

Distributed Collaboration

Prasun Dewan1

3. Shared Objects

In the previous chapter, we saw how WYSIWIS applications can be supported by shared window

systems. Here we will focus on non-WYSIWIS interfaces. We will define them using the model-view-

controller framework, which allows multiple views to share the state of a single object. This framework

will be extended to the distributed MVC, which allows the views and model to be distributed. We will

see how this architecture can be implemented using the concept of remote method invocation.

Distributed MVC centralizes the model. An alternative is to replicate the model. We will look at

techniques for implementing replicated objects.

Non WYSIWIS User Interfaces
As we saw in the previous chapter, different window systems can support sharing of different properties

of a window. While these systems are free to determine if they share exposed regions and window

state, such as window positions and stacking order of windows, they must share window sizes and

contents. This means that they cannot, for instance, allow one user to see a pie chart view and another

to see the bar chart view of some data, as shown below.

Figure 1 Multiple Views of a Shared Model

Multiple views of application data are not unusual. For instance, the popular PowerPoint application

allows multiple views of a slide deck, and one can imagine different users looking at different views.

1
 Copyright Prasun Dewan, 2009.

Figure 2 Multiple views of a PPT slide deck

An even more common use of multi-view collaboration is shown in the figure below.

Figure 3 Multi-view, multi-user interaction for managing concert expenses

Here two users are collaboratively interacting with a custom spreadsheet for managing expenses for a

group of friends going to a concert together. This application could be used in different ways. The two

users may be responsible for determining and entering the ticket price and number of attendees,

respectively, or they may not have a division of responsibility, where instead whoever has the latest

information enters it. As we see above, the sizes of the windows of the two users is different. Moreover,

there is a level of asynchrony in the collaboration. The ticket price entered by the left user is not seen by

U1 U2

Application

the right user as it is entered. When this value is committed (by hitting Enter), it is seen by the right

user. We will use this application as a running example to concretely illustrate various concepts.

We see above three examples of non-WYSIWIS interfaces which cannot be supported by shared window

systems. To determine how they can be supported, we need to identify not what they are not

(WYSWIS), but rather what they are. In fact, the single-user I/O architecture we saw earlier, reproduced

below, does not have a way of expressing the coupling between the user-interfaces. The problem is that

this framework assumes the application creates a user-interface through input and output operations.

What we need is an architecture that captures the initutive notion of multiple views of application data.

Model View Controller
The Smalltalk model view controller (MVC) framework is such an architecture. It assumes that the

semantic state of an interactive application is maintained by an object, called the model. One or more

view objects output the state to the user, and one or more controller objects change this state in

response to user input. The view (controller) objects call read (write) methods in the model to display

(update) its state. Whenever the model is changed, autonomously or by a controller, it informs all of its

views that it has changed. As a view is dynamically created/destroyed, it registers/unregisters itself with

the model so that the model knows who it should notify.

Figure 4 Model View Controller (MVC) Framework

The methods invoked by an object on its views can be independent of the behavior of the view. All the

object has to do is notify its views that it has changed. This information is independent of the kind of

display created by the view. In fact, it can be sent not only to views of an object but also other objects

interested in monitoring changes to it. We will see the use of this feature later.

In general, a notifying object is called an observable and a notified object is called its observer. In the

figure, the dashed lines from the models to its views indicate that its awareness of its observers is

notification awareness: it knows which observers need to be notified about changes to it but does not

Model

(Stores State)

Write

Method

Notification

Read

Method

Controller

(Performs Input)

View

(Performs Output)

getPlot ()magnify()

update ()

know any aspect of their behavior. This is in contrast to the awareness in the views and controllers of

the model, which know about the model’s getter and setter methods. If the model changes, the views

and controllers typically change in response because of this awareness. Even though the

observable/observer notion appeared first with the context of the larger MVC pattern, it is now

recognized as an independent pattern.

In addition to objects, humans regularly use this idea of notification. For instance, students in a class are

often notified when the web page for the class is changed. Consider the various steps that take place to

make such interaction possible:

 The professor for a course provides a way to add and remove students from a mailing list.

 Students may directly send the professors add and remove requests, or some administrator may

do so on their behalf as they add/drop the course.

 When a professor modifies the information linked from the web page, he/she sends mail to the

students in the mailing list. On the other hand, when he simply reads the information, he does

not send any notification.

 The notification tells the student which professor sent it so that they know which web page to

look at.

 The students access the page to read the modified information.

The observable/observer pattern has analogous steps:

 An observable provides methods to add and remove observers from an observer list.

 Observers may directly invoke these methods, or some other object (such as another model)

may do so on their behalf.

 When an observable modifies its state, that is, invokes a write method, it calls a method in each

observer to notify it about the change. On the other hand, when it executes a read method, it

does not call this notification method.

 The call to the notification method identifies the observable doing the notification. The reason is

that an object may observe more than one observable. For example, a battle simulation user

interface may observe the positions of multiple tanks and planes.

 Each notified observer calls read methods in the observable to access the modified state.

The observer pattern allows models and views to be bound to each other. A separate mechanism is

needed to bind a controller to one or more models. A controller can provide a setter method for doing

so, and either it or some other object can call this method. A view with a single model can also provide

such a method so that it does not have to rely on the notification method providing the model

reference.

Let’s use the concert expense application to concretely understand MVC.

The code below implements the model of the application.

Figure 5 Model Code for Concert Expense

The list of registered observers is kept in the observer history, observers. The method addObserver

adds elements to this list. In general, an observable also defines a method to remove a registered

observer. The method notifyObservers retrieves each element of observers, invoking the update

method defined by the Observer interface, shown below.

Figure 6 Observer Interface

All views must implement this observer interface implemented by the model.

To understand the relationship between this model and its views and controllers, let us see what

happens when a user edits the ticket price and hits Enter:

 The controller converts the text entered by the user into a float value (checking for errors), and

calls setTicketPrice(float) in the model with this value.

 The model updates an instance variable and calls notifyObservers, which in turn, invokes

update on all the observer views in the order in which they were registered.

public class AConcertExpense implements ConcertExpense{

float unitCost= 0;

int numberOfAttendees = 0;

Vector<Observer> observers= new Vector() ;

public float getTicketPrice() { return unitCost; }

public void setTicketPrice(float newVal) {

unitCost= newVal;

observers.notify();

}

public int getNumberOfAttendees() { return numberOfAttendees; }

public void setNumberOfAttendees(int newVal) {

numberOfAttendees = newVal;

observers.notify();

}

public float getTotal() {return unitCost*numberOfAttendees; }

public void addObserver(Observer observer) {

observers.add(observer);

}

void notify() {

for (Observer observer: observers) {

obsever.update();

}

}

}

Set methods called
by Controller

View notifications
fired by Model

Get methods called
by View

Model allows
registration of

observers

public interface Observer {
public void update();

}

 The views call all of the read methods of the model, getTicketPrice(), getNumberOfAttendees(),

and getTotal() to determine the new state of the model, and update their display.

Generic View and Controller
To complete the implementation of our running example, we should show the implementation of the

view and controller. Usually, these user-interface modules are implemented using either Console I/O

routines, which create Console user-interfaces, or (user-interface) toolkits, which create GUIs. In either

case, surveys show, about fifty percent of the total code of the application deals with tedious I/O tasks,

and this code is messy. More important, from the point of view of this course, creating GUIs such as the

concert application user interface requires learning a large number of toolkit details, which are beyond

the scope of this course.

Therefore, we will use an alternative approach to creating MVC-based GUIs, which involves the use of a

generic tool, called ObjectEditor, that can automatically create user-interfaces of models. ObjectEditor

provides a generic view and controller to interact with the model, as shown below.

Figure 7 MVC-based ObjectEditor

As programmers, we must bind the generic view and controller to the model. This is done by calling the

edit() method of ObjectEditor, as shown below.

Model
(Observable)

OE View
(Observer)

Write method

OE Controller

ReadMethod

P
e
rf

o
rm

s
In

p
u

t

P
e
rfo

rm
s O

u
tp

u
tNotification Method

Registration Method

package main;

import budget.ConcertExpense;

import budget.AConcertExpense

import bus.uigen.ObjectEditor;

public class MVCBudget {

public static void main(String[] args) {

ConcertExpense model = new AConcertExpense ();

ObjectEditor.edit(model);

}

}

Figure 8 Binding a model to the ObjectEditor View and Controller

Thus, we have completed the ObjectEditor-based implementation of the concert expense application.

This implementation supports single-user interaction. How should we support multi-user interaction?

Distributed MVC
MVC is particularly well suited for multi-user interaction. In the single-user case, it allows a single user to

create multiple views and controllers to be attached to a model.

Figure 9 Multiple views and controllers of a single user attached to a model

In the multi-user case, “all” we have to do is make sure that views and controllers, residing on different

users’ computers, attach to a common model which may be located on one of the collaborators’

computers, or some special computer.

Figure 10 Multiple views and controllers of different users attached to a common model

Model

Controller
View

Controller
View

Model

Controller
View

Controller
View

U2

U1

The word “all” is in quotes because allowing a model to communicate with remote views and controllers

of different users is not trivial. It raises several issues, especially when we try to automate collaboration

functions:

1. Identifying model components: How does an infrastructure provide fine-grained collaboration

functions, that is, concurrency control, coupling, access control, and merging mechanisms that

depend on the components of the model?

2. Efficient communication: How do we minimize the number of messages that are sent over the

network to process input and update the views?

3. Communication mechanism: How do the controllers, views, and models invoke operations in

remote objects?

Logical vs. Physical Structure
Consider first the issue of identifying model components. Unlike a shared window system, distributed

MVC can allow multiple users to interact simultaneously with a model without causing assertion

violations. In other words, any sequence of method calls invoked by controllers and views of different

users can also be invoked by controllers and views of a single-user. However, it is possible for users to

step on each other’s toes. For example, if two users concurrently edit the ticket price in our example,

one of them will overwrite the input of the other. Moreover, it is possible to violate access control

policies. For example, a user not authorized to edit the ticket price might do so. Furthermore, if the two

users are disconnected, and one of them edits the ticket price and another edits the number of

attendees, it should be possible to safely merge their changes. Finally, if we extend the example to allow

the addition of a comment, it may be useful to not couple it while coupling the other components of the

model such as ticket price.

We could implement coupling, merging, concurrency, and access control in the model by making it

collaboration-aware. However, ideally, we would like these collaboration functions to be implemented

automatically in a collaboration infrastructure. This implies that the infrastructure must be able to

decompose the model into parts to, for instance, allow only some users to edit the ticket price. Thus,

we need a general way to derive the structure of a model.

It is possible to decompose an object based on its instance variables. The object is decomposed into the

values stored in its instance variables, and each of these values is further decomposed in this fashion,

until we reach primitive values. We will refer to this structure as the physical structure of the object, as

it is essentially the structure of its physical representation in memory.

Figure 11 Physical Structure

The “??” in the boxes for the components of a Vector indicate that we cannot complete the structure

without knowing the instance variables defined by class Vector. This information is deliberately kept

from the classes that use a Vector. In fact, even in our implementation of AConcertExpense, we did not

make the instance variables public. Thus, unless the infrastructure is tied to the language compiler, it

cannot access the structure above.

We could imagine giving it the same access as a debugger, but that would mean that what the end-user

sees, such as the components that can be locked, is tied to the implementation of the model, which

violates the principle of encapsulation in object-oriented programming languages. Thus the idea of

encapsulation seems to be at odds with our goal of automatically supporting fine-grained collaboration

functions in a collaboration infrastructure. Encapsulation hides information, treating the object as a

black box whose internal details are hidden from external observers. As the figure shows, the only

visible components are its “input” and “output”, which in the case of an object are the signatures of its

public methods, giving the names, parameter types, and result types of these methods. An

infrastructure, on the other hand, needs information about the structure of the object.

Figure 12 A black box object exposing only the signatures of its public methods

The only way out of this impasse is for the infrastructure to somehow derive the structure of an object

from these signatures. In the case of our example, as humans we are, in fact, able to use this

information to map the object to the components shown in the figure below.

AConcertExpense

int

Vector

Variable name

Class or
primitive type

of value stored

in variable

??

??
float

float unitCost= 0;

int numberOfAttendees = 0;

Vector<Observer> observers= new Vector() ;

ConcertExpense

public interface ConcertExpense {

public float getTicketPrice() ;

public int getNumberOfAttendees() ;

public void setNumberOfAttendees(int newVal);

public void setTicketPrice(float newVal);

public float getTotal() ;

public void addObserver(Observer observer) ;

}

Figure 13 Logical structure derives from signatures of the public methods of an object

Here we are identifying typed “properties” of an object. The object is decomposed into the values

stored in its properties, and each of these values is further decomposed in this fashion, until we reach

primitive values. We will refer to this structure as the logical structure of an object, as it corresponds,

not to how Java physically lays out the object, but how we logically view the object. The physical

structure of an object depends on its implementation – specifically, its instance variables – while its

logical structure depends only on its public methods. We will use the term physical (logical) component

to refer to an instance variable (property). Logical components are units of the external state of an

object, while the physical components are units of the internal state of the object.

As the figures above show, to draw the physical (logical) structure of a value, we start with the name of

the primitive type or class of the value. For each physical (logical) component of each instance of the

object, we draw an edge from the name. The label of the edge is the name of the physical (logical)

component and its end point is the physical (logical) structure of the value of the physical (logical)

component. We stop at values that cannot be decomposed.

int

float
total

Property name

Class or
primitive type

of property

value

float

AConcertExpense

Figure 14 Logical Structure

As the example shows, some properties, in particular

numberOfAttendees and ticketPrice, correspond to instance variables,

numberOfAttendees and unitCost. However, some instance variables

(such as observables) are not exported as a logical component.

Conversely, it is possible to export a logical component such as total

that is not directly stored in memory but computed by the object.

Bean Conventions and Programming Patterns
For an infrastructure to automatically derive the logical structure of an

object, we need to define more precisely the notion of a property.

A class defines a property P of type T if it declares a getter method for

reading the value of the property, that is, a method with the following

header:

public T getP()

If it also declares a setter method to change the property, that is, a

method with the header

public void setP (T newP)

then the property is editable; otherwise it is read-only.

As we see from these definitions, the getter and setter methods of a

property must begin with the word “get” and “set”, respectively. Of

course, names do not affect the semantics of these methods. For

instance, had we instead named getBMI as obtainBMI, we would not

int

float
total

Property name

Class or
primitive type

of property

value

float

AConcertExpense

The term “bean” symbolizes a
reusable component that can
easily work together with
other beans to create
applications, much as a coffee
bean can be seamlessly mixed
with other coffee beans to
create a coffee flavor.

Even classes that do not follow
these conventions qualify as
beans as long as they provide

some way of specifying the
getter and setter methods of
properties. Naming
conventions are one way of
doing so. The Java beans
framework provides other
mechanisms to do so, which
are much more complicated
and meant mainly meant for
classes that were written
before these conventions were
defined. When you are
creating new classes, as in this

book, it is best to simply follow
these naming conventions, which
have the important effect of
make them easier to understand.

The term “bean” symbolizes a
reusable component that can
easily work together with
other beans to create
applications, much as a coffee
bean can be seamlessly mixed
with other coffee beans to
create a coffee flavor.

Even classes that do not follow
these conventions qualify as
beans as long as they provide

some way of specifying the
getter and setter methods of
properties. Naming
conventions are one way of
doing so. The Java beans
framework provides other
mechanisms to do so, which
are much more complicated
and meant mainly meant for
classes that were written
before these conventions were
defined. When you are
creating new classes, as in this

book, it is best to simply follow
these naming conventions, which
have the important effect of
make making them easier to
understand.

change what the method does. However, in this case, we would be violating the bean conventions for

naming getter and setter methods. The words “get” and “set” are like keywords in that they have special

meanings. While keywords have special meanings to Java, “get” and “set” have special meanings to

those relying on bean conventions. Under these conventions, the names of both kinds of methods

matter, but not the names of the parameters of the setter methods.

On the other hand, the number and types of parameters and results of the methods matter. The getter

method must be a function that takes no parameter, while the setter method must be a procedure that

takes exactly one parameter whose type is the same as the return type of the corresponding getter

method.

These conventions, like any other programming conventions, are useful to (a) humans trying to

understand code so that they can maintain or reuse it, and (b) tools that manipulate code. A class that

follows these conventions is called a bean.

In the definition of properties, we used the relationships among the signatures of the methods of a

specific class, as shown in the figure. We will refer to these relationships as programming patterns.

These are to be distinguished from design patterns, which describe the protocol used by (instances of)

multiple classes to communicate with each other. MVC is an example of a design pattern, as it describes

how models, views, and controllers, which are instances of different classes, communicate with each

other.

Figure 15 Relationships among method signatures in the Bean programming pattern

Programming Patterns for Collections and Tables
While all properties are logical components, not all logical components are properties. The reason is that

an object can have only a static number of properties, defined by the getter and setter methods of its

class. It is not possible to dynamically add properties as an object executes. Consider the following

modification to the ConcertExpense interface in which the list of observers is exported by a getter

method. This list dynamically grows as observers register with the model.

public class C
{

}

public T getP() {
...

}

public void setP(T newValue) {
...

}

Figure 16 A Collection Property

Previously, we could not identify the physical components of this list, as we did not know the internal

structure of Vector. Now we cannot identify the logical components of this collection, as we have no

programming patterns for identifying dynamic logical components.

If we are building a Java-based infrastructure, we could assume that all dynamic lists are instances of the

Collection types defined by Java. However, this does not allow us to support programmer-defined

dynamic lists such as the one shown below.

Figure 17 A String History

This type is a history in that once an element is added, it cannot be deleted or modified. No existing Java

Collection type directly supports histories – we must create them ourselves, possibly using some existing

Java Collection type.

Thus, it would be useful to support programmer-defined types such as Vector and StringHistory that

support a dynamic indexable number of logical components. As there are no standard programming

patterns for such types, let us define our own, based on the conventions used in class Vector.

We will say that a type is an indexable collection of logical components of type T if it provides (a) a

public method named elementAt taking a single int parameter returning an element of type T, and (b)

a public parameter-less method named size to determine the number of elements currently in the

collection. This is in the spirit of looking for methods whose names start with get to determine and

access the static properties of an object. Like the getters, these are read methods called by views.

public interface ConcertExpense {

public float getTicketPrice() ;

public int getNumberOfAttendees() ;

public void setNumberOfAttendees(int newVal);

public void setTicketPrice(float newVal);

public float getTotal() ;

public void addObserver(Observer observer) ;

public Vector getObservers();

}

public interface StringHistory {
public void addElement(String element);

public int size();

public String elementAt(int index);

}

An indexable collection can provide additional optional methods to insert, delete, or modify its

components. We will assume the patterns shown below for defining these methods. These methods are

like the optional setter methods in a Bean. Like the setter methods, these are write methods called by

controllers.

Figure 18 Vector-based Programming Pattern

The programming pattern above is based on the Java class Vector, which was the first indexable

collection type offered by Java. Some of the infrastructures you will use in this class were built before

other Java Collection types were introduced and thus assume these patterns. It is, of course, possible to

define other conventions, based, for instance on the Java ArrayList class.

Another important logical structure is a table. The figure below defines the programming patterns

assumed here for defining a table that maps keys of type K to elements of type E. The type Enumeration

is the precursor of the more popular type Iterator.

Figure 19 Table Programming Patterns

We see below an example of this pattern, which does not define any remove method.

public void addElement (T t);

public T elementAt (int index);

public int size();

public Any setElementAt(T t, int index);
public Any removeElementAt(int index);

public Any removeElementAt(T t);

public Any insertElementAt(T t, int index);

Element Type. Read methods

Write methods (optional)

Unconstrained Type (void or T in practice)

public Any put (K k, E e);

public Any remove(K k);

public E get (K k);

public Enumeration keys();

Read methods

Write methods (optional)

Figure 20 Implementation of the Table Pattern

Composing Patterns
These Bean, collection, and table programming patterns allow us to compose a variety of programmer-

defined classes whose logical structure is exposed to an infrastructure. The figure below shows an

example.

Figure 21 Pattern Composition

Here we have used color coding to identify the pattern used in the definition of each structured logical

component. The leaf components of this structure are either primitive types, such as int and boolean, or

predefined object types, such as String and Boolean that are well known to the infrastructure.

It is possible for a logical component to be a programmer-defined type that does not follow one of these

three programming patterns. The modified ConcertExpense type given below is an example of such a

type, as it no longer follows Bean conventions. An infrastructure would regard such as type as a leaf

node in the logical structure, and would be unable to, for instance, lock components of the type.

public interface StringToConcertExpense {
public ConcertExpense get(Key string);

public void put(Key string, ConcertExpense expense) ;

public Enumeration<String> keys();

}

Bean

int Bean

Vector boolean

Bean Bean

Hashtable

float String float String

String Boolean String Boolean

Primitive values

Predefined objects not
implementing patterns

Bean Pattern

Vector Pattern

Table Pattern

Properties

Indexed Elements Key, Value Pairs

enum

Figure 22 A Programmer-defined type not following any programming pattern

Efficient Communication in Distributed MVC
Programming patterns offer a solution to the problem of automatically providing fine-grained

collaboration functions in an infrastructure that allows multiple users to use different views to

manipulate shared models. Let us next consider the issue of efficient distributed communication.

In distributed MVC, a model is on a different machine from the view and controller of a user. This means

passing parameters to it and receiving results from it involves sending messages over the network,

which can be costly. To illustrate this cost, consider what happens when a user makes a new input.

1. The controller of the user sends the model a message with the new input.

2. The model processes the input, and then sends a message to each view informing them that it

has changed.

3. Each view responds by invoking one or more read methods in the model to get the current state

of the model.

4. The model responds to each read method by sending a message containing the returned value.

Some of these steps such as 1 cannot be optimized. However, it is possible to make this communication

more efficient by having the model send, with the notification to the views, the parts of its logical

structure that have changed. As a result, steps 3 and 4 are not necessary.

Thus, the notion of the logical structure is necessary to support not only fine-grained collaboration

functions but also fine-grained notifications. The nature of the notification sent when some component

of a logical structure changes is tied to the programming pattern defining the structure.

The following modified version of AConcertExpense illustrates the nature of the notifications defined for

the Bean pattern by Java.

public interface ConcertExpense {

public float obtainTicketPrice() ;

public int numberOfAttendees() ;

public void writeNumberOfAttendees(int newVal);

public void ticketPrice(float newVal);

public float computeTotal() ;

public void addObserver(Observer observer) ;

}

Figure 23 Property Notifications

This model does not directly store or notify observers in a list. Instead, it uses an instance of

PropertyChangeSupport, provided by Java, to do so. As we see above, a notification indicates name of

the property that changed, its old value, and its new value. By sending the old values, the observable

frees the observables from remembering these values. The firePropertyChange() method of

PropertyChangeSupport converts these three values into an instance of the standard Java

PropertyChangeEvent and passes this value as a parameter to the notification method invoked in a

PropertyChangeListener.

The following code gives the exact details of the notification method and event.

public interface java.beans.PropertyChangeListener

extends java.util.EventListener {

 public void propertyChange(PropertyChangeEvent evt);

}

public class java.beans.PropertyChangeEvent

extends java.util.EventObject {

 public PropertyChangeEvent (

Object source, String propertyName,

Object oldValue, Object newValue) {…}

 public Object getNewValue() {…}

 public Object getOldValue() {…}

 public String getPropertyName() {…}

public class AConcertExpense implements ConcertExpense {

float unitCost = 0;

int numberOfAttendees = 0;

PropertyChangeSupport propertyChange = new PropertyChangeSupport(this);

public float getTicketPrice() { return unitCost; }

public void setTicketPrice(float newVal) {

if (newVal == unitCost) return;

float oldVal = unitCost; int oldTotal = getTotal();

unitCost = newVal;

propertyChange.firePropertyChange("ticketPrice", oldVal, newVal);

propertyChange.firePropertyChange("total", oldTotal, getTotal());

}

public int getNumberOfAttendees() { return numberOfAttendees; }

public void setNumberOfAttendees(int newVal) {

if (numberOfAtendees == newVal) return;

int oldVal = numberOfAttendees; int oldTotal = getTotal();

numberOfAttendees = newVal;

propertyChange.firePropertyChange("numberOfAttendees", oldVal, newVal);

propertyChange.firePropertyChange("total", oldTotal, getTotal());

}

public float getTotal() {return unitCost*numberOfAttendees; }

public void addPropertyChangeListener(PropertyChangeListener l) {

propertyChange.addPropertyChangeListener(l);

}

}

 …

}

An observable for such observers must define the following method to add an observer:

addPropertyChangeListener(PropertyChangeListener l) {…}

Our example model implements this method by simply asking PropertyChangeSupport to keep track of

the listener.

In addition, an observable can optionally define the following method to remove an observer:

removePropertyChangeListener(PropertyChangeListener l) {…}

Our example model does not define this method.

ObjectEditor is an example of a PropertyChangeListener, as shown below.

Figure 24 ObjectEditor as a PropertyChangeListener

If a model defines the method:

addPropertyChangeListener(PropertyChangeListener l) {…}

the ObjectEditor view automatically calls it to register itself with the object. It reacts to the notification

about a property change by updating display of property, as shown below:

Model
(Observable)

OE View
(Observer)

Write method (
add(int))

OE Controller

ReadMethod
(getValue())

P
e
rf

o
rm

s
In

p
u

t

P
e
rfo

rm
s O

u
tp

u
tpropertyChange

(PropertyChangeEvent

event)

addPropertyChangeListener(PropertyChangeListener listener

public class ObjectEditorView implements
java.beans.PropertyChangeListener {

public void propertyChange (PropertyChangeEvent arg) {

// update display of property arg.getPropertyName()

// to show arg.getNewValue()

…

}

}

Collection and Table Notifications
Property notifications work only for objects implementing the Bean pattern. They do not work for

changes to a variable sized collection, such as a AStringHistory. When we invoke a write method (like

addElement()) on such a collection, we do not change any property. There is no standard interface for

communicating information about collection changes, so we will define one which is summarized in the

figure below.

Figure 25 Collection notifications

To support this architecture, we define the following VectorListener and VectorChangeEvent interfaces,

which correspond to the PropertyChangeListener and PropertyChangeEvent interfaces.

Model
(Observable)

OE View
(Observer)

Write method (
addElement(Object))

OE Controller

ReadMethod
(elementAt(index))

P
e
rf

o
rm

s
In

p
u

t

P
e
rfo

rm
s O

u
tp

u
tupdateVector

(VectorChangeEvent

event)

addVectorListener(VectorListener vectorListener)

package util.models;

public interface VectorListener {

public void updateVector(VectorChangeEvent evt);

}

The word, Vector, in these interfaces reflects the fact that they were invented for Vectors. In fact, they

can be used for any variable sized collection implementing the collection pattern given before.

VectorChangeEvent recognizes four important different changes to such a collection: adding a new

element to the end of the collection, deleting an existing element, inserting a new element at an

arbitrary position, and clearing of the collection. It defines integer constants for each of these event

types. The event indicates the source object that fired it, its type (defined using one of the constants

mentioned above), the position of the element added/inserted/deleted by the write operation, the old

object (if any) at that position, the new object (if any) inserted by the operation at that position, and the

new size of the collection after the operation finishes execution. Knowing the new size will be important

when we create replicated models.

We also define a class VectorChangeSupport, which is the analogue of the Java PropertyChangeSupport

class. The following code shows its use in the StringHistory example.

Figure 26 Notifying String History

package util.models;

public class VectorChangeEvent {

// constants to be used for event type

public static final int AddComponentEvent = 1,

DeleteComponentEvent = 2,

ChangeComponentEvent = 3,

InsertComponentEvent = 4,

CompletedComponentsEvent = 5,

ClearEvent = 6,

UndefEvent = 1000;

// constructor, oldObject can be null when no value is

replaced

public VectorChangeEvent(Object theSource, int type,

int posn, Object oldObject, Object newObject, int newSize) {

…

}

…

}

import util.models.VectorChangeSupport;

import util.models.VectorListener;

public class AnObservableStringHistory extends AStringHistory {

VectorChangeSupport vectorChange = new

AVectorChangeSupport(this);

public void addVectorListener(VectorListener vectorListener) {

vectorChange.addVectorListener(vectorListener);

}

public void addElement(String element) {

super.addElement(element);

// vectorChange constructs VectorChangeEvent

vectorChange.elementAdded(element);

}

}

Assuming a working implementation of the StringHistory interface, AStringHistory, we have created

above a subclass that notifies observers about the additions to the collection. For each kind of write

operation such as addElement(), VectorChangeSupport defines a corresponding method, such as

elementAdded(), that can be invoked to inform all observers about the operation. This method creates

an appropriate change VectorChangeEvent and passes it to the updateVector() method of the observer.

The updateVector() method must decode the update operation by looking at the type property of the

event. We also provide a more direct way to get collection notifications, which does not involve such

decoding. We define another listener interface, called VectorMethodsListener, which unlike

PropertyChangeListener and VectorListener, is not event based. Instead, it defines a separate method

for each kind of write operation.

Figure 27 VectorMethodsListener

As we see above, the interface defines a large number of methods, which must be implemented by

every implementation of it. Thus, whether a collection observer implements VectorMethodsListener or

VectorListener depends on how many different kinds of update operations the observer is interested in.

VectorChangeSupport handles notifications to both kinds of observers, as illustrated by the following

variation of AnObservableStringHistory.

package util.models;

public interface VectorMethodsListener<ElementType> {

public void elementAdded(Object source, ElementType

element, int newSize);

public void elementInserted(Object source, ElementType

element, int pos, int newSize);

public void elementChanged(Object source, ElementType

element, int pos);

public void elementRemoved(Object source, int pos, int

newSize);

public void elementRemoved(Object source, ElementType

element, int newSize);

...

}

Figure 28 Adding both kinds of listeners

The model simply needs to define an extra method that allows registration of VectorMethodsListener

instances. The notification methods such as elementAdded() defined by VectorChangeSupport notify

both kinds of listeners.

Table Notifications
There are only two kinds of table notifications: (1) a key, value pair has been put, or (2) a key has been

removed. Therefore, we support only one kind of table listener, based on VectorMethodsListener rather

than event-based VectorListener.

Figure 29 Table Listener Architecture

import util.models.VectorChangeSupport;

import util.models.VectorListener;

import util.models.VectorMethodsListener;

public class AnObservableStringHistory extends AStringHistory {

VectorChangeSupport vectorChange = new

AVectorChangeSupport(this);

public void addVectorListener(VectorListener vectorListener) {

vectorChange.addVectorListener(vectorListener);

}

public void addVectorMethodsListener(VectorMethodsListener

vectorListener) {

vectorChange.addVectorMethodsListener(vectorListener);

}

public void addElement(String element) {

super.addElement(element);

// vectorChange notifies both kinds of listeners

vectorChange.elementAdded(element);

}

}

Model
(Observable)

OE View
(Observer)

Write method (
put(Object, Object))

OE Controller

ReadMethod
(get(Object))

P
e
rf

o
rm

s
In

p
u

t

P
e
rfo

rm
s O

u
tp

u
t

keyPut(), keyRemoved()

addHashTableListener(HashtableListener hashtableListener)

The interface, HashtableListener, defines the two table notifications.

Figure 30 Table Listener

We also provide a predefined class, HashtableChangeSupport, that keeps track of table listeners and

notifies them as illustrated in the code below.

Figure 31 Notifying Table

Predefined Notifying Dynamic Structures
Typically, we do not need to define our own tables and collections – the predefined Java classes Vector

and Hashtable suffice. However, these classes do not send notifications. Therefore, we have defined

notifying versions of these classes, called AListenableVector and AListenableHashtable, respectively.

These two classes support the collection and table notifications described above.

Often we need to create a notifying dynamic sequence of characters. For example, to create a

synchronous collaborative editor, we would need to trap each user’s insertion, deletion, and

modification of a character, and send it to other users. We could use AListenableVector to store this

sequence of characters, but that would be inefficient. Therefore, we define another class,

package util.models;

public interface HashtableListener {

public void keyPut(Object source, Object key, Object

value, int newSize);

public void keyRemoved(Object source, Object key, int

newSize);

}

import util.models.HashtableChangeSupport;

import util.models.HashtableListener;

public class AnObservableStringToConcertExpense implements

StringToConcertExpense {

Hashtable contents = new Hashtable();

HashtableChangeSupport tableChange = new

AHashtableChangeSupport(this);

public void addHashtableListener(HashtableListener

tableListener) {

tableChange.addHashtableListener(tableListener);

}

public void put (String element, ConcertExpense expense) {

contents.addElement(element);

tableChange.elementPut(element, expense);

}

public void get(String element) {

return contents.get(element);

}

public Enumeration keys() {

return contents.keys();

}

}

AListenableString, for such a sequence. Unlike a Java String, but like a StringBuffer, AListenableString is

mutable. In fact, the implementation of AListenableString uses a StringBuffer. It sends the collection

notifications described earlier. We will see below its use.

A distributed model should create instances of these three classes when its logical structure consists of

dynamic tables, collections and text.

Figure 32 Using predefined dynamic classes

Visualization Examples
To better understand logical structures, notifications, the predefined notifying classes, and ObjectEditor

behavior, let us consider some additional examples.

ObjectEditor, in fact, is a tool based on logical structures. Given a model, it creates a widget structure

that is isomorphic to the logical structure of the model. This is shown in the figure below.

Bean

int float Bean

AListenableVector Boolean

Bean Bean

AListenableHashtable

int String int AListenableString

String Boolean String Boolean

Properties

Indexed Elements Key, Value Pairs

Figure 33 Correspondence between logical and widget structure

To create the widget structure, ObjectEditor must map each logical component to an appropriate

widget. It allows the programmer to influence this mapping. Here we will consider some aspects of the

default mapping supported by it, which is based on the type of the logical component.

Strings, and as we see in the figure, numbers, are mapped to textboxes. Enums are mapped to combo-

boxes, as shown below.

Figure 34 Enums-->ComboBoxes

Here we see the visualization of an instance of the class, ATypedConcertExpense, which implements the

interface TypedConcertExpense. This interface defines an enum property, concertType, displayed as a

combobox by ObjectEditor, with each enum literal corresponding to a constant defined by the enum.

import java.beans.PropertyChangeListener;

public interface ConcertExpense {

public float getTicketPrice();

public void setTicketPrice(float newVal);

public int getNumberOfAttendees();

public void setNumberOfAttendees(int newVal);

public float getTotal();

public void addPropertyChangeListener(PropertyChangeListener l);

}

public enum ConcertType {

Country, Rock, Jazz, Classical

};

public interface TypedConcertExpense extends ConcertExpense {

public ConcertType getConcertType();

public void setConcertType(ConcertType newVal);

}

Boolean values are mapped to checkboxes, as shown in the figure below.

Figure 35 bool--> check box

The object above defines two additional properties: comment of type AListenableString, which allows a

user to add a textual comment, and longComment of type bool, which determines if the comment is too

long. AListenableString, like String, is mapped to a textbox.

The figure below shows how collections and tables are mapped to widgets. A collection is mapped to a

panel, whose components are widgets to which the logical components of the collection are mapped.

ObjectEditor chooses a default scheme for aligning the component widgets.

A table’s logical structure is mapped to a visual table, with each key, value pair being displayed as a

separate row of the visual table. Thus, the logical structures of the key and value are flattened into the

row.

public interface CommentedConcertExpense extends TypedConcertExpense {

public boolean getLongComment();

public AListenableString getComment();

public void setComment(AListenableString newVal);

}

Figure 36 Collection, Table --> Container, Table Widget

In addition to mapping a logical structure to a widget structure, ObjectEditor registers view objects in it

as listeners of all notifying nodes in the logical structure, as shown in the figure below. These nodes

must, of course, implement standard patterns so the registration methods can be found in them and

notifications sent by them can be processed.

public static void main(String[] args) {

TypedConcertExpense firstConcert = new ACommentedConcertExpense();

TypedConcertExpense secondConcert = new ACommentedConcertExpense();

AListenableVector<TypedConcertExpense> list = new AListenableVector();

list.addElement(firstConcert);

list.addElement(secondConcert);

ObjectEditor.edit(list);

Hashtable<String, TypedConcertExpense> table = new AListenableHashtable();

table.put("Concert 1", firstConcert);

table.put("Concert 2", secondConcert);

ObjectEditor.edit(table);

}

Key Value

Bean

int float Bean

AListenableVector Boolean

Bean Bean

AListenableHashtable

int String int AListenableString

String Boolean String Boolean

Properties

Indexed Elements Key, Value Pairs

Root: Object passed as
parameter to

ObjectEditor.edit()

Register method
called by

ObjectEditor view(s)

Figure 37 Registering with Notifying Nodes

Let us look at the dynamic behavior of one of the final user-interfaces of the concert expense example

to better understand notifications.

Suppose a user edits the numberOfAttendees textbox but does not hit Enter. As shown below, a star is

shown next to the textbox, and the total textbox is not updated. This is because the ObjectEditor

controller processing this textbox waits for Enter before calling setNumberOfAttendees.

Figure 38 Write method not called until user pressed Enter

As we see below, when the user does hit Enter, the star disappears and the total field is updated by the

ObjectEditor view responsible for this field in response to the property change notification sent by the

setter method.

Figure 39 Controller calls setter and view processes notification by updating total

Sometimes the model must be involved as each character is entered by a user. In our example, it

incrementally calculates the longComment property as each character is entered. To ensure that it gets

these notifications, it made this property an instance of AListenableString and registered itself as a

listener of this object. ObjectEditor processes each incremental edit to the textbox to which the instance

is mapped by invoking an appropriate write method in it, which in turn, notifies its listeners. Because

these write methods are called incrementally, a “*” is not shown next to the edited textbox.

Figure 40 Write methods in AListenableString called on each incremental edit to its text box

The figure below shows what happens when the user presses Enter after having finished editing the

comment. At this point the setComment() method in the model is called, which simply clears the

comment value. ObjectEditor, which registered itself as a listener of the comment, responds to this

event by clearing the text box.

Figure 41 The enter key calls the property setter which clears the comment but not longComment

The following implementation of the class of the (root) model shows how this behavior is implemented.

Figure 42 Implementation of the root model

The model assigns a new instance of AListenableString to the comment instance variable and, in its

constructor, registers itself as a VectorListener of this value. Whenever the instance is updated, it calls

the updateVector() method in the model, which fires a property change event informing its own

listener(s), the ObjectEditor, about the new value of the longComment property. As mentioned later,

the setComment() method clears the instance of AListenableString. While ObjectEditor listens to this

event, the Sync infrastructure, described later, does not. Therefore, it is more general to call the

removeAllElements() method, which is more inefficient as it sends a series of elementRemoved()

notifications processed by both ObjectEditor and Sync.

Summary
The MVC framework defines three kinds of objects: models, views, and controllers, which are connected

to each other dynamically. When a user enters a command to manipulate a model, a controller

processes it and invokes an appropriate method in the model, which typically changes the state of the

model. If the method changes the model state, it notifies the views and other observers of the model

about the change. A view responds to the notification by redisplaying the model.

public class ACommentedConcertExpense extends ATypedConcertExpense implements

VectorListener, CommentedConcertExpense {

AListenableString comment = new AListenableString();

static int LONG_COMMENT_SIZE = 10;

boolean longComment = false;

public ACommentedConcertExpense() {

comment.addVectorListener(this);

}

public boolean getLongComment(){return comment.size() > LONG_COMMENT_SIZE;}

public AListenableString getComment() {return comment;}

public void setComment(AListenableString newVal) {

comment = newVal;

comment.clear();

}

boolean oldLongComment = false;

public void updateVector(VectorChangeEvent evt) {

boolean newLongComment = getLongComment();

propertyChange.firePropertyChange("longCommentType", oldLongComment,

newLongComment);

oldLongComment = newLongComment;

}

}

