
Distributed Collaboration -

Assignment 4:

Distributed Locking with Awareness
Date Assigned: Monday October 20, 2014

Submission Date: Monday Oct 27, 2014(11:55 pm)

Objectives:

 Understand implementation centralized caching-based model

 Understand cache coherence problems

 Understand vetoeable-vetoer design pattern

 Understand implicit and explicit locking/unlocking

 Understand lock awareness

You will extend your implementation of a replicated window system to support a single lock that

can be requested explicitly or implicitly. For extra credit you can support implicit tickle and

preemptive unlocking, and you can compose your lock implementation not only with the

replicated window system of assignment 3 but also the replicated model system of assignment

2.

You will need to pull the latest changes from ColabTeaching for this project to get the

appropriate traceables. Before each assignment, be sure to pull any changes that have been

made.

All assignments will most probably be changed after they are posted to clarify them or change

constraints, and features. The changes will be highlighted using track changes.

Locks
Implement a single distributed lock using by supporting cache-based sharing of a centralized

lock holder. The lock object provides the grant and release lock operations. Each replica will

have a cache of this lock. It will provide a locking user-interface to request and release the lock,

providing buttons or menu items for invoking them. The locking user-interface will also show the

cached value of the lock holder, showing some special text or nothing if the lock if free. In

addition it can show a transcript of lock requests and grants.

In this implementation you can assume that one of the session members holds the master lock

copy and the name of this member (e.g. Alice) is known at program writing time.

Shared Window Vetoer and Implicit Locking
Make your replicated lock cache a vetoer of the replicated event queue object of assignment,

thereby allowing serial access to the shared windows displayed by an application. Make sure

that the locking window is not shared using the window filtering feature implemented in

assignment 2.

Support the implicit locking mode wherein a mouse or key event triggers a lock request. Do not

send a request to the master if an implicit request is pending . A request is pending if no

message has been received from the master since the request was sent.

Add an option to the locking user-interface to switch between the implicit and explicit locking

mode.

Implicit Unlocking (extra credit)
Implement preemptive and/or tickle locks and/or their combination, as discussed in class.

Shared Model Vetoer and Implicit Locking (Extra Credit)
Make your replicated model of assignment 2 a vetoeable that talks to the lock cache

implemented above, thereby supporting locking semantics in a replicated model system.

Tracing
You should now fire all the tracable events shown in class. As always the events that trigger

message sends should be fired before the multicast calls. The String argument of the newCase

method in these events take the name of the user who makes a requestor is granted a request.

Post to Piazza if there is confusion about it.

Make sure the tracing in on in your clients for the events you fire. To do so, you should execute

the following code before you display your user interface:

Tracer.showInfo(true);

LockTracerSetter.traceLock();

The setLockPrintStatus() method in LockTracerSetter enumerates all the events you should
trace, which are hopefully consistent with the PPT.

Main Class and Tags
Follow the tags specification for assignment 2 (extra credit) and 3. Add the tag FunctionTags.

CONCURRENCY_CONTROLLED to each main class that supports locking and the IM model if you

decide to make it lockable. Add the tag FunctionTags.LOCK_CONTROLS to the master and slave

lock classes you define.

Submission
By the submission date, submit a link to a video (with an audio narration) showing your shared

lockable window system in action, and if you are doing extra credit, the locked model system in

action; and also submit your code to Sakai. Please post the link as a private message in Piazza

rather than an email (which is hard to keep track of) or a Sakai submission (the overhead of

logging in to Sakai is high). Tag the link as hw4videolink. If you are worried about privacy issues,

free to use the other means, and post a Piazza message informing me you have done so

