Evaluating Collaborative Infrastructure for CSCW Apps
Sync and Grid/Web Services

Kiranjit S. Sidhu
Department of Computer Science

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-3175

sidhuk@cs.unc.edu

Abstract

A wide range of collaborative infrastructures are available for the development of collaborative systems. Some of these infrastructures deal with a specific type of collaborative application. In this paper we study some of the infrastructures that are more generic and can be used to develop wide variety of collaborative applications. We do this be defining a set of criteria to evaluate any collaborative infrastructures. This criteria is then applied to the generic collaborative infrastructures referred to initially such as Sync and the Grid/Web Services infrastructures to study the pros and cons of the different infrastructures.
1. Introduction
Collaborative applications and infrastructures are two distinct entities. Collaborative applications are n-user applications that provide users some tools to collaborate. For example, a chat application allows multiple users to collaborate using text, audio and video chat functions. Collaborative infrastructures on the other hand provide a higher level of abstraction to build collaborative applications. For example: Sync
 is a Java based framework for developing collaborative applications. Sync is an example of a collaborative infrastructure which is a generic infrastructure i.e. it doesn’t pertain to only one specific type of collaborative application. Figure 1 shows a sync server running an instant messaging client and a voting tool (two different types of collaborative applications). However, some of the infrastructures available are generally based on development of a particular application.
[image: image13.png]

[image: image1.jpg]

The NewsWire
 collaborative content delivery system is a collaborative infrastructure that deals specifically with real-time delivery of news items. The primary focus of this system is to reduce compute and network load while delivering the news items. DARWIN
 is a collaborative infrastructure for aerospace design. It deals with issues such as wind tunnel testing data. The primary focus of this system is to store and index the data. It also manages visualizations for the stored data or the information derived from the stored data. Finally, another example of a collaborative infrastructure is the IMLogic
 infrastructure which deals primarily with instant messaging application development and provides support for text, audio and video capabilities in the collaborative application. All of these three infrastructures provide support for development of a specific type of application.
Another infrastructure that is similar to Sync in the sense that it is also a generic architecture is the CoFrame system (based on web services and Grid computing). We also study a third architecture for development of Collaborative Editing Applications using web services (referred to as CEA in this paper).

Now that we have established the different types of collaborative infrastructure we also need to come up with a criterion for evaluating these systems. The paper lists this criterion in Section 2 and discusses each issue by defining the issue and by comparing the three different systems in relation to each other. If an issue is not addressed by the different approaches, solutions have been provided that can be incorporated into the systems. Finally, a conclusion on comparison of the three systems is provided in Section 3 of the paper.
2. Issues

A collaborative infrastructure needs to provide a variety of services to the application developer to automate some aspects of software development, such as awareness support, directory services and communication. Collaborative infrastructure should also be easy to set up and should provide a flexible programming environment. Transparency to the developer is also an important feature that an infrastructure should provide. Collaborative infrastructures should also have a mechanism for providing consistency of data and to be fault tolerant as well. Finally, resource optimization such as network resources should also be taken care of in a good collaborative infrastructure.
2.1 Flexibility (automation)
Let us look at the first issue on hand. CoFrame is a framework based on web services and grid architecture that provides a generic framework for development of collaborative applications. It is based on a tiered architecture, with a Grid layer that is divided into two sub layers (figure 2); resource management layer and a middleware layer that provides services (discussed in this section), and thus, exposes the functionality (the framework provides) to the developers.

[image: image2]
Figure 2: CoFrame (diagram initially in [6])
The services provided are modularized and are not interdependent on one another. This is similar to Sync that provides services such as automating the building of a UI so that the developers can concentrate on working on the logic of the application without having to worry about the UI aspect of the application. Services are divided into two types: Core and Additional. Core services include communication services.
Some other additional services provided by the CoFrame architecture are: Process Management service and Interaction-Aided service. Process Management service deals with the scheduling of a process and leaves the actual implementation of the process to the application that will handle the process. Interaction-Aided service provides a persistence visual cooperation facility where one can look for collaborators and also to review archived collaborations done in the past.
2.1.1 Awareness Support
Awareness support is key service that a collaborative infrastructure should provide. The CoFrame framework currently supports some basic features such as people presence and network status. Sync on the other hand does not support any awareness service and one client needs to explicitly know of the other client to communicate between each other. Additional features could be added similar to the concepts provided by the Artifact Awareness Paper
 by sharing features such as the current application that a user is working on.
2.1.2 Directory Service
Directory Service provides information about all the available services provided by a collaborative infrastructure. CEA uses UDDI (Universal, Description, Discovery and Integration) to provide this functionality. UDDI is a protocol based on XML that businesses can use to list themselves on the internet in a distributed directory and also to lookup services provided by other providers. The businesses can list themselves based on their name, location or the type of web service they provide. CoFrame uses a central registry similar to UDDI for the directory services. In case of Sync, this directory service can be thought of as the Sync RMI registry service that is provided to the developers. The registry tells the developers what functionality is supported by the Sync infrastructure and how to use that functionality.
Addition of new services is also efficient using the Web Services architecture. In order to add some new functionality into the infrastructure, the functionality can be implemented as a web service and can be published using the UDDI protocol. However, in the case of Sync adding a new service implies modifying and re-compiling the Sync library.

2.1.3 Communication
One of the core services that an infrastructure provides is the communication services. Communication can be done between various services and also between various collaborators. CoFrame uses a Cooperative Message Bus (CMB) to provide the communication features. The CMB is internally based on SOAP (Simple Object Access Protocol). SOAP uses existing technologies such as HTTP and XML to do information exchange between two entities. Figure 3 shows the mechanism of a basic SOAP request.

[image: image3.emf]HTTP/XML

SOAP Client SOAP Server

Re

q

u

e

s

t

Do

cu

m

e

n

t

Figure 3: SOAP Request
This system is independent of the operating system as it is based on technologies that are standard. Sync, on the other hand uses RMI (Remote Method Invocation) as its communication protocol. RMI (Figure4) uses stubs and skeletons to provide an interface for communication. RMI is a Java only technology but provides more security options compared to SOAP which is not as mature as RMI. There is, however, a port which can turn the RMI into SOAP based communication. One point to note against usage of SOAP is the slowness compared to other protocols such as RMI.

[image: image4.emf]CLIENT SERVER

TRANSPORT LAYER

REMOTE REFERNCE LAYER

STUBS SKELETON

Figure 4: RMI architecture

.

2.2 Programming Model (Environment)
Programming model defines the environment used by the developer to build the application in. It also refers to the hardware setup of the infrastructure. CoFrame uses the Grid architecture as the backbone of the collaborative infrastructure.

A Grid is a kind of parallel and distributed system that enables the sharing of resources of multiple computers to build virtual computer architecture. Hence, in a sense it enables resource virtualization. Computing resources in Grid architecture are not administered centrally and are in facet distributed based on factors such as availability, cost and performance. CoFrame uses the open source Globus Toolkit 3 to set up the grid architecture. Globus Toolkit 3 is widely known as the de facto standard and is also used heavily in the industry for deployment of grid architecture.

[image: image5]
Figure 5: Grid Architecture
CoFrame is an “open” framework as it uses technologies that are scalable whereas Sync is a “closed” protocol as it is not as scalable. Another important aspect of the web services and grid architecture in CoFrame is that because the communication is done via port 80, web services are able to go through firewalls which is a big drawback of using the RMI (in case of Sync).

The services are described using the WSDL (Web Services Description Language) in the case of CoFrame and CEA systems. WSDL is an XML format to describe services as a set of endpoints (ports) and to define the set of operations and messages abstractly. Sync on the other hand, uses Java as the language to define the services (or methods available) and provide them as a Sync Java library. Again, Java can be converted to Web API using Axis.
Also, the application itself can be developed using any language in the case of CoFrame and CEA systems. This is primarily due to the fact that these systems use HTTP/XML to return data back and thus any language with support for XML parsing can be used to work with the frameworks. Sync, again is limited to Java as the set of methods are available via RMI which can be accessed using Java alone.
2.3 Programming Cost (Transparency)
One of the main objectives of having a collaborative infrastructure or framework is to eventually increase the productivity of the application developer. The improvement in the efficiency of the application developer is known as the programming cost. Transparency is a key issue that affects the programming cost.

By implementing transparency in a framework, the efficiency of the developer is maximized. The developers only needs to concern themselves with the services (features) being offered and not how the actual services have been implemented. For example in case of Sync the developer needs to know that providing a get/set method for a variable will build a UI component for that particular variable. They don’t need to know how Sync internally creates the UI component. Another example would be the “replicate” method that replicates a client application and creates the appropriate entry on the Sync server without the developer needing to know how this is done.

CoFrame architecture uses the Grid layer to separate the application interface from the physical resources and thus providing the architecture to set up transparency if required. Sync as mentioned above does so by the integrated RMI model. Finally, the CEA system doesn’t seem to provide any explicit transparency features but the system is conceptually similar to the CoFrame architecture and transparency can be achieved in a similar manner.

2.4 Consistency
A significant amount of data is shared between peers in a collaborative application. Hence, a good collaborative infrastructure provides mechanism for consistency of the shared data. The CEA system provides a mechanism for consistency of data based on the ACID principle. ACID stands for: Atomicity, Consistency, Isolated and Durable. ACID originated from the concept of databases. Atomicity implies that either all or no transactions will be processed out of a batch of commands. Consistency implies that only valid data will be written to the database. Isolated implies if multiple transactions are occurring at the same time, they will not interfere with each other and finally durable implies that once the changes have been committed they are permanent in nature. The CEA system provides a similar concept such as ACID and calls it SACRed. It differs from ACID concepts specifically relating to the "Isolated" part. It deals with the collaborative systems case, in which there are situations where the data is possibly required to be shared and not kept isolated. This is the resiliency aspect of the system.
2.4.1 Merging
	Criteria
	 Systems
	Sync
	CoFrame

CEA

	Merging Support
	Yes
	Not defined explicitly

Sync explicitly provides for merging. In case of Sync, the data is exposed directly to Sync and thus it can offer merging functionality. CoFrame and CEA do not provide any explicit merging functionality and only propose a higher level abstraction in the form of the consistency of data model. This I believe is a major drawback for the Web Services/Grid architecture based models.

Another point for the Sync architecture is that it provides a mechanism for the developer to override the default merge action by using the setMergeMatrixEntry method provided by it.
2.5 Fault Tolerance
Fault tolerance of systems depends on several factors. One of the main issues in fault tolerance is the architecture of the systems i.e. whether the system is distributed or central. There are pros and cons for both types of architectures. A distributed system is in general more fault tolerance as the data is mostly distributed over the architecture and there is not one point of failure. On the other hand, it is much more complex to secure a distributed system from attacks for the very same reason. A centralized system only has one point of failure and is thus much easier to write a security policy for. However, one point of failure makes losing of data a bigger impact compared to the distributed systems as all of the data is being kept on one central node.
The Sync architecture is a client-server model where the server can be run on one of the clients or separately as well. The CEA and the CoFrame architecture are distributed in nature as they use the Grid architecture which inherently is distributed in nature. CoFrame also provides for a special service as a security feature. It provides a Single Sign On (SSO) service similar to Microsoft’s .NET passport functionality where in one signs into the passport page and is able to access all web sites which use the passport login. Similarly, SSO can be used to authenticate the client once and provide access to all services that have similar authentication level.
2.6 Resource Optimization
In dealing with data, the framework should also make use of the resources as effectively as possible. One of the biggest resources that can be optimized is the proper use of network resources. Bandwidth and Latency are two key features of networked system.

Bandwidth refers to the data rate that is supported by the network connection. Tools such as “netpref” and “ttcp” can be utilized to find the bandwidth in a LAN. The term “high bandwidth” is usually used to refer to bandwidths of at least 64 Kbps (usually much higher than this limit).
Another key element is latency. Latency refers to delays caused in processing of networking data. It is also commonly referred to as lag. One can have a high theoretical bandwidth but too much latency can cause the effective bandwidth to decrease substantially. Latency in the order of 100s of ms can cause performance deterioration.

These two issues can lead to overall degradation of user experience when dealing with collaborative applications. For example in a collaborative application such as video conferencing, if screen refreshes every 2 seconds instead of real-time, it can adversely affect the user experience of the application.

With network resources improving over the course of time and everyone moving to “high bandwidth” instead of dial ups, some of these are taken care of as the bandwidth increases. However, as pointed out the bandwidth is not the lone factor in performance degradation. Thus, we need to look at other alternatives to improve efficiency. This can be done by optimizing the current resources. Some of the ways to do this are: Message Compression (sending data in with least redundancy) and a better resource replication policy.

2.6.1 Message Compression
Collaborative applications share a significant amount of data. The data can be user data being shared between the collaborators. It could also be system state information that needs to be sent across the network. Also, messages such as user events need to be communicated to all connected collaborators. Let us look at a specific example for the case of collaborative applications. For example: A collaborative application in which multiple users are sharing a common screen. Now, if a user moves one of the windows being shared and drags it around the screen, then the constant new positions need to be sent over to all the connected collaborators. Other examples would be a common whiteboard.
First issue with most of the collaborative systems data is that it is verbose in nature. The data is essentially either in text format which is human readable or in XML which is more specific to application. In case of CoFrame and CEA systems, most of the data being sent using web services is in fact in XML format. The disadvantage as mentioned is that these are all verbose formats and use up a lot space even for small messages. For example even to send a small update one needs to include a lot of header information such as who the sending client is, what application the data is for, what type of message this is and timestamp etc.

Sending such a large amount of data can fill up the pipeline and thus fill the bandwidth really fast. (Confirmed by Carl Gutwin et al in [6]). One method to quickly fix this is to send updates that are not as frequent in nature. This would definitely decrease the bandwidth requirement, but this is not such an elegant solution. Instead we could encode the data before sending and decode it on receiving it. Gutwin et al ([6]) proposes a mix of Ziv-lempel algorithm, Huffman encoding and building a dictionary of sequences with short lookup codes.
Let us look at the specific inefficiency in a typical collaborative applications message and then refer to Carl Gutwin’s approach to fixing those inefficiencies.
Repetition within a single message

[image: image6]
Figure 6: Repetition within a single message (initially appeared in [8])
The first situation of inefficiency is repetition within the same message. Working with the example mentioned before about the screen being dragged across the screen, we can look at a typical message with the updated co-ordinates being sent over to all the connected items. As can be seen in figure 6 (representing this situation), there are a number of redundant data being sent across in this message such as the characters “ID 1” and “.1” getting repeated at multiple places in the same message.
Repetition between subsequent messages

[image: image7]
Figure 7: Repetition between subsequent messages (initially appeared in [8])
The previous source of inefficiency is not a major one as there is not as much redundancy. However, if we take into account repetitions between subsequent messages, e.g. working with the same screen dragging scenario, subsequent messages are expected to be relatively similar in nature. In fact, looking at figure 7 we can see that subsequent messages are essentially the same as before and only differ by 1 or two characters at the most.
Inefficient Coding

Some other inefficiencies can occur due to bad encoding techniques used by a programmer. These include but are not limited to encoding of numbers as strings and hence taking up additional data storage than required. Also, field widths for numeric values in UI’s are much larger than they need to be for the data to be displayed.
Carl Gutwin et al in [8] have proposed a novel approach to deal with specifically the between-message compression issue. In the case of within-message repetition, a standard zlib algorithm is used. This can be very useful when sending larger messages. However, in the case of small messages, the benefits of saving some space are not enough to counter the additional costs incurred for coding and encoding messages at both ends of the collaborative system.

 However, a better approach has been proposed to deal with the between messages issue. In this case, Gutwin proposes building up a dictionary of short lookup codes for longer repeated sequences. The algorithm works in the following manner:

· Algorithm Concept:
· Treat one message as a template

· Compare subsequent against that template to determine repeated sequences

· Replace repeated sequences by codes in a dictionary
· If repeated sequence doesn’t exist then create entry in dictionary and propagate new additions to all clients so that they can update their dictionaries

· Create a new template if a subsequent message is not similar to the current template and again propagate this to all connected collaborators.
Sync has a similar feature where in using the replicate method allows for some compression.

The following table summarizes usage of message compression techniques in the surveyed papers. None of the systems provide any message compression techniques. Sync sends binary across the Java RMI interface. Some simple performance enhancements can be done by using the Lempel, Ziv, Welch Compression/Decompression method that is easily implemented in Java.
	Criteria
	 Systems
	Sync
	CoFrame

CEA

	Message Compression
	No
	No

CoFrame and CEA both being web services based methods need to implement message compression techniques as the XML data format is even more verbose than plain text.
2.6.2 Resource Replication Policy
Another way to improve performance and optimize network resources is to look at the resource replication policy implemented by the collaborative infrastructure. Again, like in fault tolerance there are two cases, distributed and centralized. The benefit of having a distributed (replicated) system is that the data is backed up. This is also a more optimized solution as the data can be served from the best available source based on proximity to the collaborator. For example: Sourceforge.net uses mirror sites to replicate data for various projects and the client downloading the data (code or application) can use the closest mirror (physically) in order to get maximum bandwidth and least latency. Centralization of resources has the benefit of being easier to implement with no replication policy required.
Grids are distributed in nature and thus CoFrame uses a replication model. Sync on the other hand, is centralized with the server being at one location and thus does not require a replication model. CoFrame proposes a very basic replication model that can be configured depending upon the requirements. Figure 8 shows the replication model utilized by CoFrame. Resources (data) are stored independent of the working node. The provider of the data publishes the data to one server and broadcasts message using CMB to store meta data information such as who made the updates and what updates were made to all the other nodes. Based on how important the data is, what the size of the data is and also on factors such as current network traffic situation and the grid structure, the data (resource) gets either fully replicated or partially replicated.

[image: image8]
Figure 8: Resource Replication Model (CoFrame, initially appeared in [6])
2.6.3 Heterogeneous Systems
One last thing to look for while trying to optimize resources is that the collaborative application might be running on two heterogeneous systems i.e. two people connected via two different types of devices. For example, two collaborators (A & B) are connected to each other using two different devices. A has “good” network (Cable/DSL) whereas B has relatively “bad” network (dialup) and both are collaborating on a video chat or 3D graphics application. To resolve this issue, we can propose a model where on communication a QOS is established with the least bandwidth supported and the data is compressed and sent at that bit rate instead of max bit rate supported by the sender.

3. Conclusion
We have looked at three different collaborative infrastructures; Sync, CoFrame and CEA. The latter two based on the web services model. Each framework has its pros and cons and neither one is an ideal framework. For example, CoFrame is scalable being based on the Grid architecture. CoFrame and CEA can work over firewalls as they use web services that essentially go through the standard HTTP protocol. However, the disadvantage of that is that it is not as secure as SOAP is not a mature technology compared to Java RMI which is robust when it comes to security.
The following table summarizes the pros and cons of each system based on the issues that have been discussed in the paper.
	Criteria
	 Systems
	Sync
	CoFrame
	CEA

	Flexibility (Automation)
	-
	-
	-

	- Awareness Support
	Yes(limited)
	Yes(limited)
	No

	- Directory Service
	RMI
	Central Registry
	UDDI

	- Communication
	RMI/SOAP
	SOAP
	SOAP

	Programming Model (Environment)
	Central
	Distributed
	Distributed

	Programming Cost (Transparency)
	Yes
	Yes
	Yes

	Consistency
	-
	-
	-

	- Merging
	Yes
	Not explicitly
	Not explicitly

	Architecture (Centralized/Decentralized)
	-
	-
	-

	Resource Optimization
	-
	-
	-

	- Message Compression
	No
	No
	No

	- Resource Replication Policy
	Not Required
	Yes
	No

4. References
[1] Jonathon P. Munson and Prasun Dewan, IEEE Computer June 1997, “Sync: A Java Framework for Mobile

 Collaborative Applications”, http://csdl.computer.org/dl/mags/co/1997/06/r6059.pdf
[2] Werner Vogels, Chris Re, Robert van Renesse and Ken Birman, ICDCSW 2002, “A Collaborative Infrastructure

 for Scalable and Robust News Delivery” http://doi.ieeecomputersociety.org/10.1109/ICDCSW.2002.1030843
[3] Joan Walton, Robert E. Filman, Chris Knight, David J. Korsmeyer, and Diana D. Lee, NASA, “A Collaborative
 Infrastructure for AeroSpace Design” http://ic.arc.nasa.gov/people/filman/text/darwin/ace.pdf
[4] IMLogic: A Collaborative Infrastructure for IM applications http://www.imlogic.com

[5] Kimberly Tee, Saul Greenberg and Carl Gutwin, CSCW 2006, “Providing Artifact Awareness to a Distributed

 Group through Screen Sharing”

[6] Jinlei Jiang , Shaohua Zhang, Yushun Li and Meilin Shi, ICWS 2005, “CoFrame: A framework for CSCW
 Applications based on Grid and Web Services”

[7] Muhammad Younas and Rahat Iqbal, Coventry University, “Developing Collaborative Editing Applications
 using Web Services”
[8] Carl Gutwin, Christopher Fedak, Mark Watson, Jeff Dyck and Tim Bell, CSCW 2006, “Improving Network
 Efficiency in Real-Time Groupware with General Message Compression”
Figure � SEQ Figure * ARABIC �1�: Sync Server and Application

Kiranjit S. Sidhu

Page 10

[image: image9.png][moveObject [sendedD foel 42[1[0 1:5051] lobjecD i '335]]

[image: image10.png][moveObject [senderlD 168.142.1.101-5051] [objectlD 153] [x 153} Iy 10

7
[moveOtect [senderlD 168.142.1-101-5051] fobjectiD 153] X 153B 1y 10

=

[image: image11.png]Replication
Policy

Replication
Causation

Fully Replication

Partly replication

Policy Policy
T
Replication Process
— I
_— N
_—
N
N;:wf:;:k Gr Hot Resource
anie State Resource Type/Size
Model ?

[image: image12.png]

_1223041973.vsd
HTTP/XML�

SOAP Client

SOAP Server

Request Document

_1223042479.vsd
CLIENT

SERVER

TRANSPORT LAYER
REMOTE REFERNCE LAYER

STUBS

SKELETON

