Distributed Collaboration
Prasun Dewan[footnoteRef:1] [1: Copyright Prasun Dewan, 2009.
]

7. Network Traffic and I/O Compression
One of the important aspects of the evaluation of a distributed system is the amount of data it transmits on the network per unit time, which we refer to as the bandwidth usage or network traffic of the system. The amount of data transmitted is different but related to the round trip time of the data, which is the time required for information to reach from its source to its destination. The former corresponds to the amount of traffic and the latter to travel time– the more the traffic, the more the chances of congestion, and hence the more the travel time. However, the travel time depends not only on congestion but also the distance travelled and the speed of the vehicle. Similarly, the round trip time depends on the amount of network traffic, distance, and network speed. We will consider the network traffic of different architectures in this chapter, leaving discussion of roundtrip times for later chapters.
As in the last chapter, we will look at the impact on network traffic of both the shared layer and mapping. In addition, we will consider layer and mapping dependent smart techniques for reducing bandwidth usage.
Network Traffic vs. Mapping
In a replicated system, input is broadcast to all sites, while in a centralized system, output is broadcast to all sites, and input is relayed from each slave computer to the master.
[image:]
In general, the size of an input command will be small corresponding to the output it generates because input is produced by humans while output is generated by the much faster computers. For several everyday applications such as text and graphic editors, they are about the same size. However, there are also some applications in which a large amount of output can be produced for a small amount of input. For example, a single command to move to the next PPT slide can generate a large amount of output.
[image:] [image:]
Thus, in general, replication will consume significantly less network banwidth than centralization.
Network Traffic vs. Layer
As we saw earlier, the size of an input command is small. Moreover, it does no change much as it goes up the layers. For instance, a mouse movement at the window layer may get translated to a drag slider command at the toolkit layer and the invocation of a setter method in the data layer. In all cases, about the same amount of information is transmitted up the layers. On the other hand, the number of coupled input events is higher in lower layers. For instance, in the window layer, window movements might be coupled and thus cause network traffic, while in the higher layers they would not. Thus, lower layers increase the level of coupling and hence the network traffic.
In a centralized system, there is stronger relationship between the shared layer and network traffic. The size of output produced by a layer is proportional to the (memory) size of the interactors created by the layer. In general, the higher the layer, the more abstract, and hence compact, the representation, and the less the syntactic sugar. Sometimes a low-fidelity small visualization can be created for a large data set. However, when an interactor does not omit information in its abstraction, its size will tend to be larger.
For example, in our layer example, a toolkit expands the binary values of 10 and 6.2 at the data layer to the much larger text and slider objects, and adds a scrollbar object. Similarly, the framebuffer expands a single color attribute of a window border to coloring of each border pixel. Thus, in a centralized architecture, lower layers create can create substantially more network traffic.

[image:]
Trading off Network Traffic for Interoperability
The relationship between shared layer and network traffic has an important implication for designers of centralized shared window systems. As we saw before, such a window system can send window operations or pixel differences on the network. Pixel sharing increases interoperability but also increases network traffic. We can argue that interoperability is more important than network traffic because without it, some collaborations among users of different window systems cannot occur. Thus, the lesson seems to be that the window layer should always send pixels, and take the performance penalty. On the other hand, assuming collaborators will typically use the same window system, this conclusion implies that the common case is penalized to accommodate the uncommon one.
Fortunately, it is possible to follow the principle of making the common efficient and the uncommon one possible by providing hybrid sharing with the interoperability but not bandwidth usage of pixel sharing.
[image:]
The basic idea is that each time a new slave computer joins the collaboration, the master computer checks if the two systems share a common window system. If yes, then it sends it window updates; otherwise it sends it pixels. This protocol is part of the T 120 specification.
[image:]
Compression
The argument that the size of the remote output produced by a layer is proportional to the size of the interactors defined by the layer assumes no compression of the transmitted data. We will consider here schemes for compressing network traffic. We will see that some of these schemes can make a lower-
Screen Diffs
As we saw in the discussion of shared framebuffers, screen differences are communicated to remote computers.
[image:]
Transmission of screen differences can be more efficient than transmissions of window operations when obscured windows change. Consider the example below. Here the drawing of a centralized architecture is replaced with the drawing of the replicated architecture in the obscured window. Assume that the application draws the entire window – not just the exposed ones. If we were to broadcast all of the operations invoked by it, we would communicate far more data than if we were to send the screen differences, which are highlighted using pink rectangles in the right figure.
[image:]
For this reason, the T120 protocol suggest that if obscured regions change dramatically, a shared window system should send pixel differences rather than window operations.
Repeated Pixels in a Message
The example above shows another opportunity for compression. We see that white bands in the upper right and lower left screen differences. The T 120 protocol suggests that for each row of a pixel rectangle (pixmap), diffs with respect to previous rows should be sent. Thus, for a blue band, we can send the first row in the band, and for subsequent rows in the rectangle, simply indicate that the first row is repeated.
[image:]
This approach addresses the problem we saw before of a single high-level attribute such as the color of a window border being “unparsed” or transformed into multiple pixels in the lower layer. It essentially analyses or “parses” the pixels to deduce the higher-level attributes of the transformations, and sends these attributes instead of the actual pixels.
T 120 and VNC have a more direct way of communicating rectangles colored using a particular color. When a subrectangle in the screen diffs consists of a single color, they send the color together with a description of the rectangle boundary. Several drawing applications specify a default background color for a window and then use drawing operations to overwrite this color in parts of the window. This optimization would allow the undrawn portions of the rectangle to be sent efficiently.
[image:]

Inter-Message Caching Pixmaps and Regions
The scheme above avoids repeated pixels being sent in a particular update. It is possible for different screen updates to share pixels. This often happens during scrolling of a window, as region sent earlier moves up or down the framebuffer. To avoid resending pixels, the sender and receiver can cache pixmaps. A pixmap is an off screen window. Like a window, it is a stored rectangular region of a pixel matrix. However, unlike a window, the pixel matrix is not part of the framebuffer, that is, is not actually displayed on the screen. It is essentially a pixrect stored in memory.
When some portion of a previously communicated pixrect is expected or found to be repeated, the sender can create pixmap for it, and ask the receiver to do the same, assigning a common id to it. Next time the pixrect is to be sent, the sender can send its origin instead of its contents.
This approach is illustrated in the PPT scrolling example below. Suppose the master computer moves to the slide shown below for the first time. It can store it in a pixmap, and send the id, contents, and coordinates of the pixmap to the receiver. In response, the slave computer creates a corresponding pixmap and associates it with the same id.
[image:]

Now suppose the master moves to the next slide for the first time. The master and slave repeat the process described above, creating a new pixmap.[image:]
If the master scrolls back to the previous slide, it can simply send the id and coordinates of the first pixmap. The slave responds by displaying drawing the stored pixmap at the specified coordinates on its framebuffer.

[image:]
Pixmap regions instead of entire pixmaps may be reused in different updates. Therefore, a message might qualify a pixel id with a sub-rectangular region to tell the slave to draw only that region.
This is illustrated below in a variation of the example above. Suppose the two cosecuitive PPT slides fit in one pixmap. When the master moves to the first slide, it could store both slides in a single pixmap, and send the coordinates and contents of the pixmap and the rectangle defining the first slide.
[image:]
When the user scrolls down to the next slide, the master sends only the coordinates of the next slide.
[image:]
Repeated Operation Operands
We have seen above that it is possible to compress screen updates? What about window operations? It makes sense to compress them if they have a significant size and contain repeated values.
If you have ever drawn something in a window, you have probably used used the concept of a graphics context. This is an object that specifies various properties such as the Color of the drawing operation. As the Eclipse display shows, a graphics context can have a large number of attributes.
	
[image:]
Typically, the same graphics context is used for all operations in a window. Therefore, it makes sense to cache them like pixmaps. This is illustrated below. Consider the first drawing operation in a window using a particular graphics context. The master can cache the graphics context and send its id together with its contents in the message describing the operation. The slave responds by also caching the graphics context and associating it with the same id.
[image:]
Next, when the master reuses the graphics context, the master sends only its id. The slave used the cached value to perform the operation.

[image:]
This approach can be extended to support any operation at any layer that repeats large-sized operands.

Input coalescing
So far, we have focused only on the compression of output, because the size of an input action is small. However, the frequency of these actions can be high, especially when a user is rapidly moving the pointing device. T 120 supports the coalescing of multiple updates to the pointing device position, made by the user or the application, into a single update. This optimization can decrease the fidelity of interaction as the remote users may not see each incremental change. On the other hand, a user can generate pointer updates faster than the maximum rate remote users can see them – 30 updates per second. A big advantage of this optimization is that in a high latency environment, it reduces jitter i as fewer events are communicated.
Compression at the data layer
We have seen above several compression schemes at the framebuffer and window layers. Does it make sense to compress at higher layers?
The schemes for compressing pixels apply not only to the framebuffer layer but also to any layer that sends images. In particular, they apply to images communicated by the Second Life data layer. Second Life, in fact, impelements the pixmap caching scheme.
The pointer coalescing optimization applies to the data layer when a graphics shape is dragged or resized. In fact, Whiteboards in LiveMeeting, Webex, and NetMeeting implement a data sharing policy that is consistent with pointer coalescing – instead of sending incremental movements and stretching of a graphical object, they send one update at the end of the movement or resize operation.
In addition, a data layer can use the following compressions for virtual reality applications.
· Dead reckoning: If an object is moving with a particular velocity in a particular direction, its velocity rather than its path can be sent. This technique is called dead reckoning.
· Awareness areas: Awareness information about users can be sent to only those who can see it. The sending site can use the field of view of others to determine this information, which must be communicated periodically. In addition, it is possible to use the idea of aura and nimbus to control this view. Aura and numbus regions around user’s avatars. User A is aware (of some aspect) of user B only if A’s nimbus (focus) intersects B’s aura. These two regions can be defined by users to control access. In the figure below, user 2 is aware of user 1, but the reverse is not true.
 [image:] [image:]
Caching substrings
Given that both mappings and all shared layers can generate high traffic, it is useful to develop a layer-independent scheme for optimizing input and output messages. When these are textual messages, a layer-independent caching scheme can be used to cache repeated substrings in the same or different messages. This approach was first presented in Gutwin’s CSCW’06 talk and most of the figures and examples given here are form that talk.
This scheme is motivated by the example of shared dragging of an object.
[image:]
As mentioned before, most commercial systems do not communicate drag operations over the network for various reasons including high network traffic, jitter, and/or latency. The following figure shows that network traffic can be reduced by recognizing common substrings in textual network messages representing the moves.[image:]
The general scheme is summarized in the figure below. Each site caches common substrings. A network message consists of a sequence of substring ids and actual characters prefixed with a special escape character.
[image:]
In the example above, the escape character is e. When a computer receives such a message, it replaces the ids with the associated substrings before interpreting the message. Thus, in this example, the message ids 1 and 2 are replaces by substring 1 and 2, respectively. As with the other caching schemes, the computers communicate not only the compressed messages but also the caches.
The following detailed example illustrate how this schemes works. In this example, the template indicates a previously sent message, the dictionary is a cache associating substrings of the template with ids, and new message is the message being processed, and output is the compression of this message. The following figure shows the first step of the compression.
[image:]
The system finds the longest prefix in the unprocessed message that occurs as a substring in the template.
[image:]
It associates this value with an id (1), and outputs this id instead of the substring.
It then finds two other prefixes that occurs in the template, and outputs two new ids.
[image:]
Finally, it finds a character that does not occur in the template.[image:]
At this point, it escapes the character, and moves to the next character in the message. The final result, when the complete message has been processed, is shown below.

[image:]
The next message is compressed in a similar fashion, using the same template.
[image:]
When the system finds a message that is substantially different from all stored templates, it does no compression for it, and uses it as template for future messages.
[image:]

In this and previous examples, we assumed each input/output message is sent as soon as it is produced. Are there cases when in which the sender must log a sequence of these messages and send the while sequence together?
Storing, Transmitting, and Replaying Logs
There are several such situations. If the network jitter is high, replaying incremental movements and resized of graphical objects may bother the receiving user more than seeing the shape move or resize to its final position and size. When users are disconnected or working asynchronously, synchronization may require replaying of a log. The most common case of logging is a latecomer joining an existing session.
The figure below shows an example of a log transmission.
[image:]
Here the user sends the two incremental moves together in one message. As a result, the receiving user sees the object move abruptly to its new position. If we timestamp each message, we could, in fact, allow the user to even see the incremental positions, but not synchronously.
Depending on the coupling degree, the space required to store these logs, the message required to send them, and the time required to replay them can get large. Therefore, it is attractive to compress them.
The example above illustrates how this may be done. These messages set the X and Y coordinates attributes of a shape. If the logger understood these semantics, it could send only the latest values of these coordinates. As a result, the first message would not have to be stored at the sending site, sent over the network, or replayed at the receiving site.
We can always create an application-specific logger to do such compression. However, ideally, we want the sharing infrastructure to perform this task for us.
Assuming the sharing infrastructure understand the details of the layer it is sharing, it can easily do this compression. Recall that we introduced in the last chapter the idea of a layer-independent distributor that is coupled with a layer-specific module responsible for translating between the abstract I/O protocol of the distributor and the specific I/O protocol provided by the layer. In this case, the translator could convert commands that change attributes of interactors to standard set commands understood by the distributor, which is now also a logger.
Thus, the first move command of the previous example would get converted into the following log.
[image:]
The next move command would again get converted into two sets. The logger deletes the previous ones and it realizes that they are superseded.
[image:]
As a result, when the log is transmitted, only the two previous commands are not sent.
We can extend this idea by modeling table puts, and sequence inserts and deletes, to discard superseded invocations of these operations.
Of course, not all commands are changes of logical components of interactors. An example is a command to draw a new square. Moreover, we may wish to tiemestamp and replay some commands. Thus the logger can also support non-set generic commands, which are not compressed.
[image:]
Cost of Compression
All compression optimizations increase the complexity and number of the operations communicated between the host and slave sites, thereby potentially conflicting with interoperability. Thus, they can be supported only if all participating sites understand them. Moreover, they increase the computation load on the communicating sites, which must compress and decompress the updated.
image3.wmf

image4.emf
Centralized

Replicated

Shared Layer

Framebuffer

Window

Toolkit

Model

Shared VNC

XTV (X), Vconf,

Rapport,

LiveMeeting,

Webex, NetMeeting

App Sharing

Vconf, Rapport

Habanero, JCE

(AWT), GroupKit

Google Docs, Suite,

Rendezvous,

Weasel

Sync, Groove,

NetMeeting,

LiveMeeting,

WebexWhiteboards,

Presenters

Mapping between Program and UI Component

Larger Size

image5.emf
Interoperability

Bandwidth usage

Window

operation

sharing

Pixel

sharing

Hybrid

sharing

image6.emf

image7.emf
OS + Apps

PC PC

right

button ^,

x, y

draw pixels

draw pixels update pixrect

1

, pixrect

n

Distributed Sharing Infrastructure

Framebuffer Framebuffer

image8.emf

image9.emf
Repeated white

pixel

200, 0, 5, 3

w, w, w, w, w

,,

,,

image10.emf
White rectangle

200, 0, 5, 3, w

image11.emf
Pixmap1, (0, 0)

Pixmap1

Pixmap1

image12.emf
Pixmap1

Pixmap1 Pixmap2

Pixmap2, 0, 0

Pixmap2

image13.emf
Pixmap1

Pixmap1 Pixmap2

Pixmap2

Pixmap1, (0, 0)

image14.emf
Pixmap1 (0, 0, 300, 200)

Pixmap1

Pixmap1

image15.emf
Pixmap1 (300, 200, 300, 200)

Pixmap1

Pixmap1

image16.emf
draw (g, w, 10, 20, ‘a’)

Specifies font, other

drawing attributes

a

a

image17.emf
draw (gid, g, w, 10, 20, ‘a’)

a

a

gid

gid

gid

image18.emf
draw (gid, w, 10, 25, ‘b’)

ab

ab

gid

gid

image19.emf
User 1

User 2

Aura

Nimbus

image20.emf
User 1

User 2

Aura

Nimbus

image21.emf

image22.emf
(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 153) (y 1035))

(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 155) (y 1036))

(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 158) (y 1037))

(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 159) (y 1039))

(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 160) (y 1041))

(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 162) (y 1044))

(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 165) (y 1045))

(moveObject (senderID 168.142.1.11:5051) (objectID 153) (x 166) (y 1047))

image23.emf
1

Substring 1

2

Substring 2

1

Substring 1

2

Substring 2

2

Substring 2

1 2 e3 2 1

Diff:

Escaped

literal, ‘3’

image24.emf
(moveObject (objectID 19) (x 153) (y 1035)) Template:

Dictionary:

(moveObject (objectID 19) (x 155) (y 1037)) New message:

image25.emf
(moveObject (objectID 19) (x 153) (y 1035)) Template:

Dictionary:

1 (moveObject (objectID 19) (x 15

5) (y 1037)) New message:

1 Output:

image26.emf
(moveObject (objectID 19) (x 153) (y 1035)) Template:

Dictionary:

1 (moveObject (objectID 19) (x 15

2 5)

3 (y 103

7)) New message:

1 2 3 Output:

image27.emf
(moveObject (objectID 19) (x 153) (y 1035)) Template:

Dictionary:

1 (moveObject (objectID 19) (x 15

2 5)

3 (y 103

7)) New message:

1 2 3 Output:

image28.emf
(moveObject (objectID 19) (x 153) (y 1035)) Template:

Dictionary:

1 (moveObject (objectID 19) (x 15

2 5)

3 (y 103

4))

New message:

1 2 3 e7 4 Output:

image29.emf
(moveObject (objectID 19) (x 153) (y 1035)) Template:

Dictionary:

1 (moveObject (objectID 19) (x 15

2 5)

3 (y 103

4))

(moveObject (objectID 19) (x 156) (y 1038)) New message:

1 2 3 e8 4 Output:

image30.emf
(moveObject (objectID 19) (x 153) (y 1035)) Template:

Dictionary:

1 (moveObject (objectID 19) (x 15

2 5)

3 (y 103

4))

(chat (user 3) (“hello everybody”)) New message:

image31.emf
moveObject(objectID19) (x 25) (y 15))

moveObject(objectID19) (x 27) (y 15))

image32.emf
set (objectID19, “x”, 25)

set (objectID19, “y”, 15)

image33.emf
set (objectID19, “x”, 27)

set (objectID19, “y”, 17)

image34.emf
command (“moveObject(objectID19) (x 25) (y 15))”)

command(“moveObject(“objectID19) (x 27) (y 17))”)

command(“createSquare(objectID21) (x

50) (y 15) (h 10) (w 5))”)

image1.wmf
Input

Output

Output

broadcast

Input

broadcast

image2.emf
Next slide

