *pHostent;

char *snd_buf; /* must allocate memory */

int cch;

/* create a socket */

fdTo = socket(AF_INET, SOCK_DGRAM, 0);

/* first find the address of the server */

pServent = getservbyname("echo", "udp");

/* find the machine address given a host name */

pHostent = gethostbyname("s.ms.uky.edu");

/* fill in info inthe socket address sturcture */

bzero((char *)&saTo, sizeof(saTo));

bcopy(pHostent->h_addr, (char *)&saTo.sin_addr,pHostent->h_length);

saTo.sin_family = AF_INET;

saTo.sin_port = pServent->s_port;

/* send a message */

cch = sendto(fdTo, tmp_buf, strlen(tmp_buf), 0, &saTo, sizeof(saTo));

........

}

7

/* Figure 2 */

/* Remote login server program */

main()

{

struct sockaddr_in from;

int fd, rstat;

struct servent *pServent;

fdTo = socket(AF_INET, SOCK_STREAM, 0);

pServent = getservbyname("rlogin", "tcp");

bzero((char *)&from, sizeof(from));

from.sin_family = AF_INET;

from.sin_port = pServent->s_port;

from.sin_addr.s_addr = INADDR_ANY;

/* bind bind */

fd(fdTo,(char *)&from, sizeof(from));

listen(fd, 5); /* listen to requests */

while(1) {

fromlen = sizeof(from);

rstat = accept(fd, &from, &fromlen);

/* error checking */

/* fork off a chilld to handle this connection */

}

}

8

/* Figure 3 */

/* An example of a simple, datagram-based echo server that echoes

back client messages.*/

#include <stdio.h>

#include <sys/types.h>

#include <netdb.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define PORTNUM 2005 /* user defined port, not a well-known one */

main()

{

struct sockaddr_in saTo;

int fdTo, fromlen;

char *req_buf; /* must allocate memory */

int cch;

fdTo = socket(AF_INET, SOCK_DGRAM, 0);

bzero((char *)&saTo, sizeof(saTo));

saTo.sin_family = AF_INET;

saTo.sin_port = PORTNUM;

saTo.sin_addr.s_addr = INADDR_ANY;

/* bind fd */

bind(fdTo,(char *)&saTo, sizeof(saTo));

while(1) { /* server loop */

fromlen = sizeof(saTo);

cch = recvfrom(fdTo, req_buf, 80, 0, &saTo, &fromlen);

/* reply */

sendto(fdTo, req_buf, cch, 0, &saTo, sizeof(saTo));

}

}

9

