
Distributed Collaboration

Prasun Dewan1

5. Replicated Objects

In the previous chapter, we studied the MVC architecture and saw how it could be distributed by

creating a central model that communicates with distributed models and views. Here we will see an

alternative approach for distributing MVC, which replicate models. This approach can, in fact, be used to

replicate any object. We will study three variations of this approach, which bind replication semantics to

objects at different times.

Functional Motivation: Partial Coupling and Disconnection
As motivation for replicated objects, consider the whiteboard implementation below. Here, the two

whiteboards displayed to different users are partially coupled. The drawing palette, which allows users

to determine the tool selection, is not coupled. On the other hand the drawing canvases are coupled.

Thus, as shown below, if the left user selects the line-drawing tool, and draws a line, then the line is

shown in the canvas of the right user, but the right user’s tool selection is unaffected.

Assume that the whiteboard is implemented using MVC, and the current tool selection is part of the

model. If a single centralized model is created, then this model would manage multiple tool-selections,

one for each user. Thus, the model would have to be collaboration-aware. As we see below, if we

replicate the model, it is possible to use an existing single-user collaboration-unaware model storing a

single tool selection to create such an application.

Perhaps an even more compelling reason for replicated MVC is disconnected collaboration, that is

collaboration sessions in which are connected to each other all the time. Centralized MVC requires the

local views and controllers of the users to be continuously connected to the central model. Replicated

MVC, on the other hand, allows these UI components to access a local model.

1
  Copyright Prasun Dewan, 2009.

Uncoupled

Replicated

Replicated Architecture

Replicated MVC with Centralized Semantics and no Consistency
In replicated MVC a separate model is created for each user, and the models communicate with each

other, directly or indirectly, to couple the users. The most straightforward replicated architecture is

shown below.

The inter-model communication protocol is the same as the model-view communication protocol. In

other words, each model becomes an observer or listener of all other models. In response to a state-

change notification received from a remote model, the local model updates its state accordingly. For

example, if a whiteboard model receives a notification about a new shape added by a remote canvas, it

adds that shape to its local canvas object.

This is a useful architecture in that it offers different performance from the centralized MVC architecture

we saw earlier. In the next chapter, we will look more in depth at the performance issues. However, it

does not meet the requirements of the motivating whiteboard example. As in the centralized case, we

cannot directly use an existing single-user model to implement this architecture. The model is

notification and distribution aware in that it now receives distributed notifications from remote models.

Moreover, implementing partial coupling requires that the model also be coupling aware. If multiple

users can edit concurrently, the models would also need to implement special consistency protocols.

Nonetheless, this architecture provides the basis for replication solutions without these drawbacks.

General Replicated MVC Architecture
In our discussion of centralized MVC and centralized and replicated shared window, we saw that

collaboration-aware proxies allow shared application objects to be collaboration-transparent. We can

apply this insight also to replicated MVC architectures, as shown in the figure below.

Controller

(Performs Input)

View

(Performs Output)

Controller

(Performs Input)

View

(Performs Output)

Model

Model

Listener

Listener

Now the model is no longer an observer. It is only an observable, as in classical single-user MVC. A

client-side proxy, residing on each computer, (a) listens to notifications from a collaboration-unaware

model, and (b) invokes corresponding write methods on remote replicas through remote client proxies.

An optional server proxy can be used to implement some centralized functions such as session

management, as we see later. These collaboration proxies can provide selective sharing, locking, access

control, disconnection and other collaboration functions for the collaboration-unaware models, views

and controllers.

To reduce programming effort, a better idea is to provide general infrastructure client and server

proxies, as shown below.

Programmer-defined Replicated Types
One way to provide such an infrastructure is to support replicated types in the manner remote types

were supported in RMI. Inspired by the Java Remote interface, we can define a Replicated interface. If

an object in an application implements this interface, then it is automatically replicated on the

computers of all users sharing the application. Thus, if the concert expense class of the previous

chapters implements this interface, its instances are automatically replicated.

Controller

(Performs Input)

View

(Performs Output)

Model

Client Proxy

Server

Proxy

Controller

(Performs Input)

View

(Performs Output)

Model

Client

Infrastructure

Proxy

Server

Infrastructure

Proxy

The Remote interface was implemented by supporting invocation of methods on some remote instance

through infrastructure proxies. The Replicated interface can be implemented by supporting invocation

of methods on all replicas of an object through infrastructure proxies. Thus, if the setTicketPrice()

method is invoked by some controller on its local model, it can be automatically invoked on all replicas

of the model. As a result, the replicas can remain synchronized.

Just as all methods of an object should not be invoked remotely, all methods of an object should not be

broadcast to all replicas. For instance the getTicketPrice() method, which does not change the state of

an object, should not be broadcast. We could use the approach used in RMI to distinguish between

broadcast and local methods.

The use of a Replicated type has not actually been implemented in any system. So let us look at a

variation of it that was actually implemented in Xerox’s Colab programming environment

Broadcast Method Declarations
Colab extended the programming language with the keyword broadcast to mark methods that are

broadcast. Methods not marked with this keyword are executed only on the local replicas. We see the

use of this keyword in our example below.

import java.beans.PropertyChangeListener;

public interface ConcertExpense extends Replicated {

public float getTicketPrice();

public broadcast void setTicketPrice(float newVal);

public int getNumberOfAttendees();

public broadcast setNumberOfAttendees(int newVal);

public float getTotal();

public void addPropertyChangeListener(PropertyChangeListener l);

}

Replica

Collaboration-aware
Proxies

Replica

Collaboration-aware
Proxies

void setTicketPrice (float)

void setTicketPrice (float)

float getTicketPrice ()

float getTicketPrice ()

Here we have been careful to make only state-changing methods broadcast. Moreover, we have not

made all of these methods broadcast. In particular, the addPropertyChangeListener() method is local,

because this object allows “replicas” to have local listeners. The quotes around the term “replicas”

indicate that these objects are not true replicas, because only part of their state can be coupled. Colab

used the term associates to refer to such partially coupled objects, and the term association to a set of

partially coupled associates.

The following figure shows an association of two associates. As shown in the figure, a call to a broadcast

method in an associate results in the method being called on all associates in the association. A call to a

local method in an associate results in the method being called only in that associate.

Associates may not only be models, but also views, controllers, and other objects. To illustrate, consider

a controller object that listens to text widget events. Such an object may have the method

textChanged(evt) called whenever new text is entered by the user in the widget. This method can be

made broadcast to provide controller-level coupling.

import java.beans.PropertyChangeListener;

public interface ConcertExpense {

public float getTicketPrice();

public broadcast void setTicketPrice(float newVal);

public int getNumberOfAttendees();

public broadcastsetNumberOfAttendees(int newVal);

public float getTotal();

public void addPropertyChangeListener(PropertyChangeListener l);

}

Associate

Collaboration-aware
Language Runtime

Collaboration-aware
Language Runtime

broadcast void
setTicketPrice (float)

broadcast void
notify ()

Associate
broadcast void
notify ()

broadcast void
setTicketPrice (float)

Controller

(Performs Input)
void broadcast textChanged (evt)

Spurious Broadcasts
The implementation of broadcast methods is handled by the infrastructure, as shown in the figure. Thus,

the programmer is responsible only for determining which state-changing methods of a class are

broadcast. This may be tricky.

In the concert expense example, we looked only at the interface to decide which methods should be

broadcast. We may also need to look at the class for two reasons. First, we may wish to make private

methods broadcast. For example, if a set of public methods change some state through some a private

method, then the programmer could make the private method broadcast. Second, we have to look at

the implementation to ensure we do not have needless broadcasts. Spurious broadcasts occur when a

broadcast method (b1) calls another broadcast method (b2) because the called broadcast method is

called more than once in the local and remote associates: once in response to the call to b1 in the local

associate, which in turn makes a local call to b2; once in response to the local call to b2 in each peer

associate.

Spurious broadcasts are illustrated in the example below, where the broadcast method setTicketPrice()

calls the broadcast method notify().

The notify() method is called twice in each associate, once by setTicketPrice() method in the local

associate, and once in response to the call to the method in the peer associate.

public class AConcertExpense implements ConcertExpense{

float unitCost= 0;

int numberOfAttendees = 0;

Vector<Observer> observers= new Vector() ;

public float getTicketPrice() { return unitCost; }

public broadcast void setTicketPrice(float newVal) {

unitCost= newVal;

notify();

}

public int getNumberOfAttendees() { return numberOfAttendees; }

public broadcast void setNumberOfAttendees(int newVal) {

numberOfAttendees = newVal;

notify();

}

public float getTotal() {return unitCost*numberOfAttendees; }

public void addObserver(Observer observer) {

observers.add(observer);

}

broadcast void notify() {

for (Observer observer: observers) {

observer.update()

}

}

}

Spurious broadcasts of a method not only unnecessarily use computing and communication resources

but also lead to incorrect program behavior when the method is not idempotent.

In a single class, it is relatively easy to avoid spurious broadcasts. It is harder to do so when the classes

interact with each other as in the MVC design pattern. The designers of communicating classes must

carefully look at all of these classes to avoid spurious broadcasts. In the example below, the designers of

the controller and model classes should coordinate with each other to ensure that the spurious

broadcast of setTicketPrice() is avoided.

Controlling the What and When of Sharing
Broadcast methods allow application programmers to determine both (a) which parts of the state of an

object are shared, and (b) when shared state is synchronized. This is illustrated in a version of our

running example that does not clear the comment.

Associate

Collaboration-aware
Language Runtime

Collaboration-aware
Language Runtime

broadcast void
setTicketPrice (float)

broadcast void
notify ()

Associate
broadcast void
notify ()

broadcast void
setTicketPrice (float)

Controller

(Performs Input)

Model

void broadcast textChanged (evt)

void broadcast setTicketPrice(float)

Here, the two broadcast methods ensure that incremental changes to the comment property are

shared. If we do not want incremental changes to be shared, we can make the updateVector() method

local. In this case, only the setComment() methods are coupled, which means remote users see the

comment only when it is committed. If we do not want the comments in the associates to be coupled,

we can make both methods local.

Thus, broadcast methods support coupling flexibility. To evaluate the extent of this flexibility, it is also

important to determine when coupling decisions are made. This leads us to the general notion of

binding times of entity attributes.

Binding Time
Often entities are associated with attributes. For example, variables are associated with types and

memory addresses. The binding time of an entity attribute is the (latest) time at which the entity can be

given a (new) value of the attribute. By a time, we do not mean the absolute clock time but some

relative time based on the stages through which the entity passes. In the case of program entities such

as variables, we can identify five successive stages: the program containing the entity is written,

compiled, linked, loaded and executed, which lead to five increasing relative times: program-writing,

compile, linking, loading and execution time.

public class ACommentedConcertExpense extends ATypedConcertExpense implements

VectorListener, CommentedConcertExpense {

...

public broadcast void setComment(AListenableString newVal) {

comment = newVal;

//comment.clear();

}

...

public broadcast void updateVector(VectorChangeEvent evt) {

boolean newLongComment = getLongComment();

propertyChange.firePropertyChange("longCommentType", oldLongComment,

newLongComment);

oldLongComment = newLongComment;

}

}

Written Compiled Linked Loaded Executing

An even earlier time than all of these stage-based times is language writing time.

The flexibility of a system binding an attribute to a program element is measured by the time at which it

binds the attribute to the element – the later this time, the more flexible the system. On the other hand,

sometimes a later binding results in a less efficient system Thus choosing a binding time involves a

tradeoff.

To illustrate, consider the binding of various kinds of addresses to an instance variable in a class. The

offset of the variable relative to the containing object is bound at compile time. This offset is added to

additional offsets generated at link and load times to create the virtual address of the object. The virtual

address is bound at run time to an actual physical address.

Binding the physical address of the variable at a time earlier than execution time would not allow the

variable to be relocated in memory during execution time – that is, it would not allow the virtual page

containing it to be moved in memory. On the other hand, binding the offset of the variable within its

object as late as execution time would require this value to be searched or computed at run time. Thus,

we see here that early binding can be more efficient and late binding leads to more flexibility.

In this course, we are interested in binding of collaboration attributes to sharable program entities. In

this chapter, we are looking at the binding of coupling attributes to associate.

In a system that requires the use of the broadcast keyword to define coupling, at program writing time

we bind which parts of the state of a replicated object are shared and when these parts are

synchronized. Specifically, these attributes are bound when the class of the replicated object is written.

This early binding reduces the flexibility of application programs. In our example, different users of the

program cannot determine if their comments are shared incrementally, on commits, or not at all. In

GoogleWave IM, such early binding would not allow users to decide if their messages are seen

incrementally by others.

Sometimes it is useful to share some state with a subgroup of users in a session. For example, a user

may wish to share the comment with close friends in a session. Broadcast methods, as the name

suggests, broadcast to all elements of an association. They do not multicast to a subgroup. Thus, which

associates in an association execute non-local method is decided at language definition time.

Multicast calls
We can overcome these limitations by making the caller instead of the callee of a method determine if

the state changed by the method is shared. The callee can specify, as part of the call, the destination of

the call, that is, the set of associates on which the call should be invoked. The following example

Program
Writing

Time

Compile
Time

Link
Time

Load
Time

Execution
Time

Time

illustrates its use to create a MUDs like user-interface, in which a message M entered by a user U is

entered in his history as “You said: M“ and in others history as “U said: M”. The others keyword in a

method call specifies that the method should be invoked on all associates in the association other than

the local one. We will refer to such a call as a multicast call as it specifies a subgroup of the association.

The call is destination-aware, as it explicitly indicates the associates in which it should be invoked. The

absence of a destination argument indicates the call should be made only on the local associate.

A destination-aware multicast call is the dual of a source-aware method declaration we saw in the

previous chapter, shown below.

In the former case, the callee provides an extra argument specifying the caller(s). In the latter case, the

caller receives an extra argument specifying the caller.

 It is in fact possible to combine the two dual ideas, as shown below.

In the combined case, the caller provides an extra argument specifying the caller, and the caller receives

an extra argument indicating the callee.

public void addMessage(String msg) {

addMessage(“You said:”, msg);

addMessage(others, myName() + “ said:”, msg);

}

public void addMessage(String prefix, String msg) {

history.add(prefix + newVal);

} Caller provides extra
argument specifying

callee

model.addMessage(prefix, comment);

public void addMessage(String caller, String prefix, String msg) {

if(ac.authorize(caller)) {

history.add(prefix + msg); }

}
Callee gets an extra
argument specifying

caller.

public void addMessage(String caller, String prefix, String msg) {

if(ac.authorize(caller)) {

history.add(prefix + msg); }

}

public void addMessage(String msg) {

addMessage(“You said:”, msg);

addMessage(others, myName() + “ said:”, msg);

}

Syntactically, it seems there is no extra argument as both the call and declaration have the same

signatures. However, semantically, the two arguments are unrelated. The caller indicates the

destination and the callee receives the source. Thus the value of the caller formal parameter will not be

others in the example above, it will be an identifier of the machine that made the call.

The idea of making application programs aware of the destination and source of a remote call is an

abstraction of the idea of making each communication layer aware of the source and destination of the

message abstraction supported by the lower-level layer.

The physical, IP, and TCP/UDP network layers support addresses that are physical, internet, and port

numbers, respectively. The OS layer supports higher-level addresses such as sockets. The conventional

wisdom in distributed RPC supported by the language layer has been that the caller and callee of a

procedure need not be aware of each other. Our discussion above shows that when RPC is used to

create some collaborative applications, such awareness is indeed useful. There is no standard defining

the exact form of the identifier of caller and callee. If these identifiers are used for access control, they

must be unforgeable certificates. In the examples above, we have assumed they are textual

representations of these certificates identifying the caller/callee hosts and/or users.

The notion of multicast calls is related to the handling of calls that return values in a shared window

system. Recall that when a window client made the call, listFonts(), the call could be directed at the local

window system, the window system with the floor, any window system, or all window systems, as

shown in the figure below.

Network Layers

(e.g. TCP/IP)

OS Layers (e.g.

Sockets)

Language

Layer (e.g. Java

Remote Method

Invocation)

Physical Address

Internet Address

Port Number

Socket

Caller/Callee for
collaborative

systems

As the call was destination-unaware, the window system made the choice based on the call. A

destination-aware multicast call can allow a collaboration-aware window client to explicitly specify the

subgroup to which the call is directed.

The example above illustrates a problem with broadcast method declarations and multicast calls. What

is the return value of such calls? In general, it is the value returned by the local associate. If the return

value is a list, such as in the case of listFonts(), then the return values of each call can be combined by an

infrastructure that understand the semantics of the call.

Multicast calls are not currently supported by any RPC system. However, they are supported by some

collaboration proxies created for collaboration-unaware tools. For each collaboration-unaware call

supported by the tool, the proxy provides multiple calls, one for each multicast group defined by the

proxy. This is illustrated using the listFonts() method provided by a window system.

Here we have defined six different multicast groups:

1. others: (The associates at) all hosts other than the host of the caller of the method.

2. local: The complement of the group above – it includes only the caller host.

3. all: The union of the two groups above – it allows the call to be broadcast.

User 2 User 3User 1

Window Application

Window System Window System Window System

Output Broadcaster &
I/O Relayer++

I/O Relayer I/O Relayer

listFonts()
9, 11

listFonts()

3, 9, 11

5, 9, 11

listFonts()listFonts()

1, 9, 11

1, 9, 11

3, 9, 11

(Has Floor)

listFontsOthers();

listFontsAll();

listFontsInputter();

listFonts ();

listFontsAny();

Every one other than caller of method

Host whose input triggered the call

Specific users

Everyone: Broadcast

Local

Any user (anycast)

listFontsSpecific({“joe”, “alice”});

4. specific: A set of hosts explicitly identified by the caller.

5. any: Any host chosen by the proxy – this group supports the recently popular “anycast”.

6. inputter: The host of the user whose input triggered the call, in case such a user can be

identified. In a shared window system, this would be the user with the floor. In a fully replicated

system such as Colab, the inputting and local hosts are the same. In a semi-replicated system

such as a “centralized” window system shown above, in which the window system is replicated

but the window client is centralized, the inputter may be different from the local user. In the

figure above, the floor holder is User 2 rather than the local user, User 2.

 As the discussion above applies, the physical windows on different sites to display a shared logical

window form an association. The following example shows the application of the notion of a

multicasting tool proxy in GroupKit.

The coupling binding time of multicast calls depends on when the target of the call is specified. If the

group is passed as a runtime argument to a call, then coupling decisions are made at execution time. If

the group name is built into a proxy call, as in gk_toOthers, the destination is specified at program

writing time. However, even in this case, multicast calls are more flexible than broadcast declarations. It

is possible to multicast to a subgroup of the association. In addition, the group is specified when the

client of a replicated classes is written, not when the replicated class is written. As a result, different

clients of the same replicated class can couple instances of the class differently.

Application and Association Binding
Each associate in an association runs on a different host as part of an independent program. How are

the various instances of a replicated class created in different distributed applications bound into an

association? We can assume that each program takes as an argument the name of a session.

This argument is processed by the collaboration infrastructure and used to group processes on different

computers into sessions. It assumes a central session manager with which names are registered. A

completed replicated approach is to pass each process locations of all other processes in the sessions.

Instances of replicated classes will be put together into an association only if the processes that created

these instances are replicas, that is are in the same session. If a replicated class is a singleton, that is

has only one instance in a process, then forming associations is straightforward - the singleton instances

of all processes in a session form an association.

However, if a process creates more than one instance of a replicated class, then we must decide how we

should find their associates in the replicas of the process. If we assume that each process creates the

proc insertIdea idea {

insertColouredIdea blue $idea

gk_toOthers ''insertColouredIdea red $idea'' }

java ConcertExpenseMain demoSession

same sequence of replicated objects, then the index of an instance in this sequence can be used to find

its associates. That is, the ith members of these sequences in the different replicated processes are put in

the ith association. This approach is, in fact, used in shared window systems to bind physical windows on

different computers.

However, the approach has two related problems, especially when applied to shared models. It requires

that processes in a session run the same program, and the program is non deterministic. This

requirement does not allow collaborating users to use different devices, as the programs on these

devices will generally contain different views and controllers.

Abstract Associate Name Server
These problems arise because associates are being implicitly grouped into associations without any

input from the user. This is in contrast to explicit binding of processes into sessions, which is based on

explicit session names provided by users. The solution then is to support explicit binding of associates.

Imagine an RMI-like server that supports registration and lookups of named objects. The register

operation does not store a reference to the registered object. Instead it creates a replica of the

registered object, that is, a new associate in the association to which the registered object belongs.

Similarly, the lookup call does not return a reference to the named object. Instead, it returns a replica of

this object.

Thus, the process that registers the object and the name server, and the processes that lookup the

object all have associates kept consistent using some synchronization scheme such as broadcast method

declarations or multicast calls. These processes do not have to run the same program deterministically

as in implicit binding. Instead, they must agree on the name of each association created in a session.

Association Name Server
This approach is implemented by the Sync server, which is built on top of the RMI server. The following

Sync programs concretely illustrate the approach. Moreover, as some of the exercises are based on

Sync, the examples give some of the details needed to do these exercises.

The code executed to start the Sync server is given below.

Associate

User

Associate

Registerer and

User

Associate

Name Server

register(name, object)lookup (name)

C SN

The program simply calls the SyncServer method, instantiate, to start the server program. This method

takes a list of String options. The “server_id” option specifies the name of the Sync server on a host.

Here we have named it “A”. It takes the place of the port number in the case of an RMI server. The

“trace” argument makes the server print the register, lookup and other operations on the console.

Unlike the RMI server, the Sync server can display the objects registered with it. The “ui” option asks it

to create this display.

To allow the Java Sync server to be accessed by other processes, we must pass the following VM

arguments to the program launching it.

The argument, java.policy, is a file stored in the directory from which the program is launched, and has

the following contents.

The following is a client program that registers an associate with the Sync server and uses ObjectEditor

to interact with it.

package sync_server_starter;

import edu.unc.sync.server.SyncServer;

public class StartSyncServer {

public static void main(String[] args) {

String[] myArgs = {"--ui", "--trace",

"--server_id", "A"};

SyncServer.instantiate(myArgs);

}

}

Trace client-

server
interaction

Takes place of

port #

grant {

permission java.security.AllPermission;

};

Like the RMI server, the binding operation specifies both the name of the server and the object being

registered. In addition, it gives the name of the replica process registering the object, which as we will

see later is used in Sync to allow application programs to create collaboration-aware programs. The

syncArgs argument gives optional arguments. The one used here asks Sync to create an ObjectEditor

user interface to control synchronization and display session state. Thus, this program starts two

ObjecEditor interfaces, one for interacting with the registered model, and one for interacting with the

Sync infrastructure.

After the register operation, the server UI displays information about the registry.

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

import edu.unc.sync.server.SyncClient;

public class SyncBudgetCreator {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

static String CLIENT_ID = "alice";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Object model = new AConcertExpense();

Sync.replicate (SERVER_NAME,

MODEL_NAME,

model,

CLIENT_ID,

syncArgs);

ObjectEditor.edit(model);

}

}

register (name, object)

Takes place of

port #

For session

management,
awareness and

other user-
specific
functions.

Client-side UI

The following program illustrates the use of the lookup operation.

The program is much like the one used by the associate creator except that it returns rather than

registers a model. As before two ObjectEditor user interfaces are created by it.

Sync uses Java Serialization to create replica copies. Hence the registered objects must implement this

interface and declare appropriate transient variables. If the class of the object defines the method,

initSerializedObject(), then Sync calls it after receiving a serialized version of it from a remote location.

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetUser {

static String CLIENT_ID = "bob";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

ConcertExpense model = (ConcertExpense)

Sync.lookup(SyncBudgetCreator.SERVER_NAME,

SyncBudgetCreator.MODEL_NAME,

CLIENT_ID,

syncArgs);

ObjectEditor.edit(model);

}

}

lookup (name)

Sync does not currently handle cyclic logical structures – hence you must break cycles using transient

variables and re-create them after receiving a serialized copy.

 In the following outline of the concert expense example, the lines in blue indicate code written to

support explicit associate binding in Sync.

Symmetric Associate Name Server
Explicit name binding, as defined above, requires the developers of each new application to write two

different programs: one that registers an associate, and another that looks it up. The former program is

required to start a collaborative session with the program, and the latter is required to join it. This

approach is consistent with asynchronous manipulation of some shared artifact. One user creates the

artifact and allows/invites others to access it, while other users simply access a created artifact. For

instance, to share a directory in Groove, one user creates the directory on his/her computer, and others

simply replicate it on their computers.

However, this approach does not work well in several synchronous collaborative sessions, especially

those involving lab experiments. The users must coordinate with each other to decide who will start the

session, and race conditions can occur if the creating and joining programs are executed about the same

time, that is, a joining program may invoke the lookup call before the creating program executes the

register call.

A solution to this problem is to combine the register and lookup operations into a single operation and

let the name server decide whether the combined operation does a register or lookup based on when

the combined operation is executed. As it may behave like a lookup, it must return an associate and not

take an associate as an argument. However, when it behaves like a register, it must have an associate to

register. Since this object is not passed to it as an argument, it must create the object. To do so, it must

know how to create the instance. As shown below, it can take the class of the associate as an argument.

public class AConcertExpense implements ConcertExpense,
Serializable {

float unitCost = 0;

int numberOfAttendees = 0;

transient PropertyChangeSupport propertyChange =

new PropertyChangeSupport(this) ;

public float getTicketPrice() { return unitCost; }

…

public void initSerializedObject() {

propertyChange = new PropertyChangeSupport(this) ; }

}

When it is called, it sees if an object with the specified name exists. If the associate exists, it behaves like

the lookup operation. Otherwise, it creates a new instance of the specified class and registers it. We can

now replace the two application programs above with a single one.

The client identifier is now passed as a main argument so that each user can run the same program. Of

course, users on different devices will run different programs, but even in that case the combined

operation does not have race conditions.

Factory-based Name Server
The symmetric operation requires the system to instantiate the class of the replicated object. This

means it must choose a constructor of the class for the instantiation. As we have not passed constrictor

arguments to the call, the system must try to find a parameter-less constructor and instantiate this

constructor. This raises two problems. First, there may be no parameter-less constructor in the class.

Second, the constructor may throw an exception application-specific handling.

Associate

User

Associate

Registerer and

User

Associate

Name Server

registerOrLookup (name,

modelClass)

C SN

registerOrLookup (name,

modelClass)

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME,

AConcertExpense.class,

args[0],

syncArgs);

ObjectEditor.edit(model);

}

}

System
instantiates if

replicate

User name is
passed as a

main arg

One way to address the first problem is to allow the programmer to pass constructor arguments to the

symmetric operation. However, as constructors of different classes can take different arguments, there

is no way to ensure, at compile time, that the actual and formal parameters of the constrictor match.

Another approach to address this problem is to require all replicated classes to provide parameter-less

constructors. Once the object has been instantiated, the application program can make a local call to a

public init method it to initialize the object.

.

This approach, however, has several problems, which arise from the fact that this call is made at each

site. If the method is computationally expensive, computing resources at all but one site are

unnecessarily used. If the method is not idempotent, then the initialized state of the associates may

diverge. Most important, if an application program joins the session after the initial state has been

changed, it will reinitialize this state! Finally, this approach does not address the problem of constructors

throwing exceptions.

The key to solving these two problems is to realize that the system knows when a class should be

instantiated and the application knows how to instantiate it. So instead of passing a class to the

replicateOrLookup() operation, the application should pass a method that does the instantiation. Several

object-oriented languages such as Java do not support method parameters. However, they do support

object parameters, and an object is just a collection of methods and some optional state. Thus, we can

pass to the operation an object whose sole purpose is to instantiate a class. Such an object is called a

factory, as it churns out new instances. The interface of the factory must be predefined by the

infrastructure, which must call some well-known method in the object to perform the instantiation.

To illustrate, consider the factory interface assumed by Sync.

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME,

AConcertExpense.class,

args[0],

syncArgs);

model.init(15.0); // initializing default price

ObjectEditor.edit(model);

}

}

Local call at
each site

The interface defines a single operation, newInstance(), which is responsible for creating the object to

be registered. The following is an example implementation of this interface.

Sync passes to this method the class of the object to be instantiated to allow the factory to be used to

create instances of multiple classes. The factory above simply ignores this argument. The default factory

in Sync tries to call a parameter-less method in the class.

The following code shows how the default factory may be overridden.

The application program associates a model class with a factory using the register (Class, ObjectFactory)

method. It still uses the replicateOrLookup() operation that takes a class as an argument. To instantiate

the class, the system searches for an associated factory, and if it does not find it, it uses the default

package edu.unc.sync;

public interface ObjectFactory {

public Object newInstance(Class c);

}

System defines interface

Allows a factory to be
shared among

multiple classes with

shared init methods

package budget;

import edu.unc.sync.ObjectFactory;

public class AConcertExpenseFactory implements ObjectFactory{

public Object newInstance (Class c) {

return new AConcertExpense(15.0);

}

}

Programmer implements interface

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Sync.register(AConcertExpense.class,

new AConcertExpenseFactory());

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME,

AConcertExpense.class,

args[0],

syncArgs);

ObjectEditor.edit(model);

}

}

Programmer binds
class to factory

instance

A single factory
created all instances

of the associated class

factory. In either case, it creates the new object by calling the newInstance method of the factor,

passing it the class.

The register(Class, ObjectFactory) operation allows programmers to essentially pass a factory rather

than a class to the replicateOrLookup() operation. The following figure abstracts out this point.

Aggregate register and lookup
It is possible for a single factory object to create multiple instances of a class. This is illustrated in the

following variation of the Sync replicateOrLookup() call, which is used to atomically register or lookup

multiple associates. This operation takes as arguments arrays that give the names and classes of these

objects, and returns an array of instances, one for each element of the class array. In this example, the

two classes in the array are the same. The factory object associated with the class is used to create both

instances of the class.

Associate

User

Associate

Registerer and

User

Associate

Name Server

registerOrLookup (name,

objectFactory)

C SN

registerOrLookup

(name,objectFactory)

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetsSymmetric {

static final String SERVER_NAME = "localhost/A";

static String[] modelNames = {"demoBudget1",

"demoBudget2"};

static Class[] classNames = {AConcertExpense.class,

AConcertExpense.class};

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Sync.register(AConcertExpense.class,

new ConcertExpenseFactory());

Object[] models = Sync.replicateOrLookup(

SERVER_NAME,

modelNames,

classNames,

args[0],

syncArgs);

for (int i = 0; i < models.length; i++)

ObjectEditor.edit(models[i]);

}

}

The server a UI given below shows the effect of the aggregate operation.

Replicated Logical Structures
We have address two issues in the design of replicated objects:

1. Associate binding: How are associates connected to each other in an association?

2. Synchronization: How are bound associates synchronized with each other.

These two issues are independent of each other. Thus, it is possible to use implicit and explicit binding

with both multicast calls and broadcast method declarations. While the implementation of the current

Sync explicit binder uses neither of these two synchronization schemes, in principle it could support

them.

To motivate the actual synchronization scheme supported by Sync, consider the following limitations of

multicast calls and broadcast methods.

 Display consistency: They do not ensure that concurrent input does not lead to divergent state

at the two sites. These are problems we saw in replicated window systems, and in fact, arise in

any replicated system in which the local input is processed immediately at the site at which it is

generated.

 Asynchronous interaction/merging: They do not allow asynchronous interaction/disconnection

and merging. In principle, it is possible to buffer non-local calls when a user is disconnected or

working asynchronously and later, on connection or start of synchronous interaction, replay

them in other connected associates. However, this approach requires a way to handle

conflicting changes. Multicast calls and broadcast methods associate no semantics with

methods, and thus do not know which methods conflict with each other.

 Fine-grained Locking: One way to prevent conflicts is to lock different parts of an structure of

an object. However, systems supporting multicast calls and broadcast method declarations

consider an object as a collection of methods rather than a manipulator of a data structure.

It is to overcome these problems, we introduced, in Chapter 3, the notion of logical structures of

objects, and programming patterns to automatically identify them in programmer-defined encapsulated

objects. ObjectEditor used these concepts to display objects. Sync uses them for synchronization. It uses

the Bean, list and hashtable programming patterns, and associated notifications, defined in Chapter 3.

This means that that the model is required to follow these patterns and fire notifications – requirements

already imposed by ObjectEditor for creating the user interface.

The following architecture of Sync shows how the patterns and notifications can be used to provide

synchronization without the limitations above.

A notification sent by an associate is received by an infrastructure client library, which runs as part of

each replicated process in the collaborative session. Information about the notifications is conveyed to

the Sync client libraries of all other replicated processes in the session, which invoke corresponding

write methods in peers of the associate that generated the notification. As the notifications specify the

logical component of the associate that changed, the infrastructure can map them to write methods,

and provide default policies for locking, and merging concurrent/asynchronous changes to unlocked

components. Since merging is supported, each client library offers (a) the setRealTime() operation to

switch between synchronous (real-time) and asynchronous interaction, (b) and the synchronize

operation to flush buffered changes. As shown in the figure, its ObjectEditor user-interface provides a

way to interactively invoke these commands.

In principle, client libraries can directly communicate with each other after they have retrieved

associates from Sync name server. However, correct merging in a fully replicated system is still a

research issue. Therefore, the Sync name server also performs centralized merging. All communication

between clients is performed through the Sync Server. The exact nature of a merging algorithm is the

subject of a future chapter. In the interaction below, we will get a flavor of some of the policies that can

be supported by such an algorithm.

Let us begin by understanding integrated asynchronous and synchronous collaboration. The following

figure shows two users, Alice (top user), and Bob (bottom user), interacting with the concert expense

Controller

(Performs Input)

View

(Performs Output)

Model

SyncClient

SyncServer

Buffers Changes

SyncClient looks like a
view and controller to the

model

Standard Property,
Vector, Hashtable

Observable

Central merging

setRealTimeSynchronize (boolean)

synchronize()

notification write method

application. Alice is working asynchronously and Bob one is working synchronously, as indicated by the

user interface provided by Sync to control the synchronization.

As indicated by the Sync user interface, Alice is about to invoke the synchronize operation. This

operation sends the buffered changes to the Sync server, which in turn, sends them to all users working

in the synchronous mode. Thus when the operation completes, both users see the same display.

To better understand the event flow and merging in Sync, assume that both users are working in the

asynchronous mode, and have made concurrent changes to their associates. Suppose Alice synchronizes

first.

At this point, neither associate changes. The reason is that when the Sync server receives changes from

Alice, it does not send it to Bob, as he is working in the asynchronous mode.

When Bob synchronizes, he sends the Server his changes, and receives Alice’s changes. However, Alice

does receive Bob’s changes. She must execute the synchronize command again to do so.

After the three synchronize commands have completed, both associates have the same state.

We see here the use of logical structures to synchronize associates. Because different components of

the associates were edited by the two users, it was possible to compose them.

Consider now concurrent changes to the same component, shown below.

Here, Alice and Bob have the changed the ticket price to 24.1 and 24.0, respectively. When Alice

synchronizes, her value is recorded by the server, but Bob does not receive it as he is working

asynchronously.

When he next commits, the server knows his change was made without seeing Alice’s value. As both

changes manipulate the same atomic component, it knows this is a conflict. It resolves the conflict by

choosing the earliest conflicting change received by the Server. Thus, it overwrites Bob’s change with

Alice’s value.

Why not choose the later value? When there are conflicts, there is no correct way to merge the changes.

As you have seen in Google Docs, conflicts in the document editor and spreedsheet are handled

differently – the former uses the Sync approach of choosing the earliest value, while the latter takes the

opposite approach of choosing the latest one. In a system supporting disconnection/asynchronous

interaction, it can be argued that the latest value should not win. To explain why, consider our example.

When Bob synchronizes, if he sees no change to his value, and receives no other notification, then he

will simply assume there was no conflict. Alice, on the other hand, may not synchronize for a while, and

when she does synchronize, may not check if all of her previous changes had any conflicts. Thus, the

conflict may go undetected. When Bob sees Alice’s concurrent change, he knows there is a conflict. At

this point, he can either accept her value, or override it with his value. If he overrides, the server will

accept his change, as it was not made concurrently with Alice’s change – Bob saw Alice’s value before

making his change.

Collaboration Unawareness and Non WYSIWIS Coupling
Let us look at the full code of the concert model used in the interaction above.

It is identical to the model of chapter 3 except for the blue lines, which are required to make it

serializable. One can argue that it has no distribution awareness, as it needs to be serializable to be

saved in a file and loaded from it. Moreover, it has no awareness of the fact it is interacting with

multiple users. Thus, it is collaboration-unaware. Similarly, the model and controller are also distribution

and collaboration unaware, as they communicate with local models. In other words, replicated logical

structures can be used to support a collaboration and distribution unaware MVC structure. This is not

the case with multicast calls and broadcast method declarations, which require the model, controller,

and/or view to be use method declarations or calls that are ware that multiple users are interacting with

the code. If we use implicit associate binding, replicated logical structures allows the whole application

to be collaboration unaware.

This is an interesting result. The conventional wisdom has been that if we want to share existing

collaboration-unaware applications, we must use a shared window system, which supports WYSIWIS

coupling. We see here that is possible for different users sharing a collaboration-unaware application to

create different views of it. Thus, it is not the case that collaboration-unawareness implies identical user

views.

public class ConcertExpense implements ConcertExpense, Serializable {

float unitCost = 0;

int numberOfAttendees = 0;

transient PropertyChangeSupport propertyChange = new PropertyChangeSupport(this) ;

public float getTicketPrice() { return unitCost; }

public void setTicketPrice(float newVal) {

if (newVal == unitCost) return;

float oldVal = unitCost; int oldTotal = getTotal();

unitCost = newVal;

propertyChange.firePropertyChange("ticketPrice", null, newVal);

propertyChange.firePropertyChange("total", null, getTotal());

}

public int getNumberOfAttendees() { return numberOfAttendees; }

public void setNumberOfAttendees(int newVal) {

if (numberOfAtendees == newVal) return;

int oldVal = numberOfAttendees; int oldTotal = getTotal();

numberOfAttendees = newVal;

propertyChange.firePropertyChange("numberOfAttendees", null, newVal);

propertyChange.firePropertyChange("total", null, getTotal());

}

public float getTotal() {return unitCost*numberOfAttendees; }

public void addPropertyChangeListener(PropertyChangeListener l) {

propertyChange.addPropertyChangeListener(l);

}

public void initSerializedObject() {propertyChange = new PropertyChangeSupport(this) ; }

}

On the other hand, we cannot simply use existing applications written for some window system and

create multiple views for different users. The applications must use programming patterns and send

notifications based on them. It is currently uncommon to find such applications. Thus, unless this

changes, in practice, collaboration awareness does imply WYSIWIS coupling.

Server and Client Awareness and Event Flow in Sync
Returning to the comparison of synchronization based on multicast calls, broadcast method declarations

and replicated structures, while the first two approaches do not support collaboration-unaware

applications, they do allow certain useful user-interfaces that cannot be supported by logical structures.

For instance, we saw earlier how they can be used to create a MUDs like user interface in which a

message shows up differently in the histories of the associates of the message creator and other users.

Replicated logical structures, as described above, do not support such asymmetric synchronization.

It is possible to overcome this problem by providing collaboration-aware primitives that allow

application programmers to override the replication scheme provided by replicated logical structures.

Let us see a few of such primitives provided by Sync that allow associate methods to be aware of

whether they are executing in the server or client and, if they are executing in the client, some details of

the client. The use of these primitives requires understanding of explicit binding and replicated logical

structures supported by Sync.

The following figure illustrates the use of these primitives. Again, the top user is Alice and the bottom

one is Bob. The replicated processes interacting with them execute on the same machine in this

example.

The histories of both users indicate that Alice created the first associate in the association and made two

changes to its ticket price. Subsequently, Bob looked up the associate to create his own serialized copy,

and changed the ticket price. The consoles of the two users also show changes to the ticket price. Bob

does not see all three changes in his console because he joined the collaboration late.

How did Alice’s associate know (a) when it was created, (a) it was the first object in the association.

Recall that Sync’s explicit binding scheme creates the first associate by instantiating its class, and

subsequent associates by creating serialized copies of the associate stored in the server. Thus, when the

first associate is created, the instantiating constructor is called. The message that indicates that a new

budget has been created must then be in this constructor.

How did Bob’s associate know when it was loaded by its Bob’s process? Recall that Sync client library

calls the initSerializedObject() in every serialized associate it receives from the server. The message that

indicates that the budget was loaded must then be in this method.

Both the constructor and initSerializedObject() need to know the name of the client of the associate in

which they are called. The collaboration-aware primitive, Sync.getClientId(),can be called by an associate

to determine the client id of the user who registered or looked it up.

A user change to the ticket price results in a call to the corresponding setter method in each associate. it

is important to ensure that only one of these adds information about the change to the history – in

particular the one called by the local controller. This can be done by using the Sync.isRemote()

primitive, which can be invoked by a method to determine it was called by Sync or the local controller.

Thus, we are able to avoid the problem of spurious broadcasts mentioned earlier.

Recall, that for each association, the server keeps a serialized associate, which is synchronized with

other associates by calling its setter methods. The user-interface above does not generate a message

when the server receives the serialized copy or an update to this copy. Sync allows programmers to

distinguish calls to a method in the server and client associates. The routine Sync.isServer() can be called

by the method to determine if it was been called in the server or a client.

Finally, the messages on the console show both the client id and host name of the user who made the

change. The Sync.getSoutceName() call provides this information.

The following code illustrated the use of these primitives to generate the user-interface above.

The Sync collaboration-aware primitives used in this example are highlighted. The constructor prints out

the object creation message when it is called in the first associate. The initSerializedObject() method

prints the object loading message in all serialized client copies of the first associate. Whenever a user

changes the ticket price, the associated setter method call in (a) each associate prints a message to the

console, and (b) the local associate stores the message in the history.

public class AnAwareConcertExpense extends AConcertExpense{

ListenableVector<String> history = new AListenableVector();

public AnAwareConcertExpense() {

super();

history.add("Budget created by " + Sync.getClientId());

}

public void setTicketPrice(float newVal) {

super.setTicketPrice(newVal);

String eventMsg = "Ticket price set to: " + newVal;

System.out.println(eventMsg +" by " + Sync.getSourceName());

if (!Sync.isServer() &&!Sync.isRemote())

history.add(eventMsg + " by " + Sync.getClientId());

}

public void initSerializedObject() {

super.initSerializedObject();

if (Sync.isServer()) return;

history.add("Budget loaded by " + Sync.getClientId());

}

public ListenableVector<String> getEventHistory() {

return history;

}

public void setEventHistory(ListenableVector<String> newVal) {

history = newVal;

}

}

Ignoring Sent and Received Notifications
The example above helps us better understand how events flow between the model, Sync client and

Sync server. To further understand this flow, consider model notifications generated when the value of a

readonly component such as the total property changes.

The value of this property is important to the view, as it must update its value. However, it is irrelevant

to the replicating infrastructure as there is no corresponding write method to invoke on remote

associates. The remote users do see this property update in their user interfaces. This happens because

of invocation of the write methods, setNumberOfAttendees() and setTicketPrice(), that update

properties on which the readonly property depends.

Thus, the replicating infrastructure processes only notifications regarding changes to editable

components. Sometimes it is useful to ignore even some of these notifications, as illustrated by the

following example.

public class AConcertExpense implements ConcertExpense, Serializable {

float unitCost = 0;

int numberOfAttendees = 0;

transient PropertyChangeSupport propertyChange = new PropertyChangeSupport(this) ;

public float getTicketPrice() { return unitCost; }

public void setTicketPrice(float newVal) {

if (newVal == unitCost) return;

float oldVal = unitCost; int oldTotal = getTotal();

unitCost = newVal;

propertyChange.firePropertyChange("ticketPrice", null, newVal);

propertyChange.firePropertyChange("total", null, getTotal());

}

public int getNumberOfAttendees() { return numberOfAttendees; }

public void setNumberOfAttendees(int newVal) {

if (numberOfAtendees == newVal) return;

int oldVal = numberOfAttendees; int oldTotal = getTotal();

numberOfAttendees = newVal;

propertyChange.firePropertyChange("numberOfAttendees", null, newVal);

propertyChange.firePropertyChange("total", null, getTotal());

}

public float getTotal() {return unitCost*numberOfAttendees; }

public void addPropertyChangeListener(PropertyChangeListener l) {

propertyChange.addPropertyChangeListener(l);

}

public void initSerializedObject() {propertyChange = new PropertyChangeSupport(this) ; }

}

In this example, each user sets the WillAttend property to indicate if he or she plans to attend the

concert. The side effect of this update is that the value of the NumberOfAttendees property is changed.

(Should the NumberofAttendees property still be editable?)

Here, the WillAttend property is private to each associate. Thus, changes to it made by the associate of

one user should not be reflected in the associates of other users. We need a way to ensure that the

replicating infrastructure does not broadcast these updates.

One way to ensure this is to not generate notifications when the property is updated.

However, a disadvantage of this approach is that the view and other local observers who are interested

in changes to this property do not receive notifications when it changes. Another approach is to use a

different protocols to inform local observers and the replicating infrastructure, but this requires

programmers to write more notification code and more important, goes against our goal of using

standard programming patterns and associate notifications to promote program understanding and

pattern-based local and remote tools.

public class AConcertExpenseWithAttendance extends AConcertEexpense
implements ConcertExpenseWithAttendance {

boolean attend;

public boolean getWillAttend() {

return attend;

}

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

attend = newVal;

if (newVal)

setNumberOfAttendees (getNumberOfAttendees() + 1);

else

setNumberOfAttendees (getNumberOfAttendees() - 1);

}

}

The answer, then, if for the replicating infrastructure to allow application programs to control

communication of each kind notification. Below, we see control of property updates. Similar control can

be provides for each kind of vector and hashtable change.

The figure shows a way to control both transmission and receipts of property updates. Each property of

each class is associated with a ReplicatedOut and ReplicatedIn boolean attribute. The former determines

if local updates to the property are sent to remote associates, while the latter indicates whether

updates to it sent by remote associates cause changes in the local associate.

Sync provides collaboration-aware primitives, setReplicateIn() and setReplicateOut(), to set each of

these attributes individually. It also provides a call, setReplicate(), to set both of them together. In

addition, it provides the call, setReplicateAllProperties(), to set both of them for all properties of a class.

Their signatures are given below.

In the example above, a Sync client should neither send or receive notifications to the WillAttend

property. Therefore, the main program of each replicated process uses setReplicate() to set both

ReplciateIn and RepliateOut attributes of this property to false.

Property p

Infrastructure

ReplicateInReplicateOut

Sync.setReplicateOut(Class c, String property, boolean newVal)

Sync.setReplicateIn(Class c, String property, boolean newVal);

Sync.setReplicate(Class c, String property, boolean newVal)

Sync.setReplicateAllProperties(Class c, boolean newVal)

As a result, the model is able to announce the notification to the private property to local observers.

Wait Free Synchronization using a Memory Slot per User
The setReplicate() allows us to make the WillAttend property private. However, let us consider a more

fundamental question. Does the model correctly update the NumberOfAttendees property when a user

changes the WillAttend property?

Let us look more carefully at setWillAttend(). It increments or decrements the NumberOfAttendees

property based on whether the user decides to attend or not. If only one user interacts with the model

at a time, this algorithm works correctly. However, concurrent interaction can lead to race conditions

that make it fail. The problem is that the increment of NumberOfAttendees, which involves both reading

and writing of the property, is not performed atomically. The following interaction illustrates why we

need atomicity.

To ensure that race conditions occur, Alice and Bob have turned off real time synchronization.

package budget;

import bus.uigen.ObjectEditor;

import edu.unc.sync.Sync;

public class SyncBudgetSymmetric {

static String SERVER_NAME = "localhost/A";

static String MODEL_NAME = "demoBudget";

public static void main(String[] args) {

String[] syncArgs = {"--oe"};

Sync.setReplicate(AConcertExpenseWithAttendance.class,

”willAttend” false);

Object model = Sync.replicateOrLookup(

SERVER_NAME,

MODEL_NAME,

AConcertExpenseWithAttendance.class,

args[0],

syncArgs);

ObjectEditor.edit(model);

}

}

No remote
notifications

public class AConcertExpenseWithAttendance extends AConcertEexpense
implements ConcertExpenseWithAttendance {

boolean attend;

public boolean getWillAttend() {

return attend;

}

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

propertyChange.firePropertyChange(“willAttend", attend, newVal);

attend = newVal;

if (newVal)

setNumberOfAttendees (getNumberOfAttendees() + 1);

else

setNumberOfAttendees (getNumberOfAttendees() - 1);

}

}

Both of them indicate they will attend. The setter for this method read the local value of

NumberOfAttendees, which is zero in both cases, and increments it to 1.

As both users have changed NumberOfAttendees to the same value, after they synchronize their

changes, the value of this property remains 1, and thus does not reflect that both users will attend.

We can solve this problem by having the model keep track of who is attending in a table, as shown

below.

The table has a slot (key) per user. The method setWillAttend() now fills the slot of the user who calls it,

using the collaboration-aware primitive, Sync.getClientId().The method, getNumberOfAttendees(),

returns the number of filled slots.As each user fills a different slot, there is no worry about conflicts.

The following examples show that he model now correctly computes NumberOfAttendees. As before,

let us assume that Alice and Bob are working in a disconnected fashion.

public class AConcertExpenseWithAttendanceTable extends AConcertExpense {

HashtableInterface<String, Boolean> attendance = new AListenableHashtable();

public HashtableInterface getAttendance() { return attendance;}

public void setAttendance(HashtableInterface newVal) {attendance = newVal; }

public int getNumberOfAttendees() {

Enumeration<Boolean> elements = attendance.elements();

int retVal = 0;

while (elements.hasMoreElements()) {

if ((elements.nextElement()).equals(true)) retVal++;

return retVal;

}

}

public boolean getWillAttend() {return attend; }

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

attend = newVal;

attendance.put(Sync.getClientId());

}

Alice and Bob , both concurrently indicate that they will attend. As their models are disconnected, the

NumberOfAttendees property has the value 1, as in the previous interaction without the table.

However, after they synchronize their changes, this value changes to 2. The reason is that each user’s

table gets the (key, value) slot inserted by the other user, and getNumberOfAttendees returns the

number of filled slots, which is now 2.

The example above illustrates an important problem and solution in concurrent computing. The

problem with the first solution was that the increment operation was not executed atomically, that is,

two executions of this operation could interleave their execution of the read and write steps in this

operation. As a result, each of them read the same value, and adds 1 to it, thereby cancelling the other

execution of it.

There are several solutions to this problem that require an execution of the operation to wait for a

concurrent execution of it. Our solution, on the other hand, does not involve a wait and even allows

disconnected concurrent interaction. It is a general example of wait free synchronization achieved by

LocalTemp = 0

NumberOfAttendees = 1

LocalTemp = 0

NumberOfAttendees = 1

LocalTemp = NumberOfAttendees

NumberOfAttendees = Temp + 1

N
o
n

-
A

to
m

ic
 E

x
e
cu

ti
o
n

N
o
n

-
A

to
m

ic
 E

x
e
cu

ti
o
n

replacing a shared slot with multiple slots, one per concurrent execution thread. This idea, as far as I

know, was invented by Jim Anderson.

Flexibility of Replicated Logical Structures
Let us wrap up our discussion of replicated logical structures by evaluating their flexibility. They were

introduced to remove limitations of broadcast method declarations and multicast calls. Do they have

limitations of their own?

In theory, the answer is yes. They do not allow associates to be arbitrary objects – they must be editors

of a predefined set of logical structures, which in our example are Beans, lists and tables.

To understand the impact of this limitation, in practice, let us see try and understand the practical range

of objects that can and cannot be supported by replicated logical structures.

The following figures illustrate the range that can be supported using some examples of actual Sync

student projects that build collaborative versions of popular applications.

(a) Drawing Tool (Munson) (b) Word Processor (Agiwal) (c) Outline Editor (Porwal)

(d) Spreadsheet (Luebke) (e) Calendar (McCuen)

None of these application uses ObjecEditor to create the view and controller, thereby showing that

replication and user-interface generation are independent, even though in the examples used so far, we

have combined their use.

To better understand the flexibility of replicated logical structures, let us see the logical structures of the

models of these applications. The drawing editor is a table whose values are various shapes. Each shape

defines geometric properties used by the view to display it. The word processor is a hierarchical

sequence whose leaf elements are text objects. Each text object has properties such as font and size

used by the view to display it. The outline editor is similarly a tree of text, shown using a different view

to display the tree. The spreadsheet and calendar are similarly tables with different behavior and views.

What are some common shared objects that cannot be supported by Sync in particular and the general

idea of replicated logical structures in general? Consider first, a stack.

This object cannot be directly supported by Sync because it does not follow any of the programming

patterns we have seen so far. However, this is not a limitation of the general idea of replicated logical

structures, as it is possible to define a variation of the Vector pattern to support this structure.

A n incrementable counter is a much better example to illustrate the problems of replicated logical

structures. We see below its use in overcoming the race condition problem involving concurrent

executions of the setWillAttend() method. With multicast calls and broadcast methods, this operation

could simply be executed in each associate to give the correct result without requiring a table per user.

Method Summary

boolean
empty()

Tests if this stack is empty.

Objectpeek()

Looks at the object at the top of this stack without
removing it from the stack.

Objectpop()

Removes the object at the top of this stack and returns
that object as the value of this function.

Object
push(Object item)

Pushes an item onto the top of this stack.

intsearch(Objecto)

Returns the 1-based position where an object is on this
stack.

public interface Counter {

public int getCounter();

public void increment(int amount);

}

Counter numAttendees = new ACounter();

public void setWillAttend(boolean newVal) {

if (attend == newVal) return;

propertyChange.firePropertyChange(“willAttend", attend, newVal);

attend = newVal;

if (newVal) counter.incmenet(1)

else counter.increment(-1);

Replicated logical structures cannot handle the Counter because its increment operation does not

indicate how the state of the counter is changed. The write methods supported by logical operations

had arguments that indicated how the (external) state was changed. As a result, the infrastructure could

synchronize (diff and merge) the state changes of different associates. The increment operation is a

blackbox to the infrastructure as it changes the state in an unknown manner. Thus, the example shows

the limitation of replicated logical structures – they communicates state changes rather than events,

and thus cannot support replication of write operations that compute state changes in an application-

dependent fashion.

This discussion, in turn, shows that each of the three synchronization schemes has its advantages and

limitations.

Systems Supporting Replicated Types
Multicast calls, broadcast methods, and replicated logical structures have been invented in research

systems, and to the best of our knowledge, do not exist directly in industrial strength systems. However,

predefined replicated types, exist in several current industrial strength and research systems – in

particular Groove, LiveMeeting, and GroupKit. LiveMeeting and GroupKit, like Colab, supports only

synchronous updates of associates, while Groove, like, Sync, supports both synchronous and

asynchronous updates.

Groove and LiveMeeting support replicated mutable atomic types such as integers and Booleans, and a

replicated sequence type roughly equivalent to AListenableVector. Groove also supports replicated

tuples, which have the logical structure of Beans. Finally, Groove and GroupKit support a replicated

hashtable type roughly equivalent to AListenableVector. As we saw earlier, GroupKit also offers

multicast calls.

GroupKit has been a very popular toolkit, and a primary reason for this is the multicast calls and

replicated hashtables supported by it. The emergence of LiveMeeting may also be owed partly to

replicated types. It is an evolution of a product called PlaceWare, developed by a small start-up of the

same name, started by a couple of Xerox researchers, and acquired by Microsoft in 2003. The replicated

types supported by it probably were a factor in it being able to compete with the much bigger Webex, as

they allowed relatively easy construction of the Whiteboard and user-interface of the PowerPoint

Presenter.

Multicast calls, broadcast methods, and replicated logical structures are more powerful than the notion

of predefined replicated types, as they allow replication of programmer-defined types such as the

concert example above or a new table that, unlike current hashtables, supports keys that are mutable

objects. Any of these three concepts can be used to implement any of the predefined types mentioned

above.

Techniques for Communicating Parameters
Replicated types are related to serialized and remote types. All three techniques allow processes on

different computers to exchange complete objects. The following figure shows the differences between

them.

Remote types make it possible for a site to send object references to other sites. Proxies created at the

sending and receiving sites ensure that methods invoked on the reference at the receiving sites are

executed at the sending site. Thus, all sites share a single copy of the object, but method invocation is a

costly operation for the receiving sites. These types essentially support “by reference” passing of

distributed parameters.

Serialized types make it possible to send copies of objects to other sites. These types essentially support

“by value” passing of distributed parameters. They go far beyond “by value” parameter passing

supported in non distributed languages as they dereference pointers, creating isomorphic structures at

the sending and receiving parameters. Like value parameters, a received serialized copy at a receiving

site can be changed independently of the original object at the sending site.

Replicated types combine elements of remote and serialized types. As in the case of replicated types,

the sending and receiving sites share state, but as in the case of serialized types, they access separate

local objects storing this state. When the local copy of the shared state is shared, corresponding changes

are made to the peer objects in the other sites.

Role of Server in Replicated Objects
The notion of a server seems at odds with the notion of replicated objects. Therefore, it is an optional

component of such a system. It is useful to provide session management, merging, explicit binding, and

an always connected repository from for downloading and uploading of client state. However, all of

these facilities can be provided by a fully replicated system, through a completely distributed

synchronous merge algorithm is still a matter of research. To illustrate, GroupKit provides replicated

site 1 site 2

site 1 site 2

site 1 site 2

write

write

write

R
e
m

o
te

S
e
ri

a
li

z
a
b
le

R
e
p

li
ca

te
d

session management, implemented using replicated tables, and Grove supports asynchronous merging

without requiring a central server for storing and merging this state.

Replication Summary
 A replicated system creates associations of objects created by different processes running on

the computers of different users.

 Associates can be implicitly bound to each other based on the order in which they were created

by their process.

 Explicit binding supports associations consisting of objects create by replicated processes run

different programs.

 Factories – objects that create other objects – allow programs registering and looking up

associates to execute the same program.

 Associates can be synchronized using broadcast method declarations, multicast calls, and

replicated logical structures.

 When a local object invokes a broadcast method in an object, the infrastructure invokes the

method also in all remote associates of the object.

 Broadcast methods should not call other broadcast methods to avoid spurious calls.

 Broadcast methods of bind the “what and when” of coupling of an associate class when the

class is written.

 Multicast calls explicitly indicate the subset of associates on which a method should be called.

 They bind the “what and when” of coupling of an associate class either at execution time or

when the code accessing the class is written.

 Replicated logical structures assume that an object is a manager of a predefined logical

structure – in particular a bean, sequence, or hashtable.

 They support merging of fine-grained changes to objects made in disconnected or asynchronous

collaboration.

 Broadcast methods and multicast calls require collaboration-aware views, controllers, and/or

models. Replicated logical structures support collaboration-transparent models, view, and

controllers, to which collaboration-awareness can be optionally added.

 Replicated logical structures do not allow replication of write operations that change object

state in an application-defined manner.

 Wait free synchronization can be achieved by replacing a shared memory slot with a slot per

concurrent activity.

 Replicated types combine elements of serialized and remote types.

Acknowledgments
Thanks to Kelli for her corrections

