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6. Architecture
We have used the term architecture in the context of specific systems such centralized and shared window systems, and distributed and replicated models. Here, we will take a morebroad look at architecture that defines a whole design space of architectures In which existing systems are special points. We will look at what exactly the terms “architecture” and “design space,”  define two important dimensions of an architecture space, and look at some of the pros and cons of being in different points In this space. 
Software, Distributed, and Collaboration Architecture
We have, so far, used boxes and arrows to define and illustrate architectures. Let us look at the following example figure to better understand what exactly we mean by an architecture.
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What are the components of this architecture? It is difficult to answer this question because there are, actually, two kinds of components connected together into two kinds of architectures. 
The following simplification of the figure shows one of these architectures.
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The boxes in this figure represent software modules- in an object-oriented language, they correspond to interfaces/classes.  Arrows between modules represent call dependencies. We draw an arrow from a module to another if some method in it invokes a method in the latter. (The dashed arrows represent notifications, which are not relevant to the discussion above.)  We shall refer to it at the software architecture. It is determined when the code is written. There are many ways transform a software program into an architecture depending on which components of the program we focus. The architecture presented above focuses on the semantics (model), input(controller), output(view), and collaboration (proxy) modules.
Different components of a software system can execute on different computers. Moreover, the same component can run on multiple computers. A software architecture can be transformed into a distributed architecture at execution time by a defining a mapping between the static components and computers in a network of computers.  The following figure shows two distributed architectures derived from the software architecture above, which we discussed in earlier chapters. 
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Collaboration Architecture
By the term, collaboration architecture, we mean both the software and distributed architecture of a collaborative system, which can include  both programmer-defined application and system-provided infrastructure code. The architectures above are examples of collaboration architectures. Besides these two architectures, we have seen several other collaboration architectures. The following figure reproduces the proxy-based centralized and replicated window system architectures we saw in chapter 2.
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In the previous chapters, we examined, in-depth, specific system architectures. However, we saw only few of the possibilities for both the software and distributed architectures of collaborative systems. In fact it is possible to define a large family of useful collaboration architectures by defining a “design space” of architectures.
Design Space
By a design space of some class of entities we mean a multi-dimensional Euclidean space in which point is a member of the class.  For example, by a design space of operating systems, we mean a multi-dimensional space in which each point is an operating system, as shown below. 
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It is called a design space because each dimension corresponds to some issue faced in the design of the systems in this space. The set of values defined by the dimension correspond to alternative approaches to resolve the issue. In the case of operating systems, the issues may be the nature of the file system, process management, and user-interface. There are many ways to address each of these issues. For example, the file system may use the “/” or “\” character as a separator in file names. Most issues are more profound than this one, but this one is understandable without a formal background in operating systems.
 Unlike true Euclidean dimensions, the design issues do not tend to be entirely orthogonal. For example, if the file system uses the “/” separator in internal file names stored in disk, the user-interface will also tend to use it in a file name specified by the user interface. Moreover, each of these dimensions may have sub-dimensions. For example, the file system dimension may have sub-dimensions corresponding to how files (i) are named, (ii) stored in a local disk, (iii) protected, and (iv) on remote computers are accessed.  For now, we will assume that the dimensions are atomic and more or less orthogonal.
Developing a design space for a new class of systems, and even adding new dimensions to an existing space, is a difficult intellectual task. So why bother? There are many reasons:
· Concise description of existing points: Imagine a course that surveys a set of operating systems by describing each system in turn, without identifying common issues and approaches. After the first system has been described, the discussion of the remaining ones will involve repetition. Imagine applying this approach to the teaching of UNIX and Linux! A much better approach, taken in most courses on operating systems, is to take an issue-based approach, in which the focus is on individual dimensions rather than systems. In general, explaining a small number of dimensions allows us to a much describe a much larger set of current (and future) points in the space. 
· Classification and compare and contrast: A design space of systems allows us to classify these systems and explicitly identify the similarities and differences between these systems. 
· Concise evaluation: Even more important, it is possible to identify the consequences of choosing different values in a dimension to concisely evaluate all systems in the design space, thereby identifying the tradeoffs involved in choosing different points.
· Identify issues and approaches to designers: Suppose we want to implement a new system that is not necessarily a new design but has a new implementation. A design space tells us explicitly the issues we must face and the approaches we can take to resolve them. 
· Identify holes: A design space is particularly useful if we wish to develop a new design as it can identify holes, that is, points in the space that have not yet been implemented.  Conversely, if we claim we have invented a new design, we must show that it fills a hole. For instance, it is possible to fill a hole by keeping everything about the Windows operating system except the file-name separator character.  Filling a hole often involves extending the existing design space with new (important) dimensions others had not considered as orthogonal issues and explaining the why
· Common implementation modules:  Ideally, it should be possible to associate each value in a dimension with a module that can be shared by all systems that take this choice, thereby allowing reuse of code among the systems in the space. We see this idea in the implementation of different programming languages – they tend to use common parsing and other modules. 
A design space can be associated with any kind of system – not just software systems. For example, we can imagine a design space of cars in which the dimensions correspond to the engine, the chassis, and the tires. 
Design Space of Collaboration Architectures
Our goal, then, is to identify a design space that describes a family of collaboration architectures.
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 Let us take a bottom up approach to deriving such a space by trying out the commonalities and differences in the four specific architectures we have used as examples in this chapter.
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We can group these architectures in two ways. The top  two architectures share models while the bottom ones share windows.
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The left architectures are both “centralized” as their names indicate, while the right architectures are “replicated”.
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Thus, we seem to have identified two dimensions. One represents the choice between sharing a model and window, and another represents the choice between centralization and replication. However, this “design space” is less than satisfactory. The first dimension contains only two values. As a result, it does not describe systems that share objects other than windows and models. In particular, it does not describe VNC, which shares the frame-buffer. The second dimension is even more problematic because the word centralized means two different things in the two architectures. In one case, it means that the model is centralized and in the other case it means the entire window application, including the model, view, and controller, are centralized.

To address these problems, we will use a layered model of application implementation, focusing first on layers supporting single-user interaction and then on those needed for collaboration.
User-Interface Layers
The idea of creating a layered abstraction on top of a hardware device is not new – for example the network device is managed by a set of communication layers (left stack, the figure below). Here we focus on the set of layers that manage the I/O device such as the mouse, keyboard, and screen (right stack, in the figure).  As shown in the figure, an application may have multiple layer stacks managing different devices. 
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In general, input is abstracted by a set of layers before it reaches the application. Conversely, the output produced by an application is rendered by a set of layers before it is displayed to the user. In general, the top layer defines one or more abstractions whose presentations are edited by the user. The process of creating an editable presentation of an abstraction is carried out in multiple stages by the different layers between the top layer and the hardware. Each of these layers renders an abstraction in the layer above into an interactor, which in turn serves as an abstraction for the layer below. 
An interactor consists of a transformation of the information in the abstraction that is closer to its screen presentation plus some additional “syntactic sugar,” which has no representation in the abstraction and thus cannot be reverse transformed back into any aspect of the abstraction.  This term is used in programming languages to tokens in a program that are not stored in the abstract representation of the program, called the syntax tree, created by the compier. For example, in the statement:
If (index == 0) then { index++}
The tokens, if and then, are not kept in the syntax tree. They are entered to make the program more readable, and often to help parse the program. Once the program is parsed, they are discarded. In contrast, the token, index, is stored, as it has semantics associated with it – the compiler must make sure, for example, that its type allows a comparison with 0. Similarly, in a user-interface, syntactic sugar refers to displayed images and text whose contents are un-related  to the semantics of the user-interface.
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The figure above illustrates the idea of abstractons, interactors and syntactic sugar. Suppose the top, data or semantics layer defines the two numbers, 10 and 6.2.  This layer may be implemented using the model-view-architecture or may be a monolithic layer directly interacting with the toolkit. The next, toolkit layer, transforms these two values to a slider and text field widget, respectively, adds a containing scrollable widget around the slider as syntactic sugar, and puts each widget into a separate frame.  Finally the window layer transforms the frames and widgets into windows, and adds a border around each frame window.
Shared Layer
To support collaborative interaction, we must pick some layer we want logically shared among the users. Once this layer is shared, all layers above it are automatically shared since they are abstractions of it. The lower layers, however, can diverge as they may transform (the abstractions in) the shared layer differently. The former layers are referred to as the program component, since they are nearer the semantics of the application, and the latter as the user-interface component, since they are nearer the I/O devices. This is consistent with the viewpoint that the part of the application that is user-dependent is the user interface and the remainder is the semantics or program component. 
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The figure above illustrates this discussion. Assume that the shared layer, S, is the toolkit layer.  Thus, the toolkit and data layer form the program component, and the window and framebuffer layer form the under-interface component. Continuing with the example, if the text field and slider are shared, the underlying data values they represent are also shared. On the other hand, the window system and lower layers are not shared. As a result, the widgets may be displayed in displayed in windows with different borders.
Centralized vs. Replicated
Since the user interface component may diverge, a separate instance of it is created for each user-interface of the application. 
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The program component, on the other hand, which is logically shared, can be physically shared or replicated, as shown in the figures below, which also show the infrastructure components enabling these two architectures.
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In the centralized architecture, the computer executing the program component is called the master and the remaining sites are called slaves. An infrastructure module on the master receives input events from all user interface components and forwards them to the program component. Conversely, the module receives output from the program component and forwards it to all of the computers. An infrastructure module on the slave is responsible for relaying I/O between the local user interface and the master module.
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The replicated (or peer to peer) architecture is more symmetric. Each site executes both the program component and the user interface component. An input event generated by a user-interface component is forwarded by infrastructure modules shown in the figure to all the program components to keep them consistent. Usually input is delivered to the local replica without (immediately) synchronizing with other sites, relying on concurrency control to prevent concurrency problems or merging to do late synchronization. Output from a program component, however, goes directly to the local user-interface component.
Layers vs. Mapping
Based on the discussion above, we can identify two important dimensions of collaboration architectures that are dependent on some stack of user-interface layers. 
· Shared layer: This dimension describes the layer that is shared. It determines how the program is divided into program and user-interface components.
· Mapping: It determines if the shared layer is centralized or replicated. Its name indicates that this layer defines the mapping between instances of user-interface and program components. Replicated and centralized are two important forms of this mapping. 

We can use these dimensions to make more precise and general the classification of a previous figure. It is more precise because we have a clear definition of centralized and replicated architecture. It is more general because the other dimension can be associated with an arbitrary stack of layers. 
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Classification of Existing Systems
Assuming the layered stack, model, toolkit, window, and framebuffer, we can classify and concisely describe a variety of collaborative systems using our architecturally space. We have seen what it means exactly to models and windows. We will look at some of the specifics of sharing framebuffer and toolkits later. 
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The following is a more detailed classification using the two dimensions.
	System
	Layer Shared
	Architecture

	NLS (Engelbart September 1975)
	Screen
	Centralized

	VNC (Li, Stafford-Fraser et al. March 2000 )
	Screen
	Centralized

	XTV(Abdel-Wahab and Feit April 1991)
	X Windows
	Centralized

	VConf /Dialogo(Lantz December 1986)
	V Windows
	Replicated

	Rapport Centralized (Ahuja, Ensor et al. 1990)
	X Windows
	Centralized

	Rapport Replicated (Ahuja, Ensor et al. 1990)
	X Windows
	Replicated

	NetMeeting Application Sharing
	T 120 Screen, Windows
	Centralized

	Webex Application Sharing (Webex)
	Webex Windows
	Centralized

	LiveMeeting Application Sharing(Microsoft)
	PlaceWare Windows
	Centralized

	GroupKit(Roseman and Greenberg 1996)
	TK Toolkit
	Replicated

	Habanero (Chabert, Grossman et al. June 1998)
	Java AWT Toolkit
	Replicated

	JCE (Abdel-Wahab, Kim et al. April 1999)
	Java AWT Toolkit
	Replicated

	Rendezvous(Hill, Brinck et al. June 1994)
	Model
	Centralized

	Suite(Dewan and Choudhary October 1992)
	Model
	Centralized

	Groove(Groove)
	Model
	Replicated

	NetMeeting Whiteboard
	Model
	Replicated

	PlaceWare PPT(Placeware)
	Model
	Centralized

	Webex PPT (Webex)
	Model
	Replicated

	Groove PPT (Groove)
	Model
	Replicated



As shown above, separate versions of Rapport  and VConf were created to support the two architectures. As we will see later, it is possible to create a single implementation that supports both architectures and allows dynamic transitions among them. Some of these frameworks, such as T120, Webex and LiviMeeting allow sharing of heterogeneous windows by supporting an abstract window model that maps to multiple concrete window models. We will discuss later some of the issues that arise in the design of interoperating heterogeneous collaborative systems. In Table 1 we have included not only collaborative infrastructures but also specific applications such as the NetMeeting whiteboard, and LiveMeeting and Groove PowerPoint applications.
The design space helps us compare and contrast these systems. For instance, we see that GoogleDocs and XTV both support centralized architectures but share different layer. It also identifies two important holes in this space – there is no replicated framebuffer or centralized toolkit. Let us look at some of the specifics of these layers to understand if there is a logical reason for these two gaps.
Framebuffer Layer
In modern bitmapped displays, this is the layer that manages the framebuffer. Like window sharing, screen sharing is a popular infrastructure for collaboration. Here, instead of sharing the window client, we share the screen client, which typically is the window system and all of the applications that run on top of it – in essence the complete computer state. Thus, it is not possible, as in a window system, to share the windows of a subset of the applications that run on a computer. This is consistent with the general trend we pointed out earlier of lower level layers providing a coarser granularity of sharing. Screen sharing is the lowest level of sharing possible, and thus provides the coarsest sharing granularity. 

[image: ]                         [image: ]
The figure above shows the API provided by the framebuffer layer. Of all layers, it provides the smallest API. The input events consist only of keyboard and mouse events. They do not include other window events such as expose and window resize events. Like the corresponding input window events, the keyboard and mouse events include the location of the mouse pointer – however, these are screen rather than window-relative coordinates.
So why is there no replicated framebuffer? The following figure shows how such an architecture would be implemented.
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Sharing the complete computer state in the replicated architecture means all computers are in the same state. For example, it implies that all icons are at the same exact (physical or virtual) position on each display.  This implication is required to ensure that the user action on the left computer (opening the Eclipse programming environment) is replicated. Sharing of the computer state can be be ensured only if either:
· all computers are identical and from the point they are bought receive the same sequence of input, which rules out the use  of the computers for activities other than collaboration. 
· or, when a new user joins the conference, the entire computer state  is downloaded from one of the existing conferees, which can take a very long time.
It may be possible to create creative solutions to address these problems. For example, one could create dedicated computers bought solely for the purpose of collaboration with a particular group of users to address the problem with the first alternative. However, to date, there has been no attempt to do so in the commercial or research world. Of all the collaborative architectures in our design space, a replicated framebuffer impose the most restrictive constraints on the software environments of the users.
What about a centralized framebuffer?  The following figure shows how it is implemented. [image: ]
When an application on the master computer updates the display, each slave computer receives pixmap rectangles describing the regions updated – which are essentially pixmap rectangles representing the diffs between the screen contents before and after the operation.  A pixmap rectangle consists of a matrix of pixels describing its contents and (x,y) coordinates describing its location. The following figure shows that when a line is added to the left screen to yield the right screen, what is sent over the network is a rectangle enclosing the line.
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The centralized framebuffer architecture imposes the least restrictive assumptions on user computers – it requires only that the computers have a framebuffer, which modern interactive computers do. The farembuffers need not be of the same size, as typically, a scrollable virtual desktop is created on each slave computer to represent he master desktop. Thus, centralized framebuffers are diametrically opposite to centralized framebuffers in the interoperability supported, and are this, as popular as the latter are unpopular.
Shared Toolkits
This is the last shared layer we need to consider in the model-toolkit-window-framebuffer stack. The figure below gives us an example of toolkit sharing. Here two different window systemsare displaying a common widget structure created by a common abstract toolkit layer. The screens of the two users are implemented on platforms using different implementations of the toolkit – as a result the “look and feel” of the shared widget structure is different. For example, the slider on the left is triangular and the one on the right is rectangular. Moreover, the sizes of the windows are different, as it is widgets in the windows and not the whole windows themselves that are coupled.
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 As we see here, shared toolkits offers more abstract coupling than window systems. Moreover, multiple widgets may be displayed in the same window. As a result, shared toolkits make it possible to share selected widgets in a window. In particular, they make it possible to share a scrolled component without sharing its scrollbar. In the case of a text widget, they can merge concurrent edits. Thus, they offer some of the advantages of model-based without requiring the use of the MVC software architecture.
So why is there no centralized window toolkit?  The reason is subtle. It has to do with the fact that a toolkit, does not typically run in a separate process – it is a library that executes with application code in the same process. 
 [image: ][image: ]
As a result, it is not easy/possible to insert a sharing proxy between the toolkit and application code, leading us to the listener approach we saw earlier in the context of window systems. As we saw earlier, this approach supports the sharing of input.



However, we also saw earlier that an equivalent facility does not exist for intercepting output. In the case of a window system, we are able to use the framebuffer approach go sending screen diffs. However, this approach does not work in the case of the more abstract toolkit layer because of different window systems have different looks and feel.
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As the replicated architecture require requires interception only of input, it is possible to implement it using the listener approach. The centralized architecture is possible but requires more collaboration awareness. It is possible to develop a collaboration proxy for each toolkit component, and require the programmer to use the proxy.
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 For example, for the javax.swing.JTextField, we can develop a proxy, sharedswing. JTextField, which interecepts the input and output. From the point of the view of the (a) application programmers, this means that the imports must be changed, and (b) developers of the toolkit, a large number of proxy classes must be implemented. This is probably the reason for the unpopularity of the centralized approach.
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Common Implementation
Now that we have a better understanding of the architectural design space and the reason for some of the holes in it, let us see how we could automate it.
In our description of how the centralized and replicated architectures worked, we made no assumption about the nature of input and output. In the replicated case, input was broadcast, and in the centralized case, output was broadcast. How input and output are intercepted and delivered to remote components is layer specific. However, the paths taken by them in the centralized and replicated cases are independent of the specifics of input/output.
Thus, it is possible to build a  layer-independent replicated or centralized implementation by separating the tasks of I/O delivery/interception from I/O distribution. We can build a generic distributor in terms of abstract input and output operations taking arbitrary Object arguments:
void input (Object newInput)
void output (Object newOutput)
This abstract I/O protocol can then be mapped to specific I/O protocols for different layers by a layer-dependent translator. The translator module would convert the operations defined by the specific protocol into these two abstract methods. The protocol-independent distributor sends these abstract operations to the other sites, which are responsible for translating them back to the specific operations.
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 The idea of translator-based distribution was first supported by T 120, which defines an abstract protocol for centralized window and screen layer. This protocol is more complex than the simple two-method protocol defined above for performance and other reasons, but implements the basic idea represented by this simple protocol.
The approach, as described above, allows us to build layer-independent implementations of the centralized and replicated architectures. We can carry this idea further by creating a single implementation that supports both the centralized and replicated architecture. One way to develop such an implementation is to develop a module that, depending on its mode, distributes input or output. A more ambitious approach is to create an implementation that distributes both input and output at the same time.
Mapping-based and Hybrid Architecture
This idea leads to the concept of a mapping-based general architecture. Such an architecture  consists of one or more multiple program replicas, each of which serves one or more user-interface components. A mapping function defines which program replica serves a user-interface replica.  In this architecture, input is forwarded to all masters, that is, computers with program components to which user-interface components are mapped. Each master processes the input and sends the corresponding output to all of its slaves
The following figure is an example of such an architecture. 
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The yellow shading shows the mapping. The left and middle user-interface replicas are mapped to the middle program component.  The right user-interface component is mapped to its own program component. When the left user inputs, the event is sent to both master computers, both of which compute the output. The middle master sends the output to left and middle user-interface components, while the right one sends it to only its user-interface component. 
A (pure) centralized architecture is a special case of a general architecture in which all user-interface components are mapped to a central computer, while a replicated architecture is a special case in which each user-interface is mapped to its own program component. An architecture that is not a pure centralized or replicated architecture is an example of a hybrid architecture. By simply changing the mapping we can transform a general architecture to any of these three kinds of architectures. We will refer to the distributor of a general architecture as an adaptive distributor as it can adapt to the mapping.
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As part of his thesis work, Gopeel Chung implemented a layer-independent, translator-based adaptive distributor that can change the mapping dynamically.
Meta Infrastructure
Such an adapter is an example of both a meta-infrastructure. A meta infrastructure is an infrastructure that can be used to create other infrastructure. Recall that an infrastructure is a software system that can be used to create a family of applications. The distinction between the two kinds of systems is illustrated using some of the translators built for Chung’s distributor.
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Some of these translators intercept model events from specific applications such as checkers, making the distributor behave like a regular infrastructure. Other translators intercept events defined by application-independent modules such as X. These make the distributor behave like a meta-infrastructure. Each of the translators, in turn, supports a family of shared applications. For example, the X translator allows sharing of all X applications. 
Evaluation Metrics 
Perhaps the most important use of a design space is an evaluation of each set of alternative decision decisions captured by each of its dimensions. In our case, we must consider the consequences of choosing different layers and mappings.  As before, we will focus on the model, toolkit, window and framebuffer layers; and the centralized and replicated mappings.
Such an evaluation requires us to identify metrics for evaluating collaborative systems. Three broad metrics are:
· Functionality: what is the range of collaboration functions that can be supported by the system?
· Interoperability: to what degree can the computer systems of the users diverge? It can be considered a special function that determines whether the collaboration can happen.
· Programmability: when the system is an infrastructure, how “programmable” is it?
· Performance: how well does the system “perform”?
Chapter 1 defines the functions of interest. The quotes around the two terms above indicate that they need to be defined. We will do so incrementally, when we consider them.
For each metric, we will consider its relationship with the mapping and layer choices. The performance of a system can be a function of both the layer and mapping. 

Functionality
Functionality vs. Layer
As we have seen before, the higher the layer, the more abstract the level of coupling, as a higher layer defines a more abstract representation of displayed objects.  Moreover, the higher the layer, the more the number of components in the user-interface that can be shared, as syntactic sugar defined  by a layer has no meaning in the higher layers. In addition, the higher the layer, the more fine-grained the sharing, concurrency/access control, and merging that is possible. The reason for this is that an atomic abstraction cannot be (meaningfully) decomposed into multiple interactors, while multiple abstract abstractions can be coalesced into a single atomic interactor. For example, the atomic number, 10, cannot be divided into multiple, meaningful interactors. It can be divided into multiple pixels, but these are not meaningful – it does not make sense, for example, to lock one pixel of it but not another. On the other hand, the numbers 10 and 6.2 can be displayed in a single atomic window.
The following figure summarizes the functionality-layer dependency.
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Functionality vs. Mapping
Ideally, the mapping should make no difference to the functionality supported by the shared layer, as it does not change the abstraction shared. However, as we saw in chapter 2, certain programs cannot be correctly replicated. On the other hand, replicated architectures allow collaborators to make progress in the disconnected state, as all components required to process their input reside on the local computer.

Interoperability
Interoperability vs. Mapping
As we saw before, centralized and framebuffer support most and least interoperability. ThereforeIn general, a centralized architecture requires all computers to have only that layer. The layers above it must reside only on the master computer. The layers below it can diverge on the various computers. On the other hand, the replicated architecture requires each computer to have not only the shared layer but also all layers above it. Thus, the replicated architecture supports less interoperability than the centralized architecture.
Interoperability vs. Layers
How likely is it that a computer will have a layer? To answer this question, we must make the following observations about the state of the art.
· Every interactive system today has a standard framebuffer, parameterized by its width and height in pixels, allowing each framebuffer to be mapped to another using a scrolled window.
· Window systems tend to be tailored to operating systems, and there are few operating systems.
· Each operating system supports a large number of languages, and each language has one or more toolkits. For example, there are four Java toolkits: AWT, Swing, SWT, and GWT.
Thus, the likelihood of finding a common layer is inversely proportional to its height, as long we consider toolkit and lower layers.
Applications that do not tend to use MVC tend to have a monolithic semantics or data layer that is highly toolkit dependent, considering of listeners of toolkit events. Thus, it has the same interoperability as the toolkit layer.
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On the other hand, in applications that do use MVC, he toolkit dependent software can be isolated in the view and controller, allowing the model layer to be shared by any computer that implements the view and controller protocol defined by the mode. This is the reason, for example, that the GoogleDocs model can be shared by any computer that has a browser that includes the toolkit and toolkit-dependent view and controller. The following figure shows the two cases. In this case, we have bundled the view and controller into the toolkit layer.
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Programmability 
General Programmability and Flexibility vs. Effort
This metric refers to refers to infrastructures that automate some function of an application. It can be decomposed into two sub-metrics:
· Flexibility: what is the degree to which programmers and/or users have control over how the function is performed.
· Effort: how much effort is required to indicate to the infrastructure how the function is performed. 
In general, the higher the flexibility, the higher the effort, though the relationship may not be linear, as suggested in the figure below.
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Consider some examples:
· C vs. Java Garbage Collection: Java completely finds and deletes data structures no longer needed, thereby requiring no programming effort. However, developers have no control over the times garbage collection is performed and how much of it is collected each time, which can lead to unpredictable performance. In C, programmers manually implement all aspects garbage collection, and thus have full control.
· Prolog vs. Java: In (pure) Prolog, developers give some rules and indicate “what” they want computed. The language uses these rules to determine “how” to do the computation. For instance, programmers can define rules that say that if a A is the son or daughter of person B, and B is the son or daughter of C, then A is a grandchild of C. Given these abstract rules, the language will automatically find all grandchildren of a person, without requiring us to write loops or recursive routines to perform this search. On the other hand, the programmer control over how the search is performed, which can lead to performance problems. In contrast, in Java other imperative languages, developers have full control over the control flow, but do now have such a degree of automation.
· Databases vs. File System: Similarly, databases automate organization of (persistent) data and queries to search for these data, while file systems support manual  customized data organization and search.
· Toolkit vs. ObjectEditor: ObjectEditor automatically generates a predefined view and controller, while a toolkit allows manual implementation of customized views and controllers.
· UI Layers; In general, the higher the user-interface layer, the less the control developers have on how data is mapped to a screen object and the less the effort to define this mapping.
Collaboration Flexibility vs. Awareness and Default Collaboration
As we saw before, a collaborative application must perform both single-user and collaboration functions. When evaluating the programmability of collaboration infrastructures, we will focus only on the automation of collaboration functions. We will evaluate the (a) flexibility of these infrastructures by determining what restrictions they impose on how these functions are performed, and the (b) effort required by these infrastructures by determining how much collaboration awareness there is in programmer-defined code.
Based on the fundamental relationship between effort and flexibility, we expect awareness to increase with flexibility.
[image: ]

We wish to determine to determine how the shared layer and mapping relate to flexibility and awareness.  Because of the relationship between flexibility and awareness, we cannot evaluate one of these metrics without considering the other. When considering one of these evaluation parameters, we will assume the one is fixed. For example, we will determine how much flexibility is provided by different layers and mappings for the same awareness, and vice versa. 
In particular, we will determine maximum flexibility that can be provided by different architectures, assuming there is no limit on the amount of awareness that is acceptable. Moreover, we will determine how much awareness is required for no flexibility, that is, default collaboration. It is possible to associate each layer with default collaboration semantics with the following properties:
· Shared objects: All objects (of some type) are shared. For example, in the window layer, all windows are shared, and in the toolkit layer, all widgets other than scrollbars are shared.
· Synchronization: Changes to a shared object are broadcast as soon as they are received by the layer and/or when the user executes an explicit command to trigger the transmission.
· Granularity: The granularity of merging and concurrency and access control is the finest granularity understood by the layer. For example, in a hierarchy of windows, the granularity is the leaf-level windows.
Ideally, no awareness should be required to achieve default sharing, but some mappings and layers force some awareness even for zero flexibility.
Flexibility vs. Layers 
Programmers may wish to control several aspects of collaboration functions. Many of these aspects are independent of the architecture. As we saw before, one important aspect that is the granularity of the data objects on which the various collaboration functions are performed.  Programmers and users may wish to control this granularity.  For example, a user may wish to give another user access to a complete document or a particular section of it.  Naturally, the granularity should be semantically meaningful – it does not make sense to control access to a pixel in a framebuffer.
At each layer, except the framebuffer, a tree of (semantically meaningful) objects is created. For example, the toolkit and window layers create a widget and window trees, respectively. As we saw before, the higher the layer, the finer the granularity of objects in the tree. This means a higher layer has more levels in its tree, and thus gives more control over the granularity. For example, the data layer can allow a user to indicate whether a single lock should be associated with a drawing or separate locks should be created for individual shapes. However, a toolkit and window layer that displays the document in single widget/window can only lock the entire drawing.
[image: ]

These limits on the flexibility are independent of the amount of the awareness required to exercise this flexibility.
Flexibility vs. Mapping
Assuming no limits on the awareness, the amount of flexibility is independent of the mapping except, as we saw before, replicated architectures support disconnected interaction.
However, a replicated architecture makes it easier to create private objects in the program component. The reason is that when the program component is replicated, the system automatically creates separate instances of each object in the program component. In a centralized system, on the other hand, the program component would have to manually replicate unshared objects, and thus would have to be notified each time a new user joins or leaves the session. In both cases, there would be awareness of which objects are private, which we can assume is the same.
To illustrate, a replicated IM tool automatically replicates the private message field, while a centralized IM would have to create such a field for each user.
Awareness vs. Layers
As the amount of awareness depends on the flexibility desired, we will consider here how much awareness is requires for default flexibility. As we have seen, it is possible to create shared framebuffer and window systems that can share existing collaboration-unaware applications. With shared toolkits, we saw that some awareness was requires to expose the top-level widget to the infrastructure. While this awareness is very small, it does preclude the use of existing single-user applications. 
Consider now the data layer. It is not possibly to centralize a collaboration (and distribution) unaware data layer, as it expects to interact with a local toolkit.  As we saw in the last chapter, if the data layer is implemented using MVC, implicit  associate binding and replicated logical structures defining using standard programming patterns allow a collaboration-unaware data layer to be replicated. On the other hand, explicit binding, broadcast methods, and multicast methods require some collaboration awareness.

[image: ]

Awareness vs. Mapping
Again, consider how much awareness is required to support default sharing. Replication sometimes requires some awareness to overcome its correctness problems. For example, if the program component sends mail, then we might add awareness to it to ensure that only one of the replicas of it performs this operation.
Architecture vs. Performance
In this chapter, we have considered the functionality, interoperability, and programmability metrics. The subsequent chapters address performance.
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