
CAUSALITY

Prasun Dewan

Department of Computer Science

University of North Carolina at Chapel Hill

dewan@cs.unc.edu

mailto:dewan@cs.unc.edu

2

MESSAGE ORDERING

 Assume messages received reliably but not

necessarily in order

 Communication is direct (P2P)

3

MULTICAST

User Process

User Process User Process

communicator.toOthers(new ARemoteInput(theNextInput));

Same Message
directed multiple

processes

Consistency ?

Receiver of multicast
message can also

multicast

Consistency in 2-
computer case?

4

UNICAST

User Process

User Process

Message
directed to a

single process

communicator.toUser(“alice”, new AFloorControlRequest());

M
essage

5

DECOUPLING RELIABILITY AND ORDER

User Process

User Process

Sliding window ensures in-
order processing and reliable

delivery

M
essage

Not practical to decouple, but
will help us draw out principles
for the N-Computer, multicast

case, where reliability assumed

Assume reliable delivery

How in-order processing?

communicator.toUser(“alice”, new AFloorControlRequest());

6

OUT OF ORDER UNICAST

PC

1

PC

2

Lunch?

Yes, No

Done?

Yes, No

Done?

Lunch?

Divergent state!

Sequence
numbers!

7

OUT OF ORDER UNICAST (REVIEW)

PC

1

PC

2

Lunch?

Yes, No

Done?

Yes, No

Done?

Lunch?

Divergent state!

Sequence
numbers!

8

UNICAST SEQUENCE NUMBERS

Done?

Lunch?

Done?

Lunch?

Local 0 1

PC2 Buffer

Remote 0

Local 0

Remote 0 1

2
Each computer pair keeps count

of #messages sent to other party

Send message: increment and
attach local count as time stamp

Each computer keeps last
processed remote # and ordered

buffer for other party

Done? 1

Lunch? 2

When message received, put
message in ordered buffer

4. Go to 1

PC

1

PC

2

2

2. Remove message from
buffer, process it

1. If buffer empty or
message# !=successor (

remote#) return

3 remote# = message#

9

N-USER UNICAST
Local2 0

Remote2 1

PC

1

PC

2

PC

3

Buffer2 Buffer3 Buffer1 Buffer3 Buffer1 Buffer2

Local3 5

Remote3 0

Local1 1

Remote1 0

Local3 3

Remote3 2

Local1 0

Remote1 5

Local2 2

Remote2 3

Supports pairwise
connections (IMs)

Group IM?

10

OUT OF ORDER MULTICAST

Done?

Lunch?

PC

1

PC

2

PC

3

Yes, No

Done?

Lunch?

Lunch?

Yes, No Yes, No Yes, No

Done?

Correct Order?

M1 causes (<) M2
if M2 sent from
site S after M1

received or
generated at Site

S

Causal multicast:
At all sites, if M1 <
M2, M2 should be
processed after

M1

Causal relations

How to detect and
ensure causal

broadcast?

11

REAL-TIME SCALAR STAMP

Done?

Lunch?

PC

1

PC

2

PC

3

Done?

Lunch?

Lunch?

Yes, No Yes, No Yes, No

Done?

M2 caused by M1 
RTS (M2) > RTS (M1)

Process received
messages in order of

RTS

Do not know if there
is an in-transit

previous message,
how long to wait?

 Not
RTS (M2) > RTS (M1)
 M2 caused by M1

Clocks at different
sites not

synchronized!

12

MESSAGE HISTORY STAMP

Done?

Lunch?

PC

1

PC

2

PC

3

Yes, No, (3,1),

{(1,1), (2,1)}

Done?

Lunch?

Lunch?

Yes, No Yes, No Yes, No

Done?

Stamp: Global
message id + history

of ids of
sent/received msgs

Global id: unique site
it + sequence number

Simpler scheme
possible if message

not multicast to
arbitrary user set

History can get large
and compression

needed

Local 0 1 Local 0 1 Local 0 1

13

MESSAGE HISTORY STAMP (REVIEW)

Done?

Lunch?

PC

1

PC

2

PC

3

Yes, No, (3,1),

{(1,1), (2,1)}

Done?

Lunch?

Lunch?

Yes, No Yes, No Yes, No

Done?

Stamp: Global
message id + history

of ids of
sent/received msgs

Global id: unique site
it + sequence number

Simpler scheme
possible if message

not multicast to
arbitrary user set

History can get large
and compression

needed

Local 0 1 Local 0 1 Local 0 1

14

0

GLOBAL SCALAR ID: LOGICAL CLOCK, ASSUMING

ALL MESSAGES BROADCAST

PC

1

PC

2

PC

3

PC

4

Every site keeps a global id initialized to 0

When a site generates a message it
increments id and time stamps message

with it

A site delivers a message if its global id is
the successor of current global id;

otherwise it buffers the message to be
delivered later

On delivering/processing a received
message, a site sets its global id to the

message id

0 1

0 1

1

0 1 2

2

If no concurrent messages ever occur,
this scheme should work

Causal broadcast does not indicate
what should happen with concurrent

messages – immediate delivery, (fatal)
error

It should allow detection of concurrent
messages as soon as they arrive

It should not deliver a message before its
cause

15

0

LAST SENDER TIME STAMP, ASSUMING ALL

MESSAGES BROADCAST

PC

1

PC

2

PC

3

PC

4

0

0

0 1

0

Every site keeps a receive count for
each site

When a site generates a message it
sends the sender and count of the last

message it received

A site delivers a message if the
received count for the site is the same
as its count for that site; otherwise it
buffers the message for later delivery

On delivering/processing a received
message, a site increments local count

for that site

0 0 0

0 0 0

1 0 0

0 0 0

16

LAST SENDER TIME STAMP: MULTIPLE CAUSES

PC

1

PC

2

PC

3

PC

4

Every site keeps a receive count for
each site

When a site generates a message it
sends the sender and count of the last

message it received

A site delivers a message if the
received count for the site is the same
as its count for that site; otherwise it
buffers the message for later delivery

On delivering/processing a received
message, a site increments local count

for that site

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1

1

1

A message may have multiple causes, and this scheme sends only the most recent cause

1

17

FROM HISTORY TO VECTOR TIMESTAMPS

Done?

Lunch?

PC

1

PC

2

PC

3

Done?

Lunch?

Lunch?

Yes, No Yes, No Yes, No

Done?

Assume: each
message broadcast to
all other users in an

app session

IM and many other
apps follow this

assumption

Counts of
sent/received

messages replace
history

Local 0 1 Local 0 1 Local 0 1

Yes, No, (3,1),

{(1,1), (2,1)}

18

EXTENSION OF TWO-USER UNICAST

Done?

Lunch?

Done?

Lunch?

Local 0 1

PC2 Buffer

Remote 0 0

Local

0

0

Remote 0 1

2

Done? 1

Lunch? 2

PC

1

PC

2

2

Number for each
user: vector
timestamp

Message has vector
time stamp

Ordered buffer for
messages arriving

early

Need:

< and == for sorting
buffer

increment
operation before
sending message

and after receiving
message

succ function for
picking next

received msg

19

VECTOR TIME STAMPS

v = (x1, .. xn) at Site Sj 

v1 = (a1, .. an)

v2 = (b1, .. bn)

Possible that ai < bi and aj > bj for some 1 ≤ i , j ≤ n  concurrent message, v1 ||v2

< 
for all 1≤ i ≤ n, ai ≤ bi

for some 1 ≤ i ≤ n, ai < bi

Vector time stamps do not create total order

v1 = (a1, .. an)

v2 = (b1, .. bn)

==  for all 1≤ i ≤ n, ai == bi

Causal broadcast does not impose order on concurrent messages

For causal broadcast, will assume no concurrent messages are generated.

Site Sj has broadcast xi messages to
other sites and for all 1≤ i ≤ n, i != j Site Sj

has received xi messages from Site Si



20

EXTENSION OF TWO-USER UNICAST

Done?

Lunch?

Done?

Lunch?

Local 0 1

PC2 Buffer

Remote 0 0

Local

0

0

Remote 0 1

2

Done? 1

Lunch? 2

PC

1

PC

2

2

Number for each
user: vector
timestamp

Message has vector
time stamp

Ordered buffer for
messages arriving

early

Need:

< and == for sorting
buffer

increment
operation before
sending message

and after receiving
message

succ function for
picking next

received msg

21

INCREMENT AND SUCCESSOR

v1 = (a1, .. an)

v2 =(b1, .. bn)

is a successor of



for all j != i, aj== bj

There exists 1 ≤ i ≤ n, ai == 1 + bi

inc(i, v = (a1, .., ai, .., an)) v = (a1, .., ai + 1, …an)



A message has multiple
successors

Inc with respect to a site

22

UNICAST VS. MULITCAST
Each pair of communicating computers
keeps a count of how many messages it

has sent to other party and next expected
remote# for other party

Send message: attach and increment local
count

Each site keeps ordered buffer for other
party

Each sitei keeps a local vector time
stamp, vi = (i1, .. in)

Send message: increment ii and attach
vector time stamp

Each sitei keeps ordered bufferi for all
parties

When message received, put message in
ordered buffer

4. Go to 1

2. Remove message from buffer,
process it

1. If buffer empty or message#
!=successor (remote#) return

3 remote#  message#

When message received from site i, put
message in ordered buffer

4. Go to 1

2. Remove message from buffer,
process it

1. If buffer empty or message TS !=
successor (local TS) return

3. Local TSi  message TSi

23

CAUSAL MULTICAST

Done?

PC

1

PC

2

PC

3

Done?

Lunch?

Done?

Lunch?

0 0 0

v1

0 0 0

v2

0 0 0

v3

Buffer1 Buffer2 Buffer3

1 0 0 1 0 0 1 1 0

1 0 0 Done?

1 1 0 Lunch?

Done? 1 0 0

Received message is
put in ordered

buffer

2. Remove message
from buffer and

process it

4. Go to 1

Send message:
increment ii and

attach vector time
stamp

1. If buffer empty or
message TS

!=successor (local
TS) return

1 0 0 1 1 0

3 Local TSi
 msg

TSi

24

EXTRA STEPS FOR IMPLEMENTING CAUSAL

MULTICAST?

Done?

PC

1

PC

2

PC

3

Done?

Lunch?

Done?

Lunch?

0 0 0

v1

0 0 0

v2

0 0 0

v3

Buffer1 Buffer2 Buffer3

1 0 0 1 0 0 1 1 0

1 0 0 Done?

1 1 0 Lunch?

Done? 1 0 0

1 0 0 1 1 0 Implement vector
time stamps

Implement buffer

Change message
sends and receives

25

SOFTWARE ARCHITECTURE

I1 Free
Causal

Model

Put causal semantics in

model?

Model has to do the extra steps

mentioned in previous slide

Causality not an issue when

communication is relayed and

model is unaware of routing

Model may not want overhead

and delay of causality in

certain situations

Put causal semantics in

communication

infrastructure?

May want causality in

replicated window systems or

some other model

26

SOFTWARE ARCHITECTURE REQUIREMENTS?

Separation of concerns

Application code unaware of causality code

Communication infrastructure unaware of causality

Can dynamically add, remove, change causality implementation

Causality concepts independent of app and comm. infrastructure

Some general pattern beyond causality?

27

Causality-unaware

communication

system

Causality –

Unaware

Application

Causality-aware

proxy

CAUSALITY ARCHITECTURE (REVIEW)

Send/Receive

Done? 1 0 0

Done?

Done? 1 0 0

Received messages

1 1 0 Lunch?

Done? 1 0 0

Communicating app and
communication system unaware of

causality

Optional, substitutable
intermediary causality module

Communication system must allow
interception and interjection of

messages

28

Causality-unaware

communication

system

Causality –

Unaware

Application

INTERJECTION/INTERCEPTION OF MESSAGES

A sent/received message goes
through a send/receive filter in

send/receive pipeline

Default filter simply forwards
message to the next stage

Need a way to replace default filter
with custom filters

Send

Filter

Receive

Filter

29

DELIVERY: UN-FILTERED OR FILTERED

Unfiltered

Buffered

Unfiltered

Unfiltered

Transformed

Reordered

30

FILTERING AND EXTENSIBILITY

Sender Communicator

SentMessage

Filter

SentMessage

Processor

toOthers

processMessage

objectReceived
Receiver

Received

MessageFilter

ReceivedMessage

Processor

filterMessage

Filter interface(s)?

31

MESSAGE FILTER INTERFACE

public interface MessageFilter<MessageType> {

 public void setMessageProcessor (MessageProcessor<MessageType>

newVal;

 public void filterMesage(MessageType message);

}

Next stage in pipeline,
processing the filtered

message

ReceivedMessage
or SentMessage

Called by
communication system

when pipeline setup

Called by communication
system when new message

to be filtered available

32

MESSAGE PROCESSOR INTERFACE

public interface MessageProcessor<MessageType> {

 public void processMessage(MessageType theMessage);

}

ReceivedMessage
or SentMessage

Called by message
filterer to process

message

Sent message processor (and
succeeding pipeline stages)

broadcasts message

Received message processor (and
succeeding pipeline stages) delivers

to listeners

33

FILTERING AND EXTENSIBILITY

Sender Communicator

SentMessage

Filter

SentMessage

Processor

toOthers

processMessage

objectReceived
Receiver

Received

MessageFilter

ReceivedMessage

Processor

filterMessage

Unfiltered case?

34

DEFAULT PARAMETERIZED MESSAGE FILTER

public class AMessageForwarder<MessageType> implements

MessageFilter<MessageType> {

 MessageProcessor<MessageType> messageProcessor;

 public void filterMessage(MessageType sentMessage) {

 messageProcessor.processMessage(sentMessage);

 }

 public void setMessageProcessor(MessageProcessor<MessageType>

 newVal) {

 messageProcessor = newVal;

 }

}

Instantiated as both sent
and receive filter

Simply forwards the
message

Can be replaced with custom received and sent filters that modify, buffer and/or
reorder messages: e.g. MySentMessageFilter, MyReceivedMessageFilter

35

MESSAGE-SPECIFIC FILTERS

public class AMessageForwarder<MessageType> implements

MessageFilter<MessageType> {

 MessageProcessor<MessageType> messageProcessor;

 public void filterMessage(MessageType sentMessage) {

 messageProcessor.processMessage(sentMessage);

 }

 public void setMessageProcessor(MessageProcessor<MessageType>

 newVal) {

 messageProcessor = newVal;

 }

}

Instantiated as both sent
and receive filter

Simply forwards the
message

Can be replaced with custom received and sent filters that modify, buffer and/or
reorder messages: e.g. MySentMessageFilter, MyReceivedMessageFilter

Typically different actions for sent and receive filtering (e.g. add time stamp, remove
time stamp)

Message type matters, must know
receive and send message types

implemented by the communicator

36

GROUPMESSAGE AND SENTMESSAGE

public interface GroupMessage extends Serializable {
 String getApplicationName();
 Object getUserMessage();
 boolean isUserMessage();
 …
}

Sent message filter must implement MessageFilter<SentMessage>

If (isUserMessage()) then getUserMessage() is the object sent by remote site

User object will be replaced with a time stamped object by filter

public interface SentMessage extends GroupMessage{
 …
}

System messages such as client joins and leave status update messages

37

RECEIVEDMESSAGE

public interface ReceivedMessage extends GroupMessage {
 String getClientName();
 ...
}

Receive message filter must implement MessageFilter<ReceivedMessage>

If (isUserMessage()) then getUserMessage() is the object sent by remote site

User object will be actual user object extracted from timestamped message

getClientName() needed for timestamp-based processing

GroupMessage unites SendMessage and ReceiveMessage

38

INTERJECTION/INTERCEPTION OF MESSAGES

A sent/received message goes
through a send/receive filter in

send/receive pipeline

Default filter simply forwards
message to the next stage

Shared data between filters?

Causality-unaware

communication

system

Causality –

Unaware

Application

Send

Filter

Receive

Filter

39

CAUSAL MULTICAST

Done?

PC

1

PC

2

PC

3

Done?

Lunch?

Done?

Lunch?

0 0 0

v1

0 0 0

v2

0 0 0

v3

Buffer1 Buffer2 Buffer3

1 0 0 1 0 0 1 1 0

1 0 0 Done?

1 1 0 Lunch?

Done? 1 0 0

Received message is
put in ordered

buffer

2. Remove message
from buffer and

process it

4. Go to 1

Send message:
increment ii and

attach vector time
stamp

1. If buffer empty or
message TS

!=successor (local
TS) return

1 0 0 1 1 0

3 Local TSi
 msg

TSi

40

Causality-unaware

communication system

Causality –Unaware

 Application

SHARED FILTER STATE

Send

Filter

Receive

Filter
Causality

Manager

Bulk of the work done by shared
causality manager

Dynamic steps:
intercepting

messages

Static steps?

1 0 0

Creation of vector
time stamp of
correct length

41

Causality-unaware

communication system

Causality –Unaware

 Application

SHARED FILTER STATE

Send

Filter

Receive

Filter
Causality

Manager

clientJoined()

When to add
component to vector

Creation of vector
time stamp of
correct length

42

LISTENING TO CLIENT JOINS

public interface SessionMessageListener {
 void clientJoined(String aClientName, String anApplicationName,
 String aSessionName, boolean isNewSession, boolean isNewApplication,
 Collection<String> allUsers);
 void clientLeft(String aClientName, String anApplicationName);
}

communicator.addSessionMessageListener(causalityManager);

Assume first message sent after all members of the session have
joined and no message sent after the first user leaves

Dynamic session changes in causal communication requires
latecomer messages

43

Causality-unaware

communication system

Causality –Unaware

 Application

HOW TO SWITCH?

Forwarder Forwarder

44

HOW TO SWITCH?

How to switch factories?

How to share objects between
filters

Causality-unaware

communication system

Causality –Unaware

 Application

Send

Filter

Receive

Filter
Causality

Manager

Filter created using factory

Can register custom factory with
abstract factory to create custom

filter

Shared objects can be passed to
factories created by programmer

Communicator could provide an API
to switch filters

Communicator is aware of filters and
any other component that needs to

be switched

45

FACTORY INTERFACE

public interface MessageFilterCreator<MessageType> {

 MessageFilter<MessageType> getMessageFilter();

}

Common interface for creating
sent and receive filters

Returns object to be
created

Can create a new object
each time or return a

singleton object

46

DEFAULT PARAMETERIZED MESSAGE FILTER

FACTORY
public class AMessageForwarderCreator<MessageType> implements

MessageFilterCreator<MessageType>{

 public MessageFilter<MessageType> getMessageFilter() {

 return new AMessageForwarder<MessageType>();

 }

}

Instantiated as both sent
and receive filter factory

Can be replaced with custom factories
(e.g. MySendFilterCreator,
MyReceiveFilterCreator)

47

SEND FILTER (FACTORY) SELECTOR OR ABSTARCT

FACTORY
public class SentMessageFilterSelector {

 static MessageFilterCreator<SentMessage> filterFactory =

 new AMessageForwarderCreator<SentMessage

 public static MessageFilterCreator<SentMessage> getMessageFilterCreator() {

 return filterFactory;

 }

 public static void setMessageFilterCreator(MessageFilterCreator<SentMessage>

theFactory) {

 filterFactory= theFactory;

}}

Default factory

Can be assigned custom send factory
(SentMessageFilterSelector.setMessageFilterCreator(new MySendFilterCreator()) (before

communicator is created)

Called during construction
of send pipeline

48

RECEIVE FILTER (FACTORY) SELECTOR

public class ReceivedMessageFilterSelector {

 static MessageFilterCreator<ReceivedMessage> filterFactory =

 new AMessageForwarderCreator<ReceivedMessage>();

 public static MessageFilterCreator<ReceivedMessage> getMessageFilterCreator(){

 return queuerFactory;

 }

 public static void

 setMessageFilterCreator(MessageFilterCreator<ReceivedMessage> theFactory){

 queuerFactory= theFactory;

 }

}

Default factory

Can be assigned custom receive factory
ReceivedMessageFilterSelector.setMessageFilterCreator(new MyReceiveFilterCreator())

(before communicator is created)

Called during construction
of receive pipeline

49

FILTERS
Causality module composed of

send and receive filters.

Factories for returning filters

Filters can share common state
such as site vector time stamp.

Common state can be passed as
parameters to factory and filter

constructors

Causality-unaware

communication

system

Causality –

Unaware

Application

Causality-aware

proxy

Send/Receive

Done? 1 0 0

Done?

Done? 1 0 0

Received messages

1 1 0 Lunch?

Done? 1 0 0

50

UNICAST VS. MULITCAST (REVIEW)
Each pair of communicating computers
keeps a count of how many messages it

has sent to other party and next expected
remote# for other party

Send message: attach and increment local
count

Each site keeps ordered buffer for other
party

Each sitei keeps a local vector time
stamp, vi = (i1, .. in)

Send message: increment ii and attach
vector time stamp

Each sitei keeps ordered bufferi for all
parties

When message received, put message in
ordered buffer

4. Go to 1

2. Remove message from buffer,
process it

1. If buffer empty or message#
!=successor (remote#) return

3 remote#  message#

When message received from site i, put
message in ordered buffer

4. Go to 1

2. Remove message from buffer,
process it

1. If buffer empty or message TS !=
successor (local TS) return

3. Local TSi  message TSi

51

Causality-unaware

communication system

Causality –Unaware

 Application

Send

Filter

Receive

Filter
Causality

Manager

FILTERS (REVIEW)
Causality module composed of

send and receive filters.

Factories for returning filters

Filters can share common state
such as site vector time stamp.

Common state can be passed as
parameters to factory and filter

constructors

52

HOW TO TEST SYSTEM

Done?

PC

1

PC

2

PC

3

Done?

Lunch?

Done?

Lunch?

0 0 0

v1

0 0 0

v2

0 0 0

v3

Buffer1 Buffer2 Buffer3

1 0 0 1 0 0 1 1 0

1 0 0 Done?

1 1 0 Lunch?

Done? 1 0 0

1 0 0 1 1 0

Must ask communication library to use direct (peer to
peer) communication

How to ensure that message from PC 1 takes longer to
reach PC 2 than PC 3?

53

DELAYING MESSAGES

static void setDelaysAlice(Communicator communicator) {

 communicator.setMinimumDelayToPeer("cathy", 20000);

}

Nodes labeled in terms of their users

Actual delay maybe larger because of scheduling and
network delays

54

ASYNCHRONOUS IMPLEMENTATION CAVEAT

Done? 2 0 0 Lunch? 1 0 0 Ok 3 1 0

myTimeStamp.inc();

timestampedMessage.setTimeStamp(myTimeStamp);

messageProcessor.processMessage();

3 1 0

Timestamper Delayer Broadcaster

Incrementing the time stamp may change time
stamps of previous unsent messages!

55

DEEP COPY

myTimeStamp.inc();

timestampedMessage.timeStamp = myTimeStamp.deepCopy();

messageProcessor.processMessage();

3 1 0

Done? 2 0 0 Lunch? 1 0 0 Ok 3 1 0

Site time stamp

Timestamper Delayer Broadcaster

56

GENERAL CONVENIENCE FUNCTION FOR

SERIALIZABLE OBJECTS

VectorTimeStamp deepCopy(VectorTimeStamp original) {

 return (VectorTimeStamp) Misc.deepCopy(original);

}

Uses Java’s ability to automatically serialize objects

Returns original if object is not serializable

57

Causality-unaware

communication system

Causality –Unaware

 Application

CAUSALITY ARCHITECTURE: TRACEABLE

ALGORITHM

Send

Filter

Receive

Filter
Causality

Manager

58

PEER TRACEABLE ALGORITHM: PRE

COMMUNICATION STEPS

Init

VectorTimeStampCreated

Join Messages

For each new user U

UserAddedToVectorTimeStamp()

59

SEND TRACEABLE STEPS

Send Filter

Send Filter

For each non-user message M

Pass unfiltered message to message processor

For each sent user message M

LocalCountIncrementedInSiteVectorTimeStamp

VectorTimeStampedMessageSent through message processor

60

RECEIVE TRACEABLE STEPS

Receive Filter

For each VectorTimeStampedMessageReceived

If isConcurrent(M) ConcurrenctVectorTimeStampedMessageDetected … return

VectorTimeStampedMessageBuffered

If (isSuccessorNextBufferedMessage)

Receive Filter

For each non-user message M

Pass unfiltered message to message processor

VectorTimeStampedMessageRemovedFromBuffer and
VectorTimeStampedMessageDelivered

Handling Concurrent
Messages?

61

IMMEDIATELY DELIVERING CONCURRENT

MESSAGES

 When a message arrives see if its vector time stamp
> the vector time stamp, put in the buffer and
process buffer

 Otherwise deliver immediately (optimistically
assuming no conflict)
 Update time stamp

 Subsequent causal messages wrt to previous messages will
not be processed

 Do not update time stamp
 Subsequent causal messages wrt to this message not

processed

62

IMMEDIATELY DELIVERING CONCURRENT

MESSAGES

 A tree of message paths exists

 Create vector time stamp and buffer for each leaf in

the path

 When a message arrives see if its vector time stamp

> one of the vector time stamps, put in the buffer for

that vector time stamp

 Otherwise create a new vector time stamp and

buffer

(VectorTimeStampCopiedAndNewBufferCreated)

and deliver the message after flagging concurrency

63

SUMMARY

 Assume reliable delivery

 Send logical timestamp with message

 If message received out of order, buffer it until

preceding messages received

 In multi-party messages, vector timestamp

 Send and receive filters to make causality and

application independent

 Bulk of work done by shared causality manager,

which listens to join operations

 (Abstract) Factories to instantiate filters, which can

be used to share objects between filters

