Comp 790-063, Fall 2006
Building a Collaborative Application Using an MVC-based Framework
Date Assigned: Thu Sep 14, 2006
Completion Date: Tue Sep 26
Objectives:

· Implement a collaborative application.

· Understand how a collaboration framework is designed.

· Understand how a collaboration framework can be extended.
In this assignment you will design and implement an N-user IM application of your choice using the Sync framework. The library for it, syncall2.jar, is available from \\dewan-cs\deposit\790-063. Ignore sync documentation available from the web as I have changed Sync dramatically in the last month. The PowerPoint slides and LM recordings form the current documentation.
The important part of the assignment is creation of appropriate shared models. You are free to add your own views to the model, but I recommend you use SyncObjectEditor for generating the user-interface. Do not worry about the nature of the user-interface as what is important is the information shown to the users.
As you are concerned only with defining model objects, you will write very little code. However, as we have seen in class lectures, there are several subtle issues in defining replicated objects. Almost all of them are exercised in this assignment. Therefore, study the lecture material carefully before embarking on the project.
The assignment is broken into three parts to allow you to incrementally build it.

Basic IM

Initially, build a basic IM that allows each user to enter an input string and shows all users all the history of entered strings in the same order. Each input should be prefixed with the name of the user who entered it. The input is appended to the history when the user hits Enter to commit it, when the input field is cleared. You should make no assumptions about the number of users sharing the IM object at any time. The name of the user should be an argument to the main program started by the user to start the collaboration.

IM with Incremental Feedback

The application should allow each user to determine the users who have edited but not committed their input fields. For extra credit, you can try, as IM tools do, to distinguish between input fields that (a) are being actively edited, (b) have been edited but later cleared, and (c) have text that is not being actively edited.
As you are not writing your own user-interface, you will need a way to get editing events from an uncommitted text field. You cannot do so if you are displaying a String property. However, if you display a property of class bus.uigen.AListenableString as a textfield, you can register for and receive Vector events, as mentioned in class. In addition, when the user hits Enter, the setter method for the property is called.

Adding Voting to Sync

In any discussion oriented collaboration, there may be a need to vote on some issue. Add a new library function (implemented as a static method of some class):
public static SyncClient replicateWithVoteTool (String server, String modelName, Class modelClass, Class editorClass, String clientName, String issue)
It is identical to the Sync method:

public static SyncClient replicateWithVoteTool (String server, String modelName, Class modelClass, Class editorClass, String clientName)
except that it takes an extra argument. It does everything the Sync method does. In addition, it also starts a voting tool in a separate window. The tool shows the issue passed as an argument, which can later be edited by the users. It also allows each user to edit a checkbox to vote Yes or No. It shows (each user) the votes of all users. In addition, it shows the number of Yes and No votes.
Submission

After the due date, you should sign up for a demo with me. In addition, you should submit the code you wrote.

Feel free to ask me questions about Sync. Also Sync probably has bugs – report them to me as soon as you find them and I will try and fix it.

Test the application first in single-user mode without Sync. At this point, SyncObjectEditor will tell you if you have pattern errors through the display it creates. Once you have the patterns and single-users semantics right, you can couple your application to Sync.

Look carefully at the class material explaining what files to install and how to run the rmiregistry and server

