
Distributed Collaboration

Prasun Dewan1

1. Introduction

This chapter scopes out the subject of our study. It defines and motivates the field of distributed

collaboration. It shows how this field relates to virtual reality, distributed, real-time and mobile

computing, databases, security, and various subfields of artificial intelligence – natural language

understanding, agents, machine learning/data-mining, and computer vision. It gives an overview of the

area from four different points of view: applications of distributed collaboration, the issues raised by it,

how it builds on related disciplines, and important research systems and products in this field.

Computer Supported Collaboration
The term distributed collaboration is very general, and includes, for example, communication via postal

mail. In this course, we will focus on computer-supported distributed collaboration. Collaboration

without computers can influence computer-supported collaboration by providing, for instance, real-

world metaphors for computer concepts. However, we will mainly focus on our intuition/experience,

rather than formal studies, to understand how collaboration without computers is carried out.

We will look at both collaborative applications and infrastructures for implementing these applications.

Collaborative Applications and Coupling
It is possible to define a collaborative application too narrowly or broadly. For instance, one can define it

to be an editor that allows multiple users to compose a document together. However, this definition

rules out, for example, an application that allows distributed presentations. We can be more general

and define it to be an application that allows multiple users to work towards a common goal. However,

this definition is too abstract in that it is not sufficient to objectively distinguish collaborative

applications from non-collaborative applications. Here is a more precise, system-based definition that is

consistent with the definitions above: A collaborative application is a software application that (a)

interacts with multiple users, and (b) couples these users, that is, allows each user’s output to be

influenced by some input of another user. Input is any event (e.g. keyboard, pointer, gesture, speech)

generated by a user that is interpreted by the application, and output is any event (e.g. screen update,

audio output) generated by the application that is perceptible to a user.

1
 Copyright Prasun Dewan, 2009.

Figure 1 illustrates the notion of a collaborative application. This application interacts with three

distributed users – one of them is using a desktop while the others are using two different mobile

computers. When user, U1, asks for a red circle to be drawn, the circle is drawn on all computers. Thus,

this application meets the requirements of interaction with multiple users and coupling.

Figure 1 Collaborative Application

It is possible for an application to interact with multiple users but not couple them. A time sharing

system is an example of such an application – the goal of this system is to give multiple users of a

computer the illusion that they have sole control of the computer. A collaborative application, on the

other hand, makes users explicitly aware of their collaborators through coupling.

Towards and Beyond “Being There”
Collaborative applications enable Computer Supported Cooperative Work (CSCW). Why provide

computer support for collaboration when people have been working together for ages without the

computer?

Towards Being There: Computer tools can simulate face-to-face interaction among distributed users,

giving them the illusion, to different degrees, of “being there” in one location. GestureCam (Figure 2)

provides a novel approach to providing this illusion. For each remote collaborator (currently the systems

supports only one) it places a surrogate device at the local site that can be controlled by the remote

user. The device has three degrees of freedom, carries a camera and a laser pointer, which points in the

same direction as the camera. The remote collaborator can move the camera in three dimensions to

view and point at different objects in the room. At a conference presentation of this device, the remote

user made his surrogate device do a Japanese bow to the local user!

U1 U2 U3

ApplicationUser inputs

“draw red

circle”

Coupling Coupling

Figure 2 Towards being there with remote surrogate

While it is possible to approach being there, it is not possible to completely provide the feeling of

actually being there. If all collaborative applications did was simulate ”being there,” then they would

always support meetings that are inferior to the real face-to-face meetings. They would be the second-

choice, taken when people do not have the money or time to travel to be at a common physical

location. For this to happen, if they must go “beyond being there,” offering features not available in

collaboration supported without the computer. Users of virtual environments often want to teleport to

a location rather than virtually walk to it. We need analogous features in collaborative applications.

The video browser of Figure 3 shows how this can be done. It allows users to asynchronously view the

video of some live event. Naturally, not being there at the event dilutes the experience in many ways.

However, the browser provides several compensating features not available to people who actually

attended the event. Like a regular video player, the browser allows users to pause, rewind and fast-

forward. It provides several additional, beyond being there features including video bookmarks, pause

removal, time compression without changing pitch, automatic generation of slide summaries and table

of contents.

Figure 3 Going beyond being there with meeting browser

In summary, the two goals of collaborative application is to give users the illusion of being there in a

common location and go beyond being there. The remote surrogate and video browser examples

Control GestureCam in another location

Both users see what the GestureCam is

“looking” at on TV screens

Basic Video Controls:

Play, Pause, etc.

Beyond Being There

Video Processing

 Bookmark Video

 Pause Removal

 Time Compress Without

Changing Pitch

 Automatic TOC

Generation

 Automatic Slide

Summaries

focused on one of these goals. Several applications try to simultaneously meet both of these goals. The

2D chat application of Figure 4 is an example of such an application.

Figure 4 Combining both goals through virtual chat room, avatar selection and anonymity

The “towards being there” goal is provided by avatars, which transport users to a common virtual world.

The “beyond being there” goal is met by allowing avatar selection and anonymity.

We will later see a variety of ways to support and mix these goals.

Relationship with other fields

Virtual Environments
Transporting users to a world other than their physical environment is, of course, the goal of virtual

environments. A special case of such environments are immersive virtual environments, which provide

head mounted displays and tracking systems to allow users to translate physical actions such to

analogous actions in the virtual world. For instance, one can walk through the model of a ship before it

is actually built. Remote virtual environments – environments that simulate an actual physical location –

is another subclass of virtual environments that is of particular interest in the area of distributed

collaboration.

 Figure 5 shows the relationship between collaboration technology and virtual environments. Email and

other technology for asynchronous interaction such as the meeting browser of Figure 3 do not address

the “being there” goal, and thus do not create a virtual environment. The chat application of Figure 4

does create such an environment – however, the environment is not an immersive environment, nor is

it a remote environment. An environment that allows multiple users to walk through a ship model

would be an example of an immersive collaborative application. A video conferencing application is an

example of a remote collaborative virtual environment. However, such an environment is not

immersive. To provide a remote immersive environment, we would need a sea of cameras at a meeting

location, and use the images captured by these cameras to create a virtual environment in which

remote users would navigate. Assuming such environments can be created faithfully in real-time, a

remote specialist doctor could use such an environment to examine a patient from all angles assist some

local general practitioner in surgery. This is a yet to be realized dream of some, in particular Henry Fuchs

of UNC!

Figure 5 Relationship with Virtual Environments

Distributed and Real-Time Applications
The traditional driving problems for distributed computing have been non-collaborative. Examples

include distributed file systems, concurrent execution of parallel algorithms such as finding prime

factors, and more recently, and related to distributed collaboration, remote desktops.

The vast majority of collaborative applications are distributed – consistent with the goal of being there.

However, there are some exceptions. Some applications allow users to use different devices connected

to a single computer. Some of the popular computer games are examples of such applications.

Researchers at Xerox have built at multi-mouse whiteboard that allow, for example, two users to stretch

an object in two different directions simultaneously and play tug of war as they move an object in two

different directions. There has been great interest recently in non-distributed tabletop collaborative

applications built on top use of special multi-user touch sensitive devices that can identify which user is

touching where.

VE Collaborative

Applications

Remote VE

Colab. Ship
Walkthrough

Ship
Walkthrough

Asynchronous/ Face-to-
face Collaboration

Video Conferencing

Immersive

VE

Telepresence

IM

Figure 6 Relationship with distributed and real-time computing

Tabletop interaction is also an example of a synchronous application wherein users are collaborating in

“real-time.” It is, of course, possible to have real-time applications that are not distributed, such as an

embedded system supporting anti-lock brakes; or asynchronous collaborative applications, such as an

email system.

Mobile Computing
It is difficult to support real-time collaboration when a mobile computer is disconnected. In single-user

interaction, disconnection leads to the need to synchronize the personal information on mobile devices

with other computers replicating the information. In collaborative interaction, it is also important to

synchronize information with collaborators sharing the information. Mobile devices are increasingly

connected to the internet continuously or for long periods of time. In such a scenario, they can

participate in real-time collaboration. Given that many more have mobile computers than traditional

desktops, for collaboration to really make an impact, collaboration cannot become pervasive unless it

involves mobile devices. This goal requires us to address several issues specific to mobile computers –

small size, relative slow CPUs, and power conservation. Can we really imagine giving a distributed power

point presentation to or from a cell phone? Some new advances address some of these issues. For

example, it is possible to attach full size keyboards to mobile devices. Even more interesting, portable

projectors are now available to project their displays on large surface areas. Thus, mobile collaboration

seems to have great unrealized potential.

Real-Time Applications

Folder Synchronization
Shared
Whiteboard

Audio/Video Conferencing
Embedded
Systems

Collaborative

Applications

Multi-Mouse
Whiteboard,

Tabletop

Collaboration

Finding Prime
Factors, Remote

Desktop

Colab VE

Distributed

Applications

Figure 7 Relationship with Mobile Applications

Databases
While it is possible to create databases for personal use, it is more common to share them with others.

Applications that access such databases meet our definition of collaboration applications, as updates

made by a user can be seen by others. However, not all collaborative applications are database

applications. The reason is that databases allow users to explicitly commit a sequence of operations

atomically to persistent storage in a transaction. Many collaborative applications such as IM do not

support any form of transactions. Others weaken the properties of transactions by, for instance,

allowing implicit commitment of users’ transactions if they have been inactive for some period of time.

While this makes sense in several collaborations such as document editing, it does not for traditional

databases such as bank databases. How transactions should be weakened in various forms of distributed

collaboration remains an active research area.

Figure 8 Collaborative vs. Database Applications

Mobile

Applications

Disconnected Editing
with Syncing

Disconnected Shared Editing
with Syncing

Collaborative

Applications

Connected
Interaction

Connected
Shared

Interaction

Database

Applications

Personal Databases
No Transactions,
persistence (IM)

Collaborative

Applications

Implicit Commit
(CES)

Protection/Security
Security is the popular term today for protection of our computers from undesirable actions. It can be

argued that without collaboration, there would be little need for such mechanisms. If we were to isolate

our computers, disconnecting them from the internet, we would not have to worry about malicious

actions of others. We would still need mechanisms to protect ourselves from accidentally destroying

information. For instance, we would need to make a finalized document read-only, so that we do not

accidently modify it while viewing it. We need to connect to the internet for two reasons: 1) to access

distributed private resources such as a remote desktop, and (2) to share information with others. In

both cases we need protection from others. As (2) is more common than (1), and one needs protection

from others more frequently than from self accidents, one can argue that collaboration is the main

motivation for the field of security. Yet there are many collaborative applications that do without some

important forms of security, as protection mechanisms can reduce the level of participation. An

important example is the Wikipedia, though its designers are now considering access control to prevent

slanderous comments. One of the biggest challenges in this area is to have sophisticated security while

supporting lightweight, fluid, and highly-inclusive collaboration.

Figure 9 Relationship with Security

Artificial Intelligence
This is a broad are including several fields adding “intelligence” to computers.

Distributed

Applications

Protection

/Security

Collaborative

Applications

Need to sometimes
protect against self

mistakes.

Distributed non
collaborative

computing (e.g.

Remote Desktop)

also raises security

issues.

Most security issues
arise because we do

not want isolation

from others.

Protection mechanisms can disrupt the
fluidity of collaborative applications,

hence sometimes no security (e.g.

Wikepedia).

Figure 10 Relationship with various AI subfields

There has been work underway for a long time to make computers understand natural languages. We

see the fruits of such work in the spelling and grammar checkers/correctors available today; though

some early goals such as automatically understanding the point of a story remain elusive. There is a

large group of researchers developing software agents that make decisions, such as stock trading, that

we typically associate with humans. Machine learning/data mining allows computers to dynamically

learn knowledge that was not programmed into them such as the art of flying a helicopter. The field of

vision focuses on learning from 2-D images. An important class of such work is construction of a 3-D

model of a physical object from images of it. Robotics addresses construction and movement of robots

that can navigate in the physical world and perform physical actions we associate with humans such as

mowing a lawn.

All of these fields have had some linkage with collaboration. Google Wave includes a tool to

communicate with each other using different languages, automatically translating between the two

languages. Several systems have agents that make recommendations to a user such as the book they

should buy based on actions of others. Google Wave has a framework that allows software agents,

called robots, to participate in a collaborative session. The remote surrogate device mentioned earlier is

an example of a physical robot that fosters collaboration. Recent research has used machine-learning to

predict when users are interruptible. Similarly, researchers at Microsoft have used machine learning to

automatically create out of office messages that estimate when the users would return to their office.

They have also used computer vision techniques to create an automatic secretary that recognizes office

visitors and gives them visitor-specific information.

Integrating work in various AI fields with collaboration is a perhaps the most unexplored and promising

research direction today.

User-Interface and Object-Oriented Technology
On the other hand, the most explored cross-area relationship involving collaboration is that between it

and user-interface technology. This is not surprising as collaborative applications are interactive – the

Collaborative
Application

Grammar
checking, Point

of a story AI

Natural Language

Agents

Machine
Learning/Data

Mining

Vision

Stock
Trading

Learning
Helicopter

Flying

Constructing
3D Model

Automatic
Translation

(Google Wave)

Recommender
Systems,

Google Wave

Robots

Auto Out of
Office Message,

Automatic

Estimation of

Interruption time

Automatic
Secretary

Robotics

Remote
Surrogate

Lawn
Mowing

Robot

main difference between them and traditional interactive applications is the number of users interacting

with the application. User-interface research has yielded window systems, toolkits, and frameworks,

which have been extended to support multiple users.

A strong co-relationship exists between user-interface and object-oriented technologies and the former

is often the driving problem for concepts invented in the latter. An example is the model-view-controller

framework we will study later, which has been extended to support multiple users. We also see that the

concept of a Bean object – an object offering well-defined getter and setter methods to retrieve and

change state – has been used to generate single-user interfaces in the user-interface domain and multi-

user interfaces in the collaborative domain. The field of user-interfaces addresses not only the

implementation of user-interfaces but also its design. There has been work in extending principles

addressing the design of interfaces involving a single user to those involving multiple users.

Figure 11 Relationship with User-Interface and Object-Oriented Technology

What, How, and Automation

UI Design
The user-interface of the SubEthaEdit programming environment shows that the user-interfaces of

collaborative applications are, in general, different from those of single-user applications.

Interactive

Applications

O-O
Applications

Model-View-Controller

Model-View-Controller-Coupler, ...

Beans

Collaborative
Beans

Collaborative

Applications

1-User UI DesignN-User UI
Design

Figure 12 SubEthaEdit Collaborative Programming Environment

SubEthaEdit is a collaborative programming environment. We will later study some of the concepts

behind the user-interface shown above. The point to make now is that a multi-user interface can be

substantially different from a single-user interface – all windows other than the large middle window

make sense only in the multi-user case and even the middle window has aspects such as highlighting

and scrollbars that are specific to collaboration. The challenge in the design of collaborative interfaces is

two-fold: what special functions should be provided to support multi-user interaction and how should

we allocate scarce screen space between supporting these and traditional single-user functions.

Implementation
Donald Knuth wrote a famous book with the title “Algorithms + Data Structures = Program” arguing that

the two main conceptual difficulties in software implementation are in appropriate data structures and

algorithms. Since he wrote the book, more than thirty years ago, software architecture has become

another pressing concern as the size of programs has exploded. All three issues are of great concern in

the implementation of collaborative applications, because of the complexity involved in handling

distributed, concurrent interaction. The figure shows that among other concepts, we will study

algorithms and data structures to consistently handle concurrent streams of regular and undo

commands, and architectures that create distributed versions of the model-view-controller framework

mentioned earlier.

Figure 13 Collaborative Programs = Distributed Algorithms + Data Structures + Architectures

Infrastructure
Certain data structures, algorithms, and architectures apply to a large class of collaborative applications.

These can be automated in a common software infrastructure shared by these applications.

The reason why applications keep getting more complex is not because we have become more

productive but because increasingly application-independent concepts are being implemented in

infrastructures such as programming languages, operating systems, and user-interface toolkits. These

infrastructures provide us with software abstractions, layered on top of the hardware, that are of use to

a variety of applications. Some commonly-used abstractions include arrays, records, files, concurrent

threads, textboxes, and sliders. The underlying infrastructures implement the data structures,

algorithms, and architectures needed to support these abstractions; and the applications simply use

these abstractions.

A collaboration-specific infrastructure can provide a variety of automations. It can automate coupling

and associated collaboration functions we will see later. The success of a synchronous collaborative

application depends perhaps less on the functions it provides and more on its performance. If any of its

users finds the response time bad, the whole group might have to abandon its use and resort to some

other form of collaboration. Therefore, an infrastructure often automates techniques for offering

acceptable performance. Those of you who have used Eclipse plug-ins know that the usefulness of

allowing extensions to be added easily to a complex system. Moreover, just as we have today have

multiple programming languages, toolkits and operating systems, we also have multiple collaboration

infrastructures. Thus, a collaboration infrastructure can include mechanisms to easily add extensions to

it and interoperate with other collaboration infrastructures.

Algorithms +
Data Structures

Architectures

Distributed Distributed

Figure 14 Components of Collaboration Middleware

A layer that sits in the middle of applications and traditional operating systems and programming

languages is called middleware. A collaboration infrastructure is an example of middleware. To the

operating system and language, it is another application that makes use of the abstractions provided by

them. To the collaborative application, it is an infrastructure, providing its own abstractions. Some

collaboration infrastructures have been integrated with programming languages and operating systems.

Even these can be considered as layers on top of traditional programming languages. More important,

as we see later, the integrated systems have both practical and theoretical problems, which have made

them unattractive so far.

A collaborative application may bypass a collaboration infrastructure, directly using the facilities

provided by operating systems, programming languages, and other relevant forms of middleware such

as toolkits. Applications that make use of a collaborative application can be classified into collaboration-

unaware and collaboration-aware applications, based on whether they are aware that multiple users

interact with them. It is particularly important to support collaboration-unaware applications, at least in

the short run, as it allows us to share existing applications.

The main challenge in the design of any infrastructure is how to offer automation without reducing

flexibility, that is, without constraining the design of applications. This is particularly a problem in the

case of collaboration infrastructures for three reasons. First, the design space of collaborative

applications is still a matter of research. Second, these applications are interactive, and as, for instance

the evolution of Microsoft Windows shows, our expectations from user-interfaces keep evolving. Third,

in the case of collaboration-unaware applications, an infrastructure cannot delegate design decisions to

the applications. This is not the case, for example, in the case of operating systems, which focus on

providing mechanisms, leaving policy to the users of the system. The “what” or design issues are

perhaps more difficult than the “how” or implementation/automation issues.

Views of Collaborative Systems
As the above discussion shows, can decompose the area of collaborative systems into design,

implementation, and infrastructures. We can study this area from several other, overlapping views:

Applications
A

p
p

li
ca

ti
o
n

s

Operating System and Languages

Performance/Resource Management

Extensibility/Composability

Functionality/Abstraction

Interoperability

Existing

C
o
ll

a
b

o
ra

ti
o
n

In
fr

a
s
tr

u
ct

u
re

M
id

d
le

w
a

re

 Real-World Problems: What collaboration problems can collaborative applications address, and

what kinds of features are needed to solve these problems? This view ensures we are building

systems that solve real problems and allows us to develop specialized solution for a problem.

 Issues What are the technical issues that must be resolved by these systems and in what ways?

From an academic point of view, this is perhaps the ''purest'' approach in that it eliminates

repetition of issues common to many domains, and allows us go in-depth into each of these

issues. It corresponds, for instance, to the teaching of operating systems by identifying the

orthogonal issues such as process management, memory management, and process

coordination; and teaching each issue in-turn.

 Systems: Which collaboration systems (applications and infrastructures) have been built and

what are their properties? Most systems are collections of carefully integrated features, and this

view allows us to understand specific collaboration constructs in the context of complete

systems. It corresponds, for instance, to the teaching of programming language constructs using

the comparative programming language approach, that is, teaching and comparing a variety of

complete programming languages such as ML, Smalltalk, and Prolog.

 Disciplines: Which existing CS areas/disciplines do they extend and in what ways? This view

allows us to understand new collaboration constructs in relation to existing concepts, thereby

ensuring that we build on the knowledge and insight developed by traditional fields.

We can use these views to now define the nature and scope of this course.

Driving Problems
The real-world problems addressed by collaborative systems come from several areas:

 Document Preparation: Documents of all kinds - papers, proposals, brochures, etc - are often

coauthored, and manually managing a coauthoring process, especially when the coauthors are

distributed, is generally difficult. Collaborative applications can allow distributed co-authors to

easily observe and comment on each others' activities and help ensure the consistency of the

document.

 Business Management: Businesses require teamwork to be successful and are often distributed.

Collaborative applications can enable managers in distributed businesses to make better group

decisions, follow business processes, and monitor the status of ongoing projects.

 Software Engineering: Every phase of software engineering - requirements analysis, design,

coding, testing, and maintenance, requires collaboration, and software development is rapidly

getting distributed. Collaborative applications can help distributed software engineers share the

results of software development tools such as debugging and testing tools, and to follow

software processes.

 General Engineering: The benefits of collaborative software engineering extend to the general

area of computer-aided engineering design/manufacturing, thereby allowing what is known as

''just-in-time'' engineering. Of particular interest here are distributed collaborative VR interfaces

for simulating real-world objects being engineered such as ships/automobiles.

 Science: The National Science Foundation has developed the vision of distributed

collaboratories, allowing geographically-dispersed scientists working together on

national/international projects to exchange results in a timely fashion and monitor and discuss

data gathered from remote instruments.

 Art: People might collaborate in some artistic endeavor, such as music composition, creation of

a photo album, and movie editing.

 Education: There is increasing interest in distance education, especially in sparsely populated

areas. Collaborative applications can enable both synchronous and asynchronous distance

education by allowing teachers to lecture to students in remote sites, lab assistants to consult

with remote students, and distributed students to collaborate with each others.

 Medicine: Collaborative applications can enable tele-medicine, and as mentioned in the

discussion of tele-presence, possibly even tele-surgery; improve the communication among

medical personnel; and ensure that proper medical processes are followed.

 Air Traffic Control: One of the trickiest coordination problems is air-traffic control. Collaborative

applications can allow air-traffic controllers and pilots to view up-to date status information

regarding the positions of aircrafts.

 Command and Control: Similar problems arise in military command and control operations, and

collaborative applications can support planning and monitoring of these operations.

 Surroundings awareness: People might exchange traffic, weather and other kinds of data to gain

awareness of their surroundings, which in turn can help them, for instance or reduce traffic

congestion, determine if they should visit or evacuate from some other location.

 Universal access: This goal of this field to allow people with all kinds of abilities access to

computing. In the context of collaboration, this would mean allowing users with different

abilities to collaborate with each other using the computer.

 Games/Social Interaction: Collaborative systems do not support only work – they can include

other forms of interaction such as playing games and, perhaps more importantly, interacting in

virtual meeting places or social networks

The above discussion shows that there is a large variety of driving problems for work in collaborative

systems. A more abstract and simpler motivation that any complex problem requires collaboration, and

today such collaboration tends to be distributed.

Issues
Collaborative applications raise several design and implementation issues. The former address the user-

interface of the application and correspond to the collaboration functions provided by the application to

end user. The latter address how the application is programmed and its performance.

The design issues include:

 Single-user interface: What is the single-user interface presented to a user, that is, what are the

application semantics if there is a single user in the session?

 Session Management: How do distributed users create, destroy, join, and leave collaborative

sessions?

 Coupling: In a multiuser session, what feedback do user receive in response to the input of

another user and when do they receive it?

 Access Control: How do we ensure that users do not execute unauthorized commands?

 Concurrency Control: How do we ensure that concurrent users do not enter inconsistent

commands?

 Merging: How do we merge concurrent commands entered by different users?

 Process control: How do we ensure that users follow prescribed group processes?

 Undo/Redo: What are the semantics of undo/redo in a collaborative session?

 User Awareness: How are users made aware of ``out of band'' activities of their collaborators,

that is, activities not deducible from the application feedback they receive from coupling?

The implementation issues include:

 Design Patterns: What kind of objects are used to program collaborative applications, that is,

what are the design patterns for implementing these applications?

 Collaboration Awareness: Which of these objects are collaboration aware and how are these

objects integrated with existing, collaboration-unaware objects?

 Layers: How are these objects stacked in software layers?

 Concurrency: How is the application decomposed into concurrent threads executing on the

same or different computers?

 Distribution: How are the application objects and threads placed on the computers of the

collaborators and other, special-purpose, servers?

 Replication/Migration: Which of these objects are centralized on a single computer and which

are replicated on all computers involved in the collaboration? Which of the centralized objects

can migrate?

 Display Consistency: How do we ensure that a series of potentially non-commuting user actions

shared at two sites are effectively executed in the same order?

 Real-Time Support: What kinds of services are provided to ensure real-time interaction with

tolerable jitter and latency? Jitter occurs in distributed applications when messages are received

and processed at a different rate from which they are sent.

 Infrastructure Support: Which of the application objects are implemented by the application

programmer and which are provided by an infrastructure.

 Interoperability: How are objects of a collaborative application integrated with objects of other

(collaborative and non-collaborative) applications?

Systems Disciplines
We have seen earlier that a variety of disciplines are closely related to collaborative applications and

infrastructures. Now that we have an idea about the issues, let us revisit some of these areas and

identify some specific concepts of relevance to collaboration systems. We will look only at some of the

“systems” areas, that is, those that provide some kind of infrastructures, as these areas tend to embody

general concepts. We will look at concepts in them related to collaboration infrastructures:

 Operating Systems: The goals of an operating system are to manage objects shared among

multiple, possibly distributed processes. As users collaborate with each other through processes

that share objects – an infrastructure that manages these objects, then, becomes part of the

operating system. Current operating systems allow the construction of a wide variety of

collaborative applications and address some of the issues mentioned above such as access and

concurrency control. However, they have not been designed to support applications supporting

close collaboration, and as a result offer only low-level support for building these applications.

Therefore, collaboration infrastructures are layered on top of traditional operating systems as

middle ware, though its goals are consistent with those of the underlying operating systems.

 Database Management Systems: Like traditional operating systems, traditional database

management systems provide automatic storage and access of data shared among, potentially

distributed, processes executing on behalf of different users – facilities collaboration

infrastructures must also support. Like operating systems, database management systems

support access and concurrency control, but at the granularity of table elements rather than

files. In addition, they support recovery, which is related to multiuser undo. What they lack are

facilities for defining complex data that goes beyond tables and relaxation of the traditional

transaction model to support a variety of couplings.

 Programming Languages: The goal of a programming language is to provide non-shared

abstractions for supporting the construction of software applications. Collaboration

infrastructures often convert these abstractions to shared abstractions.

 User Interface Systems: These systems provide abstractions for performing single-user I/O. We

will study how these systems can be extended to support multiuser I/O. Important questions

here are: At what level of a user interface system must multiuser I/O be supported: at the

window system, toolkit, or the application level? How should the abstractions at this level be

changed?

 Software Engineering: Many of the techniques and tools developed for supporting software

engineering are relevant for collaborative infrastructures including tools for supporting process

control and interoperability. (As we see later, software engineering is also an important driving

problem for collaborative applications.)

Research and Industrial-Strength Systems
Several important systems, both applications and infrastructures, and research and industrial-strength,

have been developed to support collaboration.

Research Applications

Let us first consider some of the pioneering research applications:

 RTCAL (Real-Time Calendaring System): Developed as part of a Ph.D. thesis at MIT, it allows

multiple users to schedule meetings in real-time. This research was instrumental in identifying

several of the implementation issues in collaborative systems.

 Cognoter: Developed as part of the Xerox Colab suite of collaborative applications, Cognoter

allows users to collaboratively brainstorm the structure of a presentation or paper. A unique

feature of this system is an automatically enforced meeting process. This research also helped

identify issues in coupling among users, experimenting both with WYSIWIS (What You See Is

What I See) and non-WYSIWIS coupling.

 CES (Collaborative Editing System): Developed at MIT, this collaborative document editor

supports time-based implicit commitment of transactions, mentioned earlier.

 Grove: Grove is a group outline editor, developed at MCC. It recognizes the structure of the

outline, provides fine-grained access control and non-WYSIWIS user interface, and relies on

social protocols for concurrency control.

 ShrEdit: Developed at the University of Michigan, this is a multi-user text editor that also

supports non-WYSIWIS coupling. In such interfaces, users cannot see what others are viewing.

Therefore, the tool allows each user to also see the private view of each of the collaborators,

which does not scale well to a large number of users.

 GroupDraw : GroupDraw is a group drawing tool, developed at the University of Calgary. It

addresses the scalability problem of the ShrEdit approach by providing various forms of

summarization of the view of collaborators. In addition, it provides a new form of concurrency

control called optimistic locking.

 Quilt: Developed at Bellcore, provides rich support for collaborative asynchronous composition

of a document, including logging of concrete and abstract user actions, typed annotations, and

role-based access control.

 PREP (work in PREParation editor): Also supporting asynchronous collaborative writing, PREP

has been developed at CMU. It provides a column-based interface for commenting, flexibly

pinpointing of the differences between different versions of the document, and epidemic

algorithms for synchronizing edits by different users.

 Information Lens: Developed at MIT, Information Lens invented the idea of semi-structured

email messages.

 Coordinator: Developed at Stanford, it structures collaboration using a theory of collaboration

called the ''speech-act'' theory for characterizing the nature of collaborations. It can be

considered one of the first workflow systems.

 IBIS (Issue Based Information System): Developed at MCC, this tool structures the discussion of

an issue.

 Hydra: Developed at the University of Toronto, the Hydra audio/video conferencing system

allows each remote collaborator to be assigned a different region of the local physical space.

 MUD (MultiUser Dungeons): Developed by researchers at Xerox and elsewhere, MUDs provides

a text-based persistent virtual environment in which people can meet and interact with each

other based on which rooms they have entered. Because it was persistent, it was used to

communicate a variety of virtual communities such as an astronomy community.

 DIVE (Distributed Interactive Virtual Environment)/MASSIVE: Developed about the same time at

Amsterdam and University of Nottingham, DIVE and MASSIVE, like MUDs, provide virtual

meeting environments except that these environments are based on 3-D graphics.

Industrial-Strength Applications

Today, we also see a variety of industrial-strength applications, many of which build on the research

applications mentioned above:

 SharePoint, Microsoft Groove Folders: These provide shared document repositories. SharePoint

centralizes the documents at a server, while Groove replicates them on the computers of the

users sharing the documents.

 Microsoft Word: Microsoft Word offers a variety of collaboration functions. Like PREP, it

supports annotations, and like PREP, it provides fine-grained merging and diffing. In addition, it

provides powerful facilities for tracking changes of different users.

 Microsoft OneNote and Google Docs: Microsoft Word does not offer real-time collaboration of

the kind provided by ShrEdit, Grove and GroupDraw. One reason is that it is almost impossible

to understand and change the huge amount legacy code in it. Newer and lighter weight

document editors, such as Microsoft OneNote and the Writely document editor (now part of

Google Docs), do offer real-time collaboration; as does the Google Docs spreadsheet editor.

 Instant Messengers and Social Networks: These are extensions of the basic idea in MUDs of

creating a text-based distributed virtual community.

 Second Life: Similarly Second-Life and other distributed virtual environments we see today are

extensions of the idea in Massive and Dive of 3-D shared environments.

Research Infrastructures

Hand-in-hand with the research and development of collaborative applications has gone the research of

infrastructures for automating these applications. Again, we consider the most important systems:

 NLS: Douglas Englebert, a Turing award winner and the inventor of the mouse, created the first

collaboration infrastructure, called NLS, as early as 1968. It was a system that allowed a user to

share the screen of another user. Englebert did this on his own, after he left Xerox because his

ideas were considered too radical even for this very innovative company. As we see below, it

took Xerox twenty years to catch up with this work!

 Colab Programming Environment: Developed as part of the Xerox Colab project, this

environment extends an object-oriented programming language with constructs for providing a

fixed policy for sharing arbitrary objects among users. It replicates the shared object on the

computers of all users, much like Yahoo replicates email on multiple machines of a server farm.

It was used to develop the Cognoter and other applications in the Xerox suite of collaborative

applications mentioned above.

 VConf, Rapport, XTV: The Colab programming supported collaboration-aware applications.

Developed at Stanford, Bell Labs, and UNC, respectively, VConf, Rapport, and XTV are extensions

of window systems, supporting sharing of existing collaboration-unaware applications

developed using the extended window systems. They differ mainly in the choice of the

underlying window system. Each of these systems was implemented using both the replicated

and centralized architecture.

 Rendezvous and Weasel: Being extensions of window systems, the systems above forced users

to share the complete contents of an application window. Bellcore’s Rendezvous provides a

system allowing application-developers to define spreadsheet-like constraints between shared

data and the views different users have of these data. It was used to develop a card game that

allowed players to see different views of the game state. Weasel, developed at York University,

also supports such constraints, but provides a special caching scheme to ensure that they are

evaluated efficiently when the data and the views are on different computers. Unlike Xerox’s

Colab programming environment, both assume that the shared data are centralized on a single

computer.

 Suite, developed at Purdue and UNC, also assumes centralization of shared data. However, it

takes a different approach to allowing customization of the collaboration semantics. Instead of

defining constraints, programmers set values of a set of predefined collaboration parameters

defining the coupling, undo, concurrency control, merging, and access-control policies. These

parameters cover all collaboration policies implemented so far. In particular, they allow a single

system to support database transactions, email, IM, synchronous single-view editing,

synchronous multi-view editing, and asynchronous/disconnected editing. Suite is integrated

with the C programming language in that it assumed the shared data were described using C

types. It provided fine-grained coupling, merging, locking, and access control of data structures

defined using these types. For example, the programmers can specify which users can access a

record field.

 GroupKit: C does not support tables, a powerful construct, as users of scripting languages know,

for defining a variety of data structures. GroupKit builds on this insight by supporting

synchronous sharing of tables. Like Xerox’s Colab environment, replicates shared objects on the

computers of all users. In addition, it provides special widgets for supporting awareness, which

were used and evaluated as part of the GroupDraw application mentioned above.

 Sync: Sync, developed at UNC, combines the goal in (a) Xerox’s Colab programming environment

of sharing arbitrary encapsulating objects, and (b) Suite of providing fine-grained sharing

policies. Unfortunately, these goals are conflicting as an encapsulated object hides its structure

and thus cannot be decomposed to define fine-grained policies. Sync resolves this problem by

assuming certain conventions or programming patterns for exposing the logical, but not

physical, structure of an object. Sync supports both connected and disconnected editing of

shared objects, and provides merging of different versions of these objects. One of the Sync

applications is a set of replicated folders that are automatically synchronized.

 Logger: As we saw above, some system replicate shared objects while other centralizes them.

The logger system, developed at UNC, allows this decision to be changed dynamically for an

application. It also provides special scheduling and multicast algorithms for enhancing response

times.

 GT: Developed at UNC, this system, like the Logger has special algorithms for ensuring efficient

communication of messages in a collaborative application.

Multiple Views of Same Concept

We have seen above four different views of collaboration systems: driving problems, issues, disciplines,

and systems (applications and infrastructures). These views are overlapping – in it is possible to

understand the same concept from all of these views. To illustrate, consider the concept of WYWIWIS

interaction. Figure 21 shows all four views being taken to understand it: (1) Problem: It is necessary to

support distributed pair programming in collaborative software engineering. (2) It is one approach to

address the coupling issue. (3) Discipline: Like database transactions, it determines how users actions

are shared. (4) Systems: It is supported by the VNC system.

Figure 15 Multiple Views of WYSWIS

Thus, the four views define a network of related concepts.

In this overview chapter, we have superficially traversed the most important concepts in this network

from all four points of view. We will not be able to so as we study the subject in more depth to meet the

time constraints and avoid repetition. For instance, we will not consider all the possible domains in

which WYSWIS coupling could be useful and all the systems that have implemented it, as doing so will

probably result in tedious repetition and take substantial time. However, when necessary we will explain

a concept from multiple views.

We will take the issue, system, and problem views to various degrees. We will consider all of the issues

mentioned here. In addition, we will consider in depth a few infrastructures and a variety of

applications. These systems will be explored both in class lectures and home-works. We will also study in

depth the problem of collaborative software engineering, as this domain is of particular interest to

computer scientists.

Even though we will not use all views completely as primary top-level views, we will, nonetheless use

them as secondary views. That is, for each feature we introduce as part of a system or as a resolution to

an issue, we will consider the problems it solves and the relevant research in related disciplines. Since

we will be looking at overlapping sets of concepts from two different views, there will be some

repetition. The systems view will give us the broad context for many of the collaboration constructs we

will discuss in-depth when we take the issue view later.

WYSIWIS

Interaction

Problem Issue

Discipline Systems

