
Distributed Collaboration -

Assignment 3:

Replicated N-User IM
Date Assigned: Sep 24, 2009

1-user IM Completion Date: Oct 1, 2009

N-user IM Completion Date: Thu Oct 15, 2009

Objectives:

 Implement a collaborative application.

 Implement replicated, distribution - unaware model.

 Use and evaluate distributed pair and side-by-side programming.

 Understand how IM is implemented.

 Understand Remote Method Invocation.

 Understand properties and other programming patterns.

 Understand state-change notifications associated with various patterns.
In this assignment you will implement an N-user instant messaging tool. We will make some

simplifying assumptions about the UI and the collaboration features to make your task easy.

Initially you will implement a 1-user IM and later extend it to N-users using remote method

invocation. You will implement only the model of the application – the user-interface will be

provided by ObjectEditor. Each user will interact with a separate instance of the (root) model

class. The states of the models of different users will be kept consistent to implement N-user

semantics. However, the models themselves should be distribution- unaware though they can

be collaboration-aware. All distribution awareness should be added to separate modules, which

can themselves be centralized and/or replicated. Try to minimize the amount of collaboration-

awareness in the models.

As in the previous assignments, work in pairs, and try and choose someone with whom you have

not worked so far.

As this is a programming assignment, this is an opportunity for you to experiment with two

recent distributed collaborative programming practices: distributed pair and side-by-side

programming. Distributed side-by-side programming requires you to have access to two

computers – let me know if that is an issue. As before, you will record your collaboration

sessions using LiveMeeting.

The assignment is broken into multiple parts to allow you to incrementally build it. To make sure

you do not procrastinate – there are two completion dates.

Deleted: 8

The assignment involves the use of Java RMI and the Java-based ObjectEditor. Moreover, later,

your models will be incorporated into two other Java-based infrastructures. Therefore you need

to program in Java.

Simplifying assumptions
You can make the following simplifying assumptions:

 Single session: There is only one IM session supported by your tool. Thus, the name of

the session does not have to be specified.

 Text and editing-status coupling: There is no information shown/ communicated beyond

the text messages, and who has entered but not committed a message. For instance,

the time of a message does not have to be displayed or communicated.

 Personal information: The only information about a participant kept by the tool is his or

her name – thus, you don’t have to worry about associating the person with a picture or

status.

 UI generation: The UIs are generated by ObjectEditor. The library is available from the

Web page. To use it, simply include it in your class path.

You are free to ignore the assumptions. However, if you decide to implement your own user-

interface, you should use MVC with the programming patterns discussed in class. To make sure

you in fact do so, first create the application using ObjectEditor, which will force you to meet

this constraint. You can later replace ObjectEditor with a custom UI implementation.

1-User IM
Create a 1-user IM that takes as a command line argument the name of the user invoking it.

The IM should allow a user to enter an input message and view the history of all entered

messages in the order they were entered. As in a commercial IM, each entry in the history

should be associated with the name of the user. Finally, if the user has entered but not

committed an input message, the IM should display this information. For extra credit, you can

try, as IM tools do, to distinguish between input fields that (a) are being actively edited, (b) have

been edited but later cleared, and (c) have text that is not being actively edited.

To implement this application, sketch out the logical structure of the information displayed to

the user, and create one or more models that follow programming patterns exporting this

structure to the view. These patterns should be the ones discussed in class. As mentioned

above, use ObjectEditor to create the view and controller of the models. You don’t have to

worry about the nature of the user-interface. In fact, your logical structure should be entirely

independent of the user-interface. To determine if you have followed this rule, you should try to

imagine multiple user interfaces for the IM and make sure your logical structure supports all of

these UIs. If you do not follow this rule, you have not created models.

You are free to use the ObjectEditor predefined classes, util.AListenableString,

util.AListenableVector, and util.AListenableHashtable, to implement the models. In case you

need to extend the functionality of these classes, you can use inheritance or delegation, that is,

create classes that have IS-A or HAS-A links to these predefined classes. Inheritance will be much

easier to use.

Distributed Pair Programming
Your implementation of the 1-user IM should involve at least 90 minutes of distributed pair

programming. In such programming, two developers work synchronously from different

computers, using a telephone to talk to each other. One person, called the driver, inputs code,

while the other, called the navigator, views the code. They continuously discuss the code. After

45 minutes, the developers switch navigator and driver roles. Use LiveMeeting to create a pair

programming session by sharing the desktop of one of the developers.

 If the response of the person at the slave computer gets intolerable, switch seats (assuming you

are nearby) or create a new LM session wherein the master and slave computers are switched.

Record your session. Another alternative is to use a two display side-by-side setup, with users

taking turns using their primary computers (see below).

If you have 3-people in your project, do a 135 minute session, and make each person a driver for

45 minutes.

N-User IM
Extend the 1-user IM to support an arbitrary number of users. As in the previous version, each

user starts a program that takes his or her name as an argument. All users who run the program

are put into the single IM session. Do not worry about leaving the IM session – that is,

implement Hotel California semantics not allowing people to leave! Each user should be able to

identify all users who have entered but not committed their input fields.

 All users in the session should see the same set of messages, though the order of messages in

their histories can be different if these messages were sent concurrently.

 As mentioned before, the models displayed by ObjectEditor should reside on the local

computer. This means and you should implement centralized and/or replicated modules that

synchronize the local models. As mentioned earlier, the models should be distribution-unaware

and minimally collaboration aware; and the remaining components can be centralized and/or

replicated.

Use Java RMI for distributed communication.

Distributed Side-by-Side Programming
Your implementation of the N-user IM should involve at least 60 minutes of distributed side-by-

side programming. As in pair programming, in such programming, two developers work

synchronously from different computers, using a telephone to talk to each other. However, they

can work concurrently, and use some shared/replicated store to share their changes. In

addition, each person can see the desktop of the other user on a special computer dedicated to

providing this awareness information. Thus each user interacts with a primary computer and an

awareness computer and shares the desktop of his primary computer, which is shown on the

partner’s awareness computer.

Distributed pair programming is a special case of distributed side-by-side programming, wherein

only one primary computer is active at one time. In this two-display set-up, response times are

not an issue because each developer uses the local computer. Unlike pair programming, side-by-

side programming does not impose a process – you are free to determine how much concurrent

and pair programming you do.

Again use LiveMeeting and record both desktop sharing sessions. If you have 3 people in your

project, either use three computers or allow only two to do concurrent work.

Side-by-side programming requires you to share your code changes. You are free to determine

how you would do this. If you use a version control system, simply use check-in and check-out to

share them. If you have access to a shared file system, through AFS, NFS, or shared windows

folders, then you can use it. You are always free to create a directory in my deposit directory to

do so. The most interesting way to share these changes is through Microsoft Groove (which

comes with Vista Office and is available for free trial for about a month on XP and other

platforms). Groove can instantly synchronize private folders on multiple computers.

Written Document
Write a document that:

 Describes how you divided your work when you were not doing pair programming, that

is, when you were doing traditional asynchronous programming and synchronous side-

side programming.

 Compare these three forms of programming, giving their pros and cons.

 Explain the kind of discussion that was useful when you were doing synchronous pair

and side-by-side programming.

 Write a document describing the architecture of your implementation. Be sure to

identify how much distribution and collaboration awareness there is in the various

components of your implementation. Classify components according to the function

they provide such as model and session management rather than the specific classes.

 Trace what happens when three users enter messages at the same time. In fact, also

test this condition for at least two users. You might have to disable firewalls to do so. I

think when you start your rmi server, it will ask you to block or unblock the progra,

which should set the firewall property.

 Has test cases, in the form of screen figures, describing the functionality you

implemented. Be sure to explicitly indicate the extra credit features you implemented.

Submission
Submit a printout of the document.

Put your code and documents in a subdirectory in the folder: \\dewan-

cs.cs.unc.edu\deposit\790-063-Assignments\Assignment3

User Interface
The nature of the user-interface is not important in this assignment, but if you want to improve

it, I will try and help you.

The general way to improve the UI is to set UI attributes of some property, P, of class C. These

attributes must be set before you ask ObjectEditor to edit an object.

Here are generalizations of some questions I have had so far:

1. How do I display C.P in a text area widget? You can display any property, P, of class C, in

a text area widget. By default it will display the value returned by invoking the toString()

method of the value of the property. You can also ask it to format this String. (You will

probably need to change the default size of the widget and attach a scrollbar, which are

explained below.)Here is what you have to do:

// ask ObjectEditor to format C.P instead of using the toString() value

ObjectEditor.setPropertyAttribute(C.class, "P",

AttributeNames.UNPARSE_AS_TO_STRING, false);

// use JTextArea to display C.P

ObjectEditor.setPreferredWidget(C.class, "P", javax.swing.JTextArea.class);

2. How do I influence the size of the widget used to display C.P:

// set the width and height of C.P

ObjectEditor.setPropertyAttribute(C.class, "P", AttributeNames.COMPONENT_WIDTH,

width);

ObjectEditor.setPropertyAttribute(C.class, "P", AttributeNames.COMPONENT_HEIGHT,

height);

3. How do I attach a scrollbar to the widget used to display C.P:

// attach a scrollbar to C.P, which will show only when needed

ObjectEditor.setPropertyAttribute((C.class, "P", AttributeNames.SCROLLED, true);

 Deleted: ¶
¶

file://dewan-cs.cs.unc.edu/deposit/790-063-Assignments/Assignment3
file://dewan-cs.cs.unc.edu/deposit/790-063-Assignments/Assignment3

