
Distributed Collaboration - 

Assignment 1: 

Multi-View 1-User IM 
Date Assigned: Wed Aug 20, 2014 

1-View Target Date: Aug 27, 2014 

Multi-View Submission Date: Sep 3, 2014(11:59 pm) 

Objectives: 

 Understand  the use of observer pattern in user -interface toolkits 

 Understand separation of UI and computation code 

 Understand threads and synchronization (extra credit) 
 

In this assignment you will implement the 1-User version of the IM/Editor project.  The 

assignment is broken into two parts to allow you to incrementally build it. To make sure you do 

not procrastinate – there are two completion dates.  The first one is a target date to help you 

pace yourself. The other one is the actual submission date. 

The assignment involves the use of the Java Swing/AWT toolkit.   Use the web to find tutorials 

on how to use RMI Swing and AWT – most books on introductory programming have sections on 

the toolkit. I have listed below some keywords to use in your searches. Of course, use Piazza for 

clarifications and other assignment discussion. 

All assignments will most probably be changed after they are posted to clarify them or change 

constraints, and features. The changes will be highlighted using track changes, 

Single View GUI 
Implement a “single-user IM tool,” along the lines shown in the first demo.  You do not and 

should not slavishly follow the layout and user-interface shown in the demo.  However, there 

are certain constraints. 

1. The data or model displayed should contain the following (and possibly additional) 

components:  

a. an editable single-line topic text string. The string should be modelled as a list of 

characters rather than an atomic string. The reason is that we want to track the 

individual inserts and deletes into it, so that we can these incremental 

operations to other users rather than the whole string, which in turn allows 



users to concurrently edit different portions of the string as you see in the 

operation transformation demos. 

b. an editable single-line unaware-message text string. 

c. an editable single-line aware-message text string (extra credit) 

d. a non-editable  multi-line string history string storing in each element a separate 

linesmessage line the messages entered using the message text stringsa 

message entered by the user. The message liness should be stored in the order 

in which they are entered. 

e. an uneditable status object (enum/String/int ) showing whether the user has 

entered but not committed an aware message, is currently entering such a 

message, or has not entered an uncommitted message. The user is currently 

entering a message if the time that has elapsed since the last character insertion 

is less than some threshold time (I used 3 seconds). This status object perhaps 

makes little sense in the single-user case, as users know their status. It is 

intended to be transmitted to other users in the next assignment. 

2. All of the data should be displayed in a single window or frame and the frame should be 

a Swing JFrame (and not an AWT Frame) object. The reason is that it is not possible/easy 

to draw a telepointer in an AWT classes such as Frame. 

3. The unaware message should be displayed in an AWT TextField object (rather than a 

Swing JTextField) object. The reason is that it is not possible/easy to send JTextField text 

cursor positions correctly when you implement the shared window system, as you saw 

in the demo. 

4. The topic and aware message should be displayed in a Swing JTextField object (rather 

than an AWT TextField) object. The reason is that it is not possible/easy to get 

information about character-level changes to a text field.  

5. The status object can be displayed in any widget of your choice that is not editable by 

the user. In my demo I simply used a JTextField widget. 

To implement this part of the assignment, you need to know about the widgets mentioned 

above and the associated listeners (ActionListener and DocumentListener). In addition, to 

implement the aware message, you need to know about threads, and the wait(time) and notify() 

methods. ( Instead of wait() and notify()_ you could use sleep() and thread interrupt, which is 

not as elegant as interrupt throws an exception.) 

One issue with using DocumentListener is that such a listener receives notifications both when 

the program changes the textfield and the user does so. Thus the listener does not know if it 

should change the model or not. One easy way to make this determination is to check if the 

textfield text is the same as the model text or of the same length – which would indicate that 

the change was made by the program and not the user.   A related issue is that if you invoke the 

setText() method on the textfield, several insert/delete document events will be fired, during 

which the model text is not consistent with the textfield and yet you do not want to change the 

model text. To prevent this problem, you can set a boolean variable before setText() to indicate 



you are changing the text field and unset it after setText(). Your listener should not set the 

model if the Boolean is set. These are not elegant solutions and show the need for a better API 

from Swing. 

You can define a single Bean model (with properties of different types) for the various 

components described above. Ideally, the history and topic lists should use a common generic 

list class. The one provided in the ColabTeaching project should suffice as it is generic.  

Multi-View UI 
To ensure that you separate the user-interface and model code (important to make the 

application multi-user later) add a console view to the application. The console view should 

allow the user to: 

1. enter a console line into the common message history displayed by the two UIs, 

2.  view the history of messages by invoking the history command 

3.  and quit the application by entering the quit command. 

The console view is a slight extension of the one shown in demo 1.This UI is implemented 

standalone in the class examples – your job will be to stitch it to the GUI implemented in the 

previous art.  Ideally, you should simply add the code shown in class to your project though you 

are free to change it. However, to aid grading, the console UI (prompts, commands, history 

output) should be exactly the same as shown below. The green lines are user input, the others 

are output. This will allow automatic grading of the assignment. You are free to add other 

commands to the user interface as the automatic grader will look for invariants among the 

output rather than the exact matches with an ideal output. 

 



 

As we see above, the console view does not show the topic or the status messages, though you 

are free to extend it to display these data. 

All of the data components mentioned in the first part will be implemented as Bean (readonly or 

editable) properties using getters and setters (for editable properties).  The setters will fire 

property events observed by the GUI interactor. In addition, the history object will fire element-

addition events observed by interactors for both UIs. If you use my history object, then element-

addition events are fired for you. 

To implement this part of the assignment you will may need to understand 

java.beans.PropertyChangeSupport, java.beans.PropertyChangeListener, and util.models. 

PropertyListenerRegistrar (optional and available from the util code on  github and oeall22.jar) 

Tracing 
To provide better documentation and also support automatic grading, be sure to use the three 

Trace objects mentioned in class: ListEditInput,  ListEditNotified, and ListEditObserved.  

Extra Credit Demo 
The extra credit requires you to support three states. Please each transition possible between 

each pair of states. Thus, show the transition from typing to has entered and has entered to 

typing. Similarly show the transition from no action to typing.  



 

Submission 
By the submission date, submit a link to a YouTube video (with an audio narration) showing your 

1-user IM tool in action and also submit your code to Sakai. Please post the link as a private 

message in Piazza rather than an email (which is hard to keep track of) or a Sakai submission 

(the overhead of logging in to Sakai is high).  Use the tag hw1videolink. If you are worried about 

privacy issues, free to use the other means, and post a Piazza message informing me you have 

done so. 


