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5. Replicated Objects 

In the previous chapter, we studied the MVC architecture and saw how it could be distributed by 

creating a central model that communicates with distributed models and views. Here we will see an 

alternative approach for distributing MVC, which replicate models. This approach can, in fact, be used to 

replicate any object. We will study three variations of this approach, which bind replication semantics to 

objects at different times. 

Functional Motivation: Partial Coupling and Disconnection 
As motivation for replicated objects, consider the whiteboard implementation below. Here, the two 

whiteboards displayed to different users are partially coupled. The drawing palette, which allows users 

to determine the tool selection, is not coupled. On the other hand the drawing canvases are coupled. 

Thus, as shown below, if the left user selects the line-drawing tool, and draws a line, then the line is 

shown in the canvas of the right user, but the right user’s tool selection is unaffected.  

 

Assume that the whiteboard is implemented using MVC, and the current tool selection is part of the 

model. If a single centralized model is created, then this model would manage multiple tool-selections, 

one for each user. Thus, the model would have to be collaboration-aware.  As we see below, if we 

replicate the model, it is possible to use an existing single-user collaboration-unaware model storing a 

single tool selection to create such an application. 

Perhaps an even more compelling reason for replicated MVC is disconnected collaboration, that is 

collaboration sessions in which are connected to each other all the time.  Centralized MVC requires the 

local views and controllers of the users to be continuously connected to the central model. Replicated 

MVC, on the other hand, allows these UI components to access a local model. 
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Replicated Architecture 

Replicated MVC with Centralized Semantics and no Consistency 
In replicated MVC a separate model is created for each user, and the models communicate with each 

other, directly or indirectly, to couple the users. The most straightforward replicated architecture is 

shown below. 

 

The inter-model communication protocol is the same as the model-view communication protocol. In 

other words, each model becomes an observer or listener of all other models. In response to a state- 

change notification received from a remote model, the local model updates its state accordingly.  For 

example, if a whiteboard model receives a notification about a new shape added by a remote canvas, it 

adds that shape to its local canvas object. 

This is a useful architecture in that it offers different performance from the centralized MVC architecture 

we saw earlier. In the next chapter, we will look more in depth at the performance issues. However, it 

does not meet the requirements of the motivating whiteboard example. As in the centralized case, we 

cannot directly use an existing single-user model to implement this architecture. The model is 

notification and distribution aware in that it now receives distributed notifications from remote models. 

Moreover, implementing partial coupling requires that the model also be coupling aware.  If multiple 

users can edit concurrently, the models would also need to implement special consistency protocols. 

Nonetheless, this architecture provides the basis for replication solutions without these drawbacks. 

General Replicated MVC Architecture 
In our discussion of centralized MVC and centralized and replicated shared window, we saw that 

collaboration-aware proxies allow shared application objects to be collaboration-transparent. We can 

apply this insight also to replicated MVC architectures, as shown in the figure below. 
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Now the model is no longer an observer. It is only an observable, as in classical single-user MVC. A 

client-side proxy, residing on each computer, (a) listens to notifications from a collaboration-unaware 

model, and (b) invokes corresponding write methods on remote replicas through remote client proxies. 

An optional server proxy can be used to implement some centralized functions such as session 

management, as we see later. These collaboration proxies can provide selective sharing, locking, access 

control, disconnection and other collaboration functions for the collaboration-unaware models, views 

and controllers.  

To reduce programming effort, a better idea is to provide general infrastructure client and server 

proxies, as shown below. 

 

Programmer-defined Replicated Types  
One way to provide such an infrastructure is to support replicated types in the manner remote types 

were supported in RMI. Inspired by the Java Remote interface, we can define a Replicated interface. If 

an object in an application implements this interface, then it is automatically replicated on the 

computers of all users sharing the application. Thus, if the concert expense class of the previous 

chapters implements this interface, its instances are automatically replicated. 
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The Remote interface was implemented by supporting invocation of methods on some remote instance 

through infrastructure proxies. The Replicated interface can be implemented by supporting invocation 

of methods on all replicas of an object through infrastructure proxies. Thus, if the setTicketPrice() 

method is invoked by some controller on its local model, it can be automatically invoked on all replicas 

of the model. As a result, the replicas can remain synchronized. 

 

Just as all methods of an object should not be invoked remotely, all methods of an object should not be 

broadcast to all replicas. For instance the getTicketPrice() method, which does not change the state of 

an object, should not be broadcast. We could use the approach used in RMI to distinguish between 

broadcast and local methods. 

The use of a Replicated type has not actually been implemented in any system. So let us look at a 

variation of it that was actually implemented in Xerox’s Colab programming environment  

Broadcast Method Declarations 
Colab extended the programming language with the keyword broadcast to mark methods that are 

broadcast. Methods not marked with this keyword are executed only on the local replicas. We see the 

use of this keyword in our example below. 

import java.beans.PropertyChangeListener;

public interface ConcertExpense extends Replicated  {

public float getTicketPrice();

public broadcast void setTicketPrice(float newVal);

public int getNumberOfAttendees();

public broadcast setNumberOfAttendees(int newVal);

public float getTotal();

public void addPropertyChangeListener(PropertyChangeListener l);

}

Replica

Collaboration-aware 
Proxies

Replica

Collaboration-aware 
Proxies

void setTicketPrice (float)

void setTicketPrice (float)

float getTicketPrice ()

float getTicketPrice ()



 

Here we have been careful to make only state-changing methods broadcast. Moreover, we have not 

made all of these methods broadcast. In particular, the addPropertyChangeListener() method is local, 

because this object allows “replicas” to have local listeners. The quotes around the term “replicas” 

indicate that these objects are not true replicas, because only part of their state can be coupled. Colab 

used the term associates to refer to such partially coupled objects, and the term association to a set of 

partially coupled associates. 

The following figure shows an association of two associates. As shown in the figure, a call to a broadcast 

method in an associate results in the method being called on all associates in the association. A call to a 

local method in an associate results in the method being called only in that associate. 

 

Associates may not only be models, but also views, controllers, and other objects.  To illustrate, consider 

a controller object that listens to text widget events. Such an object may have the method 

textChanged(evt) called whenever new text is entered by the user in the widget. This method can be 

made broadcast to provide controller-level coupling. 

 

import java.beans.PropertyChangeListener;

public interface ConcertExpense {

public float getTicketPrice();

public broadcast void setTicketPrice(float newVal);

public int getNumberOfAttendees();

public broadcastsetNumberOfAttendees(int newVal);

public float getTotal();

public void addPropertyChangeListener(PropertyChangeListener l);

}
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Spurious Broadcasts 
The implementation of broadcast methods is handled by the infrastructure, as shown in the figure. Thus, 

the programmer is responsible only for determining which state-changing methods of a class are 

broadcast.  This may be tricky. 

In the concert expense example, we looked only at the interface to decide which methods should be 

broadcast. We may also need to look at the class for two reasons. First, we may wish to make private 

methods broadcast. For example, if a set of public methods change some state through some a private 

method, then the programmer could make the private method broadcast. Second, we have to look at 

the implementation to ensure we do not have needless broadcasts. Spurious broadcasts occur when a 

broadcast method (b1) calls another broadcast method (b2) because the called broadcast method is 

called more than once in the local and remote associates: once in response to the call to b1 in the local 

associate, which in turn makes a local call to b2; once in response to the local call to b2 in each peer 

associate.  

Spurious broadcasts are illustrated in the example below, where the broadcast method setTicketPrice() 

calls the broadcast method notify().  

 

The notify() method is called twice in each associate, once by setTicketPrice() method in the local 

associate, and once in response to the call to the method in the peer associate. 

public class AConcertExpense implements ConcertExpense{

float unitCost= 0;

int numberOfAttendees = 0;

Vector<Observer>  observers= new Vector() ;                

public float getTicketPrice() {  return unitCost;  }

public broadcast void setTicketPrice(float newVal) {

unitCost= newVal;

notify();

}

public int getNumberOfAttendees() {  return numberOfAttendees;   }

public broadcast void setNumberOfAttendees(int newVal) {

numberOfAttendees = newVal; 

notify();

}                 

public float getTotal() {return unitCost*numberOfAttendees;   }

public void addObserver(Observer  observer) {        

observers.add(observer);

}

broadcast void notify() {

for (Observer observer: observers) {

observer.update()

} 

}

}



 

Spurious broadcasts of a method not only unnecessarily use computing and communication resources 

but also lead to incorrect program behavior when the method is not idempotent. 

In a single class, it is relatively easy to avoid spurious broadcasts. It is harder to do so when the classes 

interact with each other as in the MVC design pattern. The designers of communicating classes must 

carefully look at all of these classes to avoid spurious broadcasts. In the example below, the designers of 

the controller and model classes should coordinate with each other to ensure that the spurious 

broadcast of setTicketPrice() is avoided.   

 

Controlling the What and When of Sharing 
Broadcast methods allow application programmers to determine both (a) which parts of the state of an 

object are shared, and (b) when shared state is synchronized. This is illustrated in a version of our 

running example that does not clear the comment. 
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Here, the two broadcast methods ensure that incremental changes to the comment property are 

shared. If we do not want incremental changes to be shared, we can make the updateVector() method 

local. In this case, only the setComment() methods are coupled, which means remote users see the 

comment only when it is committed. If we do not want the comments in the associates to be coupled, 

we can make both methods local. 

Thus, broadcast methods support coupling flexibility. To evaluate the extent of this flexibility, it is also 

important to determine when coupling decisions are made. This leads us to the general notion of 

binding times of entity attributes. 

Binding Time 
Often entities are associated with attributes. For example, variables are associated with types and 

memory addresses. The binding time of an entity attribute is the (latest) time at which the entity can be 

given a (new) value of the attribute. By a time, we do not mean the absolute clock time but some 

relative time based on the stages through which the entity passes. In the case of program  entities such 

as variables, we can identify five successive stages: the program containing the entity is written, 

compiled, linked, loaded and executed, which lead to five increasing relative times: program-writing, 

compile, linking, loading and execution time. 

 

 

 

 

public class ACommentedConcertExpense extends ATypedConcertExpense implements

VectorListener, CommentedConcertExpense {

...

public broadcast void setComment(AListenableString newVal) {

comment = newVal;

//comment.clear(); 

}  

...

public broadcast void updateVector(VectorChangeEvent evt) {

boolean newLongComment = getLongComment();

propertyChange.firePropertyChange("longCommentType", oldLongComment,

newLongComment);

oldLongComment = newLongComment;

}

}

Written Compiled Linked Loaded Executing



 

An even earlier time than all of these stage-based times is language writing time. 

The flexibility of a system binding an attribute to a program element is measured by the time at which it 

binds the attribute to the element – the later this time, the more flexible the system. On the other hand, 

sometimes a later binding results in a less efficient system Thus choosing a binding time involves a 

tradeoff. 

To illustrate, consider the binding of various kinds of addresses to an instance variable in a class. The 

offset of the variable relative to the containing object is bound at compile time. This offset is added to 

additional offsets generated at link and load times to create the virtual address of the object. The virtual 

address is bound at run time to an actual physical address. 

Binding the physical address of the variable at a time earlier than execution time would not allow the 

variable to be relocated in memory during execution time – that is, it would not allow the virtual page 

containing it to be moved in memory. On the other hand, binding the offset of the variable within its 

object as late as execution time would require this value to be searched or computed at run time. Thus, 

we see here that early binding can be more efficient and late binding leads to more flexibility. 

In this course, we are interested in binding of collaboration attributes to sharable program entities. In 

this chapter, we are looking at the binding of coupling attributes to associate. 

In a system that requires the use of the broadcast keyword to define coupling, at program writing time 

we bind which parts of the state of a replicated object are shared and when these parts are 

synchronized. Specifically, these attributes are bound when the class of the replicated object is written. 

This early binding reduces the flexibility of application programs. In our example, different users of the 

program cannot determine if their comments are shared incrementally, on commits, or not at all.  In 

GoogleWave IM, such early binding would not allow users to decide if their messages are seen 

incrementally by others. 

Sometimes it is useful to share some state with a subgroup of users in a session. For example, a user 

may wish to share the comment with close friends in a session. Broadcast methods, as the name 

suggests, broadcast to all elements of an association. They do not multicast to a subgroup. Thus, which 

associates in an association execute non-local method is decided at language definition time.  

Multicast calls 
We can overcome these limitations by making the caller instead of the callee of a method determine if 

the state changed by the method is shared.  The callee can specify, as part of the call, the destination of 

the call, that is, the set of associates on which the call should be invoked. The following example 
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illustrates its use to create a MUDs like user-interface, in which a message M entered by a user U is 

entered in his history as “You said:  M“  and in others history as “U said: M”. The others keyword in a 

method call specifies that the method should be invoked on all associates in the association other than 

the local one. We will refer to such a call as a multicast call as it specifies a subgroup of the association. 

The call is destination-aware, as it explicitly indicates the associates in which it should be invoked. The 

absence of a destination argument indicates the call should be made only on the local associate. 

 

A destination-aware multicast call is the dual of a source-aware method declaration we saw in the 

previous chapter, shown below. 

 

In the former case, the callee provides an extra argument specifying the caller(s). In the latter case, the 

caller receives an extra argument specifying the caller. 

 It is in fact possible to combine the two dual ideas, as shown below. 

 

In the combined case, the caller provides an extra argument specifying the caller, and the caller receives 

an extra argument indicating the callee.  

public void addMessage(String msg) {

addMessage(“You said:”, msg);

addMessage(others, myName() + “ said:”, msg);

}

public void addMessage(String prefix, String msg) {

history.add(prefix + newVal);     

} Caller provides extra 
argument specifying 

callee

model.addMessage(prefix, comment); 

public void addMessage(String caller, String prefix, String msg) {

if(ac.authorize(caller)) {

history.add(prefix + msg);   }

}  
Callee gets an extra 
argument specifying 

caller.

public void addMessage(String caller, String prefix, String msg) {

if(ac.authorize(caller)) {

history.add(prefix + msg);   }

}  

public void addMessage(String msg) {

addMessage(“You said:”, msg);

addMessage(others, myName() + “ said:”, msg);

}



Syntactically, it seems there is no extra argument as both the call and declaration have the same 

signatures. However, semantically, the two arguments are unrelated. The caller indicates the 

destination and the callee receives the source. Thus the value of the caller formal parameter will not be 

others in the example above, it will be an identifier of the machine that made the call. 

The idea of making application programs aware of the destination and source of a remote call is an 

abstraction of the idea of making  each communication layer aware of the source and destination of the 

message abstraction supported by the lower-level layer.  

 

The physical, IP, and TCP/UDP network layers support addresses that are physical, internet, and port 

numbers, respectively. The OS layer supports higher-level addresses such as sockets. The conventional 

wisdom in distributed RPC supported by the language layer has been that the caller and callee of a 

procedure need not be aware of each other. Our discussion above shows that when RPC is used to 

create some collaborative applications, such awareness is indeed useful.  There is no standard defining 

the exact form of the identifier of caller and callee.  If these identifiers are used for access control, they 

must be unforgeable certificates. In the examples above, we have assumed they are textual 

representations of these certificates identifying the caller/callee hosts and/or users. 

The notion of multicast calls is related to the handling of calls that return values in a shared window 

system. Recall that when a window client made the call, listFonts(), the call could be directed at the local 

window system, the window system with the floor, any window system, or all window systems, as 

shown in the figure below. 
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As the call was destination-unaware, the window system made the choice based on the call. A 

destination-aware multicast call can allow a collaboration-aware window client to explicitly specify the 

subgroup to which the call is directed. 

The example above illustrates a problem with broadcast method declarations and multicast calls. What 

is the return value of such calls?  In general, it is the value returned by the local associate. If the return 

value is a list, such as in the case of listFonts(), then the return values of each call can be combined by an 

infrastructure  that understand the semantics of the call. 

Multicast calls are not currently supported by any RPC system. However, they are supported by some 

collaboration proxies created for collaboration-unaware tools. For each collaboration-unaware call 

supported by the tool, the proxy provides multiple calls, one for each multicast group defined by the 

proxy. This is illustrated using the listFonts() method provided by a window system. 

 

Here we have defined six different multicast groups: 

1. others: (The associates at) all hosts other than the host of the caller of the method. 

2. local:  The complement of the group above – it includes only the caller host. 

3. all: The union of the two groups above – it allows the call to be broadcast. 
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4. specific:  A set of hosts explicitly identified by the caller. 

5. any: Any host chosen by the proxy – this group supports the recently popular “anycast”. 

6. inputter: The host of the user whose input triggered the call, in case such a user can be 

identified. In a shared window system, this would be the user with the floor. In a fully replicated 

system such as Colab, the inputting and local hosts are the same. In a semi-replicated system 

such as a “centralized” window system shown above, in which the window system is replicated 

but the window client is centralized, the inputter may be different from the local user. In the 

figure above, the floor holder is User 2 rather than the local user, User 2. 

    As the discussion above applies, the physical windows on different sites to display a shared logical 

window form an association. The following example shows the application of the notion of a 

multicasting tool proxy in GroupKit. 

 

The coupling binding time of multicast calls depends on when the target of the call is specified. If the 

group is passed as a runtime argument to a call, then coupling decisions are made at execution time. If 

the group name is built into a proxy call, as in gk_toOthers, the destination is specified at program 

writing time. However, even in this case, multicast calls are more flexible than broadcast declarations. It 

is possible to multicast to a subgroup of the association. In addition, the group is specified when the 

client of a replicated classes is written, not when the replicated class is written. As a result, different 

clients of the same replicated class can couple instances of the class differently.  

Application and Association Binding  
Each associate in an association runs on a different host as part of an independent program. How are 

the various instances of a replicated class created in different distributed applications bound into an 

association? We can assume that each program takes as an argument the name of a session. 

 

This argument is processed by the collaboration infrastructure and used to group processes on different 

computers into sessions. It assumes a central session manager with which names are registered. A 

completed replicated approach is to pass each process locations of all other processes in the sessions. 

Instances of replicated classes will be put together into an association only if the processes that created 

these instances are  replicas, that is are in the same session. If a replicated class is a singleton, that is  

has only one instance in a process, then forming associations is straightforward - the singleton instances 

of all processes in a session form an association. 

However, if a process creates more than one instance of a replicated class, then we must decide how we 

should find their associates in the replicas of the process. If we assume that each process creates the 

proc insertIdea idea {

insertColouredIdea blue $idea

gk_toOthers ''insertColouredIdea red $idea'' }

java ConcertExpenseMain demoSession



same sequence of replicated objects, then the index of an instance in this sequence can be used to find 

its associates. That is, the ith members of these sequences in the different replicated processes are put in 

the ith association. This approach is, in fact, used in shared window systems to bind physical windows on 

different computers. 

However, the approach has two related problems, especially when applied to shared models. It requires 

that processes in a session run the same program, and the program is non deterministic. This 

requirement does not allow collaborating users to use different devices, as the programs on these 

devices will generally contain different views and controllers. 

Abstract Associate Name Server 
These problems arise because associates are being implicitly grouped into associations without any 

input from the user.  This is in contrast to explicit binding of processes into sessions, which is based on 

explicit session names provided by users. The solution then is to support explicit binding of associates. 

Imagine an RMI-like server that supports registration and lookups of named objects. The register 

operation does not store a reference to the registered object. Instead it creates a replica of the 

registered object, that is, a new associate in the association to which the registered object belongs. 

Similarly, the lookup call does not return a reference to the named object. Instead, it returns a replica of 

this object.  

 

 

Thus, the process that registers the object and the name server, and the processes that lookup the 

object all have associates kept consistent using some synchronization scheme such as broadcast method 

declarations or multicast calls. These processes do not have to run the same program deterministically 

as in implicit binding. Instead, they must agree on the name of each association created in a session. 

Association Name Server 
This approach is implemented by the Sync server, which is built on top of the RMI server. The following 

Sync programs concretely illustrate the approach.  Moreover, as some of the exercises are based on 

Sync, the examples give some of the details needed to do these exercises. 

The code executed to start the Sync server is given below. 
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The program simply calls the SyncServer method, instantiate, to start the server program. This method 

takes a list of String options. The “server_id” option specifies the name of the Sync server on a host. 

Here we have named it “A”. It takes the place of the port number in the case of an RMI server. The 

“trace” argument makes the server print the register, lookup and other operations on the console. 

Unlike the RMI server, the Sync server can display the objects registered with it. The “ui” option asks it 

to create this display. 

 

To allow the Java Sync server to be accessed by other processes, we must pass the following VM 

arguments to the program launching it. 

 

The argument, java.policy, is a file stored in the directory from which the program is launched, and has 

the following contents. 

  

The following is a client program that registers an associate with the Sync server and uses ObjectEditor 

to interact with it. 

package sync_server_starter;

import edu.unc.sync.server.SyncServer;

public class StartSyncServer {

public static void main(String[] args) {

String[] myArgs = {"--ui", "--trace",  

"--server_id", "A"};

SyncServer.instantiate(myArgs);

}

}

Trace client-

server 
interaction

Takes place of 

port #

grant {

permission java.security.AllPermission;

};



 

Like the RMI server, the binding operation specifies both the name of the server and the object being 

registered. In addition, it gives the name of the replica process registering the object, which as we will 

see later is used in Sync to allow application programs to create collaboration-aware programs. The 

syncArgs argument gives optional arguments. The one used here asks Sync to create an ObjectEditor 

user interface to control synchronization and display session state. Thus, this program starts two 

ObjecEditor interfaces, one for interacting with the registered model, and one for interacting with the 

Sync infrastructure. 

 

After the register operation, the server UI displays information about the registry. 

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

import edu.unc.sync.server.SyncClient;

public class SyncBudgetCreator {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

static String CLIENT_ID = "alice";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Object model = new AConcertExpense();

Sync.replicate (SERVER_NAME,

MODEL_NAME, 

model,

CLIENT_ID,

syncArgs);

ObjectEditor.edit(model);

}

}

register (name, object)

Takes place of 

port #

For  session 

management, 
awareness and 

other user-
specific 
functions.

Client-side UI



 

The following program illustrates the use of the lookup operation. 

 

The program is much like the one used by the associate creator except that it returns rather than 

registers a model. As before two ObjectEditor user interfaces are created by it. 

 

Sync uses Java Serialization to create replica copies. Hence the registered objects must implement this 

interface and declare appropriate transient variables. If the class of the object defines the method, 

initSerializedObject(), then Sync calls it after receiving a serialized version of it from a remote location. 

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetUser {

static String CLIENT_ID = "bob";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

ConcertExpense model = (ConcertExpense)    

Sync.lookup(SyncBudgetCreator.SERVER_NAME, 

SyncBudgetCreator.MODEL_NAME, 

CLIENT_ID,

syncArgs);

ObjectEditor.edit(model);

}

}

lookup (name)



Sync does not currently handle cyclic logical structures – hence you must break cycles using transient 

variables and re-create them after receiving a serialized copy. 

 In the following outline of the concert expense example, the lines in blue indicate code written to 

support explicit associate binding in Sync. 

 

Symmetric Associate Name Server 
Explicit name binding, as defined above, requires the developers of each new application to write two 

different programs: one that registers an associate, and another that looks it up. The former program is 

required to start a collaborative session with the program, and the latter is required to join it. This 

approach is consistent with asynchronous manipulation of some shared artifact. One user creates the 

artifact and allows/invites others to access it, while other users simply access a created artifact.  For 

instance, to share a directory in Groove, one user creates the directory on his/her computer, and others 

simply replicate it on their computers.  

However, this approach does not work well in several synchronous collaborative sessions, especially 

those involving lab experiments.  The users must coordinate with each other to decide who will start the 

session, and race conditions can occur if the creating and joining programs are executed about the same 

time, that is, a joining program may invoke the lookup call before the creating program executes the 

register call. 

A solution to this problem is to combine the register and lookup operations into a single operation and 

let the name server decide whether the combined operation does a register or lookup based on when 

the combined operation is executed. As it may behave like a lookup, it must return an associate and not 

take an associate as an argument. However, when it behaves like a register, it must have an associate to 

register. Since this object is not passed to it as an argument, it must create the object. To do so, it must 

know how to create the instance. As shown below, it can take the class of the associate as an argument.  

public class AConcertExpense implements ConcertExpense, 
Serializable {

float unitCost = 0;

int numberOfAttendees = 0;

transient PropertyChangeSupport propertyChange = 

new PropertyChangeSupport(this) ;                

public float getTicketPrice() {  return unitCost;  }

…

public void initSerializedObject() {

propertyChange = new PropertyChangeSupport(this) ; }

}



 

When it is called, it sees if an object with the specified name exists. If the associate exists, it behaves like 

the lookup operation. Otherwise, it creates a new instance of the specified class and registers it. We can 

now replace the two application programs above with a single one. 

 

The client identifier is now passed as a main argument so that each user can run the same program. Of 

course, users on different devices will run different programs, but even in that case the combined 

operation does not have race conditions.  

Factory-based Name Server 
The symmetric operation requires the system to instantiate the class of the replicated object. This 

means it must choose a constructor of the class for the instantiation. As we have not passed constrictor 

arguments to the call, the system must try to find a parameter-less constructor and instantiate this 

constructor. This raises two problems. First, there may be no parameter-less constructor in the class. 

Second, the constructor may throw an exception application-specific handling. 
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package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME, 

AConcertExpense.class,

args[0],

syncArgs);

ObjectEditor.edit(model);

}

}
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One way to address the first problem is to allow the programmer to pass constructor arguments to the 

symmetric operation. However, as constructors of different classes can take different arguments, there 

is no way to ensure, at compile time, that the actual and formal parameters of the constrictor match. 

Another approach to address this problem is to require all replicated classes to provide parameter-less 

constructors. Once the object has been instantiated, the application program can make a local call to a 

public init method it to initialize the object. 

. 

This approach, however, has several problems, which arise from the fact that this call is made at each 

site. If the method is computationally expensive, computing resources at all but one site are 

unnecessarily used. If the method is not idempotent, then the initialized state of the associates may 

diverge. Most important, if an application program joins the session after the initial state has been 

changed, it will reinitialize this state! Finally, this approach does not address the problem of constructors 

throwing exceptions. 

The key to solving these two problems is to realize that the system knows when a class should be 

instantiated and the application knows how to instantiate it. So instead of passing a class to the 

replicateOrLookup() operation, the application should pass a method that does the instantiation. Several 

object-oriented languages such as Java do not support method parameters.  However, they do support 

object parameters, and an object is just a collection of methods and some optional state. Thus, we can 

pass to the operation an object whose sole purpose is to instantiate a class. Such an object is called a 

factory, as it churns out new instances. The interface of the factory must be predefined by the 

infrastructure, which must call some well-known method in the object to perform the instantiation. 

To illustrate, consider the factory interface assumed by Sync. 

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME, 

AConcertExpense.class,

args[0],

syncArgs);

model.init(15.0); // initializing default price

ObjectEditor.edit(model);

}

}

Local call at 
each site



 

The interface defines a single operation, newInstance(), which is responsible for creating the object to 

be registered. The following is an example implementation of this interface. 

 

Sync passes to this method the class of the object to be instantiated to allow the factory to be used to 

create instances of multiple classes. The factory above simply ignores this argument. The default factory 

in Sync tries to call a parameter-less method in the class.   

The following code shows how the default factory may be overridden. 

  

The application program associates a model class with a factory using the register (Class, ObjectFactory) 

method. It still uses the replicateOrLookup() operation that takes a class as an argument. To instantiate 

the class, the system searches for an associated factory, and if it does not find it, it uses the default 

package edu.unc.sync;

public interface ObjectFactory {

public Object newInstance(Class c);

}

System defines interface

Allows a factory to be 
shared among 

multiple classes with 

shared init methods

package budget;

import edu.unc.sync.ObjectFactory;

public class AConcertExpenseFactory implements ObjectFactory{

public Object newInstance (Class c) {

return new AConcertExpense(15.0);

}

}

Programmer implements interface 

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Sync.register(AConcertExpense.class, 

new AConcertExpenseFactory());

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME, 

AConcertExpense.class,

args[0],

syncArgs);

ObjectEditor.edit(model);

}

}

Programmer  binds 
class to factory 

instance

A single factory 
created all instances 

of the associated class



factory. In either case, it creates the new object by calling the newInstance method of the factor, 

passing it the class. 

The register(Class, ObjectFactory) operation allows programmers to essentially pass a factory rather 

than a class to the replicateOrLookup() operation.  The following figure abstracts out this point. 

 

Aggregate register and lookup 
It is possible for a single factory object to create multiple instances of a class. This is illustrated in the 

following variation of the Sync replicateOrLookup() call, which is used to atomically register or lookup 

multiple associates. This operation takes as arguments arrays that give the names and classes of these 

objects, and returns an array of instances, one for each element of the class array. In this example, the 

two classes in the array are the same. The factory object associated with the class is used to create both 

instances of the class. 
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package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetsSymmetric {

static final String SERVER_NAME = "localhost/A";

static String[] modelNames = {"demoBudget1", 

"demoBudget2"};

static Class[] classNames = {AConcertExpense.class, 

AConcertExpense.class};

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Sync.register(AConcertExpense.class, 

new ConcertExpenseFactory());

Object[] models = Sync.replicateOrLookup(

SERVER_NAME,

modelNames, 

classNames,

args[0],

syncArgs);

for (int i = 0; i < models.length; i++)

ObjectEditor.edit(models[i]);

}

}



The server a UI given below shows the effect of the aggregate operation. 

 

Replicated Logical Structures 
We have address two issues in the design of replicated objects:  

1. Associate binding: How are associates connected to each other in an association? 

2. Synchronization: How are bound associates synchronized with each other. 

These two issues are independent of each other. Thus, it is possible to use implicit and explicit binding 

with both multicast calls and broadcast method declarations. While the implementation of the current 

Sync explicit binder uses neither of these two synchronization schemes, in principle it could support 

them. 

To motivate the actual synchronization scheme supported by Sync, consider the following limitations of 

multicast calls and broadcast methods.  

 Display consistency: They do not ensure that concurrent input does not lead to divergent state 

at the two sites. These are problems we saw in replicated window systems, and in fact, arise in 

any replicated system in which the local input is processed immediately at the site at which it is 

generated. 

 Asynchronous interaction/merging: They do not allow asynchronous interaction/disconnection 

and merging. In principle, it is possible to buffer non-local calls when a user is disconnected or 

working asynchronously and later, on connection or start of synchronous interaction, replay 

them in other connected associates. However, this approach requires a way to handle 

conflicting changes. Multicast calls and broadcast methods associate no semantics with 

methods, and thus do not know which methods conflict with each other. 

 Fine-grained Locking:  One way to prevent conflicts is to lock different parts of an structure of 

an object. However, systems supporting multicast calls and broadcast method declarations 

consider an object as a collection of methods rather than a manipulator of a data structure. 

It is to overcome these problems, we introduced, in Chapter 3, the notion of logical structures of 

objects, and programming patterns to automatically identify them in programmer-defined encapsulated 

objects. ObjectEditor used these concepts to display objects. Sync uses them for synchronization. It uses 

the Bean, list and hashtable programming patterns, and associated notifications, defined in Chapter 3.  



This means that that the model is required to follow these patterns and fire notifications – requirements 

already imposed by ObjectEditor for creating the user interface. 

The following architecture of Sync shows how the patterns and notifications can be used to provide 

synchronization without the limitations above.  

 

A notification sent by an associate is received by an infrastructure client library, which runs as part of 

each replicated process in the collaborative session. Information about the notifications is conveyed to 

the Sync client libraries of all other replicated processes in the session, which invoke corresponding 

write methods in peers of the associate that generated the notification. As the notifications specify the 

logical component of the associate that changed, the infrastructure can map them to write methods, 

and provide default policies for locking, and merging concurrent/asynchronous changes to unlocked 

components. Since merging is supported, each client library offers (a) the setRealTime() operation to 

switch between synchronous (real-time) and asynchronous interaction, (b)  and the synchronize 

operation to flush buffered changes.  As shown in the figure, its ObjectEditor user-interface provides a 

way to interactively invoke these commands. 

In principle, client libraries can directly communicate with each other after they have retrieved 

associates from Sync name server. However, correct merging in a fully replicated system is still a 

research issue. Therefore, the Sync name server also performs centralized merging. All communication 

between clients is performed through the Sync Server.  The exact nature of a merging algorithm is the 

subject of a future chapter. In the interaction below, we will get a flavor of some of the policies that can 

be supported by such an algorithm. 

Let us begin by understanding integrated asynchronous and synchronous collaboration. The following 

figure shows two users, Alice (top user), and Bob (bottom user), interacting with the concert expense 
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application. Alice is working asynchronously and Bob one is working synchronously, as indicated by the 

user interface provided by Sync to control the synchronization. 

 

As indicated by the Sync user interface, Alice is about to invoke the synchronize operation. This 

operation sends the buffered changes to the Sync server, which in turn, sends them to all users working 

in the synchronous mode. Thus when the operation completes, both users see the same display.  

 



 

To better understand the event flow and merging in Sync, assume that both users are working in the 

asynchronous mode, and have made concurrent changes to their associates. Suppose Alice synchronizes 

first. 

 



At this point, neither associate changes.  The reason is that when the Sync server receives changes from 

Alice, it does not send it to Bob, as he is working in the asynchronous mode. 

 

When Bob synchronizes, he sends the Server his changes, and receives Alice’s changes. However, Alice 

does receive Bob’s changes. She must execute the synchronize command again to do so. 

 

After the three synchronize commands have completed, both associates have the same state. 



 

We see here the use of logical structures to synchronize associates. Because different components of 

the associates were edited by the two users, it was possible to compose them. 

Consider now concurrent changes to the same component, shown below. 

 



Here, Alice and Bob have the changed the ticket price to 24.1 and 24.0, respectively. When Alice 

synchronizes, her value is recorded by the server, but Bob does not receive it as he is working 

asynchronously.  

 

When he next commits, the server knows his change was made without seeing Alice’s value. As both 

changes manipulate the same atomic component, it knows this is a conflict. It resolves the conflict by 

choosing the earliest conflicting change received by the Server. Thus, it overwrites Bob’s change with 

Alice’s value. 



 

Why not choose the later value? When there are conflicts, there is no correct way to merge the changes. 

As you have seen in Google Docs, conflicts in the document editor and spreedsheet are handled 

differently – the former uses the Sync approach of choosing the earliest value, while the latter takes the 

opposite approach of choosing the latest one. In a system supporting disconnection/asynchronous 

interaction, it can be argued that the latest value should not win. To explain why, consider our example. 

When Bob synchronizes, if he sees no change to his value, and receives no other notification, then he 

will simply assume there was no conflict. Alice, on the other hand, may not synchronize for a while, and 

when she does synchronize, may not check if all of her previous changes had any conflicts. Thus, the 

conflict may go undetected. When Bob sees Alice’s concurrent change, he knows there is a conflict. At 

this point, he can either accept her value, or override it with his value. If he overrides, the server will 

accept his change, as it was not made concurrently with Alice’s change – Bob saw Alice’s value before 

making his change. 



 



Collaboration Unawareness and Non WYSIWIS Coupling 
Let us look at the full code of the concert model used in the interaction above. 

 

It is identical to the model of chapter 3 except for the blue lines, which are required to make it 

serializable.  One can argue that it has no distribution awareness, as it needs to be serializable to be 

saved in a file and loaded from it. Moreover, it has no awareness of the fact it is interacting with 

multiple users. Thus, it is collaboration-unaware. Similarly, the model and controller are also distribution 

and collaboration unaware, as they communicate with local models. In other words, replicated logical 

structures can be used to support a collaboration and distribution unaware MVC structure. This is not 

the case with multicast calls and broadcast method declarations, which require the model, controller, 

and/or view to be use method declarations or calls that are ware that multiple users are interacting with 

the code. If we use implicit associate binding, replicated logical structures allows the whole application 

to be collaboration unaware. 

This is an interesting result. The conventional wisdom has been that if we want to share existing 

collaboration-unaware applications, we must use a shared window system, which supports WYSIWIS 

coupling. We see here that is possible for different users sharing a collaboration-unaware application to 

create different views of it. Thus, it is not the case that collaboration-unawareness implies identical user 

views. 

public class ConcertExpense implements ConcertExpense, Serializable {

float unitCost = 0;

int numberOfAttendees = 0;

transient PropertyChangeSupport propertyChange = new PropertyChangeSupport(this) ;                

public float getTicketPrice() {  return unitCost;  }

public void setTicketPrice(float newVal) {

if (newVal == unitCost) return;

float oldVal = unitCost; int oldTotal = getTotal();

unitCost = newVal;

propertyChange.firePropertyChange("ticketPrice", null,  newVal);

propertyChange.firePropertyChange("total", null,   getTotal());

}

public int getNumberOfAttendees() {  return numberOfAttendees;   }

public void setNumberOfAttendees(int newVal) {

if (numberOfAtendees == newVal) return;

int oldVal = numberOfAttendees; int oldTotal = getTotal();

numberOfAttendees = newVal;

propertyChange.firePropertyChange("numberOfAttendees", null, newVal);

propertyChange.firePropertyChange("total", null, getTotal());

}                 

public float getTotal() {return unitCost*numberOfAttendees;   }

public void addPropertyChangeListener(PropertyChangeListener l) {        

propertyChange.addPropertyChangeListener(l);

}

public void initSerializedObject() {propertyChange = new PropertyChangeSupport(this) ; }

}



On the other hand, we cannot simply use existing applications written for some window system and 

create multiple views for different users. The applications must use programming patterns and send 

notifications based on them. It is currently uncommon to find such applications. Thus, unless this 

changes, in practice, collaboration awareness does imply WYSIWIS coupling. 

Server and Client Awareness and Event Flow in Sync 
Returning to the comparison of synchronization based on multicast calls, broadcast method declarations 

and replicated structures, while the first two approaches do not support collaboration-unaware 

applications, they do allow certain useful user-interfaces that cannot be supported by logical structures. 

For instance, we saw earlier how they can be used to create a MUDs like user interface in which a 

message shows up differently in the histories of the associates of the message creator and other users. 

Replicated logical structures, as described above, do not support such asymmetric synchronization. 

It is possible to overcome this problem by providing collaboration-aware primitives that allow 

application programmers to override the replication scheme provided by replicated logical structures. 

Let us see a few of such primitives provided by Sync that allow associate methods to be aware of 

whether they are executing in the server or client and, if they are executing in the client, some details of 

the client. The use of these primitives requires understanding of explicit binding and replicated logical 

structures supported by Sync. 

The following figure illustrates the use of these primitives. Again, the top user is Alice and the bottom 

one is Bob. The replicated processes interacting with them execute on the same machine in this 

example. 



 

The histories of both users indicate that Alice created the first associate in the association and made two 

changes to its ticket price. Subsequently, Bob looked up the associate to create his own serialized copy, 

and changed the ticket price. The consoles of the two users also show changes to the ticket price. Bob 

does not see all three changes in his console because he joined the collaboration late. 

How did Alice’s associate know (a) when it was created, (a) it was the first object in the association. 

Recall that Sync’s explicit binding scheme creates the first associate by instantiating its class, and 

subsequent associates by creating serialized copies of the associate stored in the server. Thus, when the 

first associate is created, the instantiating constructor is called. The message that indicates that a new 

budget has been created must then be in this constructor. 

How did Bob’s associate know when it was loaded by its Bob’s process? Recall that Sync client library 

calls the initSerializedObject() in every serialized associate it receives from the server. The message that 

indicates that the budget was loaded must then be in this method. 

Both the constructor and initSerializedObject() need to know the name of the client of the associate in 

which they are called. The collaboration-aware primitive, Sync.getClientId(),can be called by an associate 

to determine  the client id of the user who registered or looked it up. 

A user change to the ticket price results in a call to the corresponding setter method in each associate. it 

is important to ensure that only one of these adds information about the change to the history – in 

particular the one called by the local controller.  This can be done by using the Sync.isRemote() 



primitive, which can be invoked by a method to determine it was called by Sync or the local controller. 

Thus, we are able to avoid the problem of spurious broadcasts mentioned earlier. 

Recall, that for each association, the server keeps a serialized associate, which is synchronized with 

other associates by calling its setter methods. The user-interface above does not generate a message 

when the server receives the serialized copy or an update to this copy. Sync allows programmers to 

distinguish calls to a method in the server and client associates. The routine Sync.isServer() can be called 

by the method to determine if it was been called in the server or a client.  

Finally, the messages on the console show both the client id and host name of the user who made the 

change. The Sync.getSoutceName() call provides this information. 

The following code illustrated the use of these primitives to generate the user-interface above. 

 

The Sync collaboration-aware primitives used in this example are highlighted. The constructor prints out 

the object creation message when it is called in the first associate. The initSerializedObject() method 

prints the object loading message in all serialized client copies of the first associate.  Whenever a user 

changes the ticket price, the associated setter method call in (a) each associate prints a message to the 

console, and (b) the local associate stores the message in the history. 

public class AnAwareConcertExpense extends AConcertExpense{

ListenableVector<String> history = new AListenableVector();

public AnAwareConcertExpense() {

super();

history.add("Budget created by " + Sync.getClientId());

}

public void setTicketPrice(float newVal) {

super.setTicketPrice(newVal);

String eventMsg = "Ticket price set to: " + newVal;

System.out.println(eventMsg +" by " + Sync.getSourceName());

if (!Sync.isServer() &&!Sync.isRemote()) 

history.add(eventMsg + " by " + Sync.getClientId());

}

public void initSerializedObject() {

super.initSerializedObject();

if (Sync.isServer()) return;

history.add("Budget loaded by " + Sync.getClientId());

}

public ListenableVector<String> getEventHistory() {

return history;

}

public void setEventHistory(ListenableVector<String> newVal) {

history = newVal;

}

}



Ignoring Sent and Received Notifications 
The example above helps us better understand how events flow between the model, Sync client and 

Sync server. To further understand this flow, consider model notifications generated when the value of a  

readonly component such as the total property changes. 

 

The value of this property is important to the view, as it must update its value. However, it is irrelevant 

to the replicating infrastructure as there is no corresponding write method to invoke on remote 

associates. The remote users do see this property update in their user interfaces. This happens because 

of invocation of the write methods, setNumberOfAttendees() and setTicketPrice(), that update 

properties on which the readonly property depends. 

Thus, the replicating infrastructure processes only notifications regarding changes to editable 

components. Sometimes it is useful to ignore even some of these notifications, as illustrated by the 

following example. 

public class AConcertExpense implements ConcertExpense, Serializable {

float unitCost = 0;

int numberOfAttendees = 0;

transient PropertyChangeSupport propertyChange = new PropertyChangeSupport(this) ;                

public float getTicketPrice() {  return unitCost;  }

public void setTicketPrice(float newVal) {

if (newVal == unitCost) return;

float oldVal = unitCost; int oldTotal = getTotal();

unitCost = newVal;

propertyChange.firePropertyChange("ticketPrice", null,  newVal);

propertyChange.firePropertyChange("total", null,   getTotal());

}

public int getNumberOfAttendees() {  return numberOfAttendees;   }

public void setNumberOfAttendees(int newVal) {

if (numberOfAtendees == newVal) return;

int oldVal = numberOfAttendees; int oldTotal = getTotal();

numberOfAttendees = newVal;

propertyChange.firePropertyChange("numberOfAttendees", null, newVal);

propertyChange.firePropertyChange("total", null, getTotal());

}                 

public float getTotal() {return unitCost*numberOfAttendees;   }

public void addPropertyChangeListener(PropertyChangeListener l) {        

propertyChange.addPropertyChangeListener(l);

}

public void initSerializedObject() {propertyChange = new PropertyChangeSupport(this) ; }

}



 

In this example, each user sets the WillAttend property to indicate if he or she plans to attend the 

concert. The side effect of this update is that the value of the NumberOfAttendees property is changed. 

(Should the NumberofAttendees property still be editable?)  

Here, the WillAttend property is private to each associate. Thus, changes to it made by the associate of 

one user should not be reflected in the associates of other users. We need a way to ensure that the 

replicating infrastructure does not broadcast these updates. 

One way to ensure this is to not generate notifications when the property is updated. 

 

However, a disadvantage of this approach is that the view and other local observers who are interested 

in changes to this property do not receive notifications when it changes. Another approach is to use a 

different protocols to inform local observers and the replicating infrastructure, but this requires 

programmers to write more notification code and more important, goes against our goal of using 

standard programming patterns and associate notifications to promote program understanding and 

pattern-based local and remote tools. 

public class AConcertExpenseWithAttendance extends AConcertEexpense
implements ConcertExpenseWithAttendance {

boolean attend;        

public boolean getWillAttend() {

return attend;

}

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

attend = newVal;

if (newVal)

setNumberOfAttendees (getNumberOfAttendees() + 1);

else

setNumberOfAttendees (getNumberOfAttendees() - 1);

}

} 



The answer, then, if for the replicating infrastructure to allow application programs to control 

communication of each kind notification.  Below, we see control of property updates. Similar control can 

be provides for each kind of vector and hashtable change. 

The figure shows a way to control both transmission and receipts  of property updates. Each property of 

each class is associated with a ReplicatedOut and ReplicatedIn boolean attribute. The former determines 

if local updates to the property are sent to remote associates, while the latter indicates whether 

updates to it sent by remote associates cause changes in the local associate. 

 

Sync provides collaboration-aware primitives, setReplicateIn() and setReplicateOut(), to set each of 

these attributes individually. It also provides a call, setReplicate(), to set both of them together. In 

addition, it provides the call, setReplicateAllProperties(), to set both of them for all properties of a class. 

Their signatures are given below. 

 

In the example above, a Sync client should neither send or receive notifications to the WillAttend 

property. Therefore, the main program of each replicated process uses setReplicate() to set both 

ReplciateIn and RepliateOut attributes of this property to false. 

Property p

Infrastructure

ReplicateInReplicateOut

Sync.setReplicateOut(Class c, String property, boolean newVal)

Sync.setReplicateIn(Class c, String property, boolean newVal);

Sync.setReplicate(Class c, String property, boolean newVal)

Sync.setReplicateAllProperties(Class c, boolean newVal)



 

As a result, the model is able to announce the notification to the private property to local observers. 

 

Wait Free Synchronization using a Memory Slot per User 
The setReplicate() allows us to make the WillAttend property private. However, let us consider a more 

fundamental question. Does the model correctly update the NumberOfAttendees property when a user 

changes the WillAttend property? 

Let us look more carefully at setWillAttend(). It increments or decrements the NumberOfAttendees 

property based on whether the user decides to attend or not. If only one user interacts with the model 

at a time, this algorithm works correctly. However, concurrent interaction can lead to race conditions 

that make it fail. The problem is that the increment of NumberOfAttendees, which involves both reading 

and writing of the property, is not performed atomically. The following interaction illustrates why we 

need atomicity.  

To ensure that race conditions occur, Alice and Bob have turned off real time synchronization. 

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Sync.setReplicate(AConcertExpenseWithAttendance.class, 

”willAttend” false);

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME, 

AConcertExpenseWithAttendance.class,

args[0],

syncArgs);

ObjectEditor.edit(model);

}

}

No remote 
notifications

public class AConcertExpenseWithAttendance extends AConcertEexpense
implements ConcertExpenseWithAttendance {

boolean attend;        

public boolean getWillAttend() {

return attend;

}

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

propertyChange.firePropertyChange(“willAttend", attend,  newVal);

attend = newVal;

if (newVal)

setNumberOfAttendees (getNumberOfAttendees() + 1);

else

setNumberOfAttendees (getNumberOfAttendees() - 1);

}

} 



 

 

Both of them indicate they will attend. The setter for this method read the local value of 

NumberOfAttendees, which is zero in both cases, and increments it to 1. 

 



As both users have changed NumberOfAttendees  to the same value, after they synchronize their 

changes, the value of this property remains 1, and thus does not reflect that both users will attend. 

We can solve this problem by having the model keep track of who is attending in a table, as shown 

below. 

 

 

The table has a slot (key) per user. The method setWillAttend() now fills the slot of the user who calls it, 

using the collaboration-aware primitive, Sync.getClientId().The method, getNumberOfAttendees(), 

returns the number of filled slots.As each user fills a different slot, there is no worry about conflicts.  

The following examples show that he model now correctly computes NumberOfAttendees. As before, 

let us assume that Alice and Bob are working in a disconnected fashion. 

public class AConcertExpenseWithAttendanceTable extends AConcertExpense {

HashtableInterface<String, Boolean> attendance = new AListenableHashtable();

public HashtableInterface getAttendance() { return attendance;}

public void setAttendance(HashtableInterface newVal) {attendance = newVal; }

public int getNumberOfAttendees() {

Enumeration<Boolean> elements = attendance.elements();

int retVal = 0;

while (elements.hasMoreElements()) {

if ((elements.nextElement()).equals(true)) retVal++;

return retVal;

}

}

public boolean getWillAttend() {return attend;   }

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

attend = newVal;

attendance.put(Sync.getClientId());

}



 

Alice and Bob , both concurrently indicate that they will attend. As their models are disconnected, the 

NumberOfAttendees property has the value 1, as in the previous interaction without the table. 

 

However, after they synchronize their changes, this value changes to 2. The reason is that each user’s 

table gets the (key, value) slot inserted by the other user, and getNumberOfAttendees returns the 



number of filled slots, which is now 2.

 

The example above illustrates an important problem and solution in concurrent computing. The 

problem with the first solution was that the increment operation was not executed atomically, that is, 

two executions of this operation could interleave their execution of the read and write steps in this 

operation. As a result, each of them read the same value, and adds 1 to it, thereby cancelling the other 

execution of it. 

  

There are several solutions to this problem that require an execution of the operation to wait for a 

concurrent execution of it. Our solution, on the other hand, does not involve a wait and even allows 

disconnected concurrent interaction. It is a general example of wait free synchronization achieved by 

LocalTemp =  0

NumberOfAttendees =  1

LocalTemp =  0

NumberOfAttendees =  1

LocalTemp =  NumberOfAttendees
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replacing a shared slot with multiple slots, one per concurrent execution thread. This idea,  as far as I 

know, was invented by Jim Anderson. 

Flexibility of Replicated Logical Structures 
Let us wrap up our discussion of replicated logical structures by evaluating their flexibility. They were 

introduced to remove limitations of broadcast method declarations and multicast calls. Do they have 

limitations of their own? 

In theory, the answer is yes. They do not allow associates to be arbitrary objects – they must be editors 

of a predefined set of logical structures, which in our example are Beans, lists and tables. 

To understand the impact of this limitation, in practice, let us see try and understand the practical range 

of objects that can and cannot be supported by replicated logical structures. 

The following figures illustrate the range that can be supported using some examples of actual Sync 

student projects that build collaborative versions of popular applications. 

    

(a) Drawing Tool (Munson) (b) Word Processor (Agiwal)  (c) Outline Editor (Porwal)  

  

(d) Spreadsheet  (Luebke)    (e) Calendar (McCuen) 

None of these application uses ObjecEditor to create the view and controller, thereby showing that 

replication and user-interface generation are independent, even though in the examples used so far, we 

have combined their use. 



To better understand the flexibility of replicated logical structures, let us see the logical structures of the 

models of these applications. The drawing editor is a table whose values are various shapes. Each shape 

defines geometric properties used by the view to display it. The word processor is a hierarchical 

sequence whose leaf elements are text objects. Each text object has properties such as font and size 

used by the view to display it. The outline editor is similarly a tree of text, shown using a different view 

to display the tree. The spreadsheet and calendar are similarly tables with different behavior and views. 

What are some common shared objects that cannot be supported by Sync in particular and the general 

idea of replicated logical structures in general? Consider first, a stack. 

 

This object cannot be directly supported by Sync because it does not follow any of the programming 

patterns we have seen so far. However, this is not a limitation of the general idea of replicated logical 

structures, as it is possible to define a variation of the Vector pattern to support this structure. 

A n incrementable counter is a much better example to illustrate the problems of replicated logical 

structures. We see below its use in overcoming the race condition problem involving concurrent 

executions of the setWillAttend() method. With multicast calls and broadcast methods, this operation 

could simply be executed in each associate to give the correct result without requiring a table per user. 

 

Method Summary

boolean
empty() 

Tests if this stack is empty.

Objectpeek() 

Looks at the object at the top of this stack without 
removing it from the stack.

Objectpop() 

Removes the object at the top of this stack and returns 
that object as the value of this function.

Object
push(Object item) 

Pushes an item onto the top of this stack.

intsearch(Objecto) 

Returns the 1-based position where an object is on this 
stack.

public interface Counter   {       

public int getCounter();

public void increment(int amount);

}

Counter numAttendees = new ACounter();

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

propertyChange.firePropertyChange(“willAttend", attend,  newVal);

attend = newVal;

if (newVal)  counter.incmenet(1)

else counter.increment(-1);



Replicated logical structures cannot handle the Counter because its increment operation does not 

indicate how the state of the counter is changed. The write methods supported by logical operations 

had arguments that indicated how the (external) state was changed. As a result, the infrastructure could 

synchronize (diff and merge) the state changes of different associates. The increment operation is a 

blackbox to the infrastructure as it changes the state in an unknown manner. Thus, the example shows 

the limitation of replicated logical structures – they communicates state changes rather than events, 

and thus cannot support replication of write operations that compute state changes in an application-

dependent fashion. 

This discussion, in turn, shows that each of the three synchronization schemes has its advantages and 

limitations. 

Systems Supporting Replicated Types 
Multicast calls, broadcast methods, and replicated logical structures have been invented in research 

systems, and to the best of our knowledge, do not exist directly in industrial strength systems. However, 

predefined replicated types, exist in several current industrial strength and research systems – in 

particular Groove, LiveMeeting, and GroupKit.  LiveMeeting and GroupKit, like Colab, supports only 

synchronous updates of associates, while Groove, like, Sync, supports both synchronous and 

asynchronous updates. 

Groove and LiveMeeting support replicated mutable atomic types such as integers and Booleans, and a 

replicated sequence type roughly equivalent to AListenableVector. Groove also supports replicated 

tuples, which have the logical structure of Beans.  Finally, Groove and GroupKit support a replicated 

hashtable type roughly equivalent to AListenableVector. As we saw earlier, GroupKit also offers 

multicast calls. 

GroupKit has been a very popular toolkit, and a primary reason for this is the multicast calls and 

replicated hashtables supported by it. The emergence of LiveMeeting may also be owed partly to 

replicated types. It is an evolution of a product called PlaceWare, developed by a small start-up of the 

same name, started by a couple of Xerox researchers, and acquired by Microsoft in 2003.  The replicated 

types supported by it probably were a factor in it being able to compete with the much bigger Webex, as 

they allowed relatively easy construction of the Whiteboard and user-interface of the PowerPoint 

Presenter. 

Multicast calls, broadcast methods, and replicated logical structures are more powerful than the notion 

of predefined replicated types, as they allow replication of programmer-defined types such as the 

concert example above or a new table that, unlike current hashtables, supports keys that are mutable 

objects. Any of these three concepts can be used to implement any of the predefined types mentioned 

above. 



Techniques for Communicating Parameters 
Replicated types are related to serialized and remote types. All three techniques allow processes on 

different computers to exchange complete objects. The following figure shows the differences between 

them.  

 

Remote types make it possible for a site to send object references to other sites.  Proxies created at the 

sending and receiving sites ensure that methods invoked on the reference at the receiving sites are 

executed at the sending site. Thus, all sites share a single copy of the object, but method invocation is a 

costly operation for the receiving sites. These types essentially support “by reference” passing of 

distributed parameters.  

Serialized types make it possible to send copies of objects to other sites. These types essentially support 

“by value” passing of distributed parameters. They go far beyond “by value” parameter passing 

supported in non distributed languages as they dereference pointers, creating isomorphic structures at 

the sending and receiving parameters. Like value parameters, a received serialized copy at a receiving 

site can be changed independently of the original object at the sending site. 

Replicated types combine elements of remote and serialized types. As in the case of replicated types, 

the sending and receiving sites share state, but as in the case of serialized types, they access separate 

local objects storing this state. When the local copy of the shared state is shared, corresponding changes 

are made to the peer objects in the other sites.  

Role of Server in Replicated Objects 
The notion of a server seems at odds with the notion of replicated objects. Therefore, it is an optional 

component of such a system. It is useful to provide session management, merging, explicit binding, and 

an always connected repository from for downloading and uploading of client state. However, all of 

these facilities can be provided by a fully replicated system, through a completely distributed 

synchronous merge algorithm is still a matter of research. To illustrate, GroupKit provides replicated 
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session management, implemented using replicated tables, and Grove supports asynchronous merging 

without requiring a central server for storing and merging this state. 

Replication Summary 
 A replicated system creates associations of objects created by different processes running on 

the computers of different users.   

 Associates can be implicitly bound to each other based on the order in which they were created 

by their process.  

 Explicit binding supports associations consisting of objects create by replicated processes run 

different programs. 

 Factories – objects that create other objects – allow programs registering and looking up 

associates to execute the same program. 

 Associates can be synchronized using broadcast method declarations, multicast calls, and 

replicated logical structures. 

 When a local object invokes a broadcast method in an object, the infrastructure invokes the 

method also in all remote associates of the object. 

 Broadcast methods should not call other broadcast methods to avoid spurious calls. 

 Broadcast methods of bind the “what and when” of coupling of an associate class when the 

class is written. 

 Multicast calls explicitly indicate the subset of associates on which a method should be called.  

 They bind the “what and when” of coupling of an associate class either at execution time or 

when the code accessing the class is written. 

 Replicated logical structures assume that an object is a manager of a predefined logical 

structure – in particular a bean, sequence, or hashtable. 

 They support merging of fine-grained changes to objects made in disconnected or asynchronous 

collaboration. 

 Broadcast methods and multicast calls require collaboration-aware views, controllers, and/or 

models. Replicated logical structures support collaboration-transparent models, view, and 

controllers, to which collaboration-awareness can be optionally added.   

 Replicated logical structures do not allow replication of write operations that change object 

state in an application-defined manner. 

 Wait free synchronization can be achieved by replacing a shared memory slot with a slot per 

concurrent activity. 

 Replicated types combine elements of serialized and remote types. 
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