CAUSALITY

Prasun Dewan
Department of Computer Science
University of North Carolina at Chapel Hill

dewan@cs.unc.edu

mailto:dewan@cs.unc.edu

MESSAGE ORDERING

o Assume messages received reliably but not
necessarily in order

o Communication is direct (P2P)

MULTICAST

A\

User Process User Process

communicator.toOthers (new ARemoteInput (theNextInput)) ;
_—

UNICAST

User ProcD

User Process

communicator.toUser (“alice”, new AFloorControlRequest()) ;

DECOUPLING RELIABILITY AND ORDER

User Process

Sliding window ensures in-
order processing and reliable
delivery

Assume reliable delivery

93esSaN

How in-order processing?

Not practical to decouple, but

User Process

will help us draw out principles
for the N-Computer, multicast
case, where reliability assumed

communicator.toUser (Yalice”,

new AFloorControlRequest()) ;

PC

OUT OF ORDER UNICAST

Done? Lunch?
Lunch? Done?
Yes, No Yes, No

OUT OF ORDER UNICAST (REVIEW)

PC

Done?

Lunch?

Lunch?

Yes, No

Done?

Yes, No

UNICAST SEQUENCE NIIMRERS
Local Local n Each computer pair keeps count
of #messages sent to other party
Remote n Remote

PC PC
1 2

Send message: increment and
attach local count as time stamp

Each computer keeps last
processed remote # and ordered
buffer for other party

When message received, put
message in ordered buffer

1. If buffer empty or
message# !=successor (

remote#) return
Done? Done? - —

Lunch? Lunch? 2. Remove message from

buffer, process it

PC2 Buffer 3 remote# = message#

DU : 4. Gotol
Lunch? | 2 ﬂ

Local, n Local,
Remote, Remote, n

Buffer,

Buffer,

N-USER UNICAST

Local, Local,
Remote, n Remote3

Buffer,

Buffer,

r
Supports pairwise
connections (IMs)
[
Group IM?

Local, n Local,,
Remote1 Remote,

Buffer,

Buffer,

OUT OF ORD

M, causes (<) M,
if M, sent from
site S after M,

received or
generated at Site
S

Causal relations

Causal multicast:

At all sites, if M, <

M,, M, should be
processed after

Ml
Done? Done? Lunch? How to detect and
Lunch? Lunch? Done? ensure causal
Yes, No Yes, No Yes, No broadcast?

I

Correct Order?

L

MESSAGE HISTORY STA%“

Local Bt Local Local Stamp.: Glopal
message id + history
PC of ids of
3/ sent/received msgs
e .Global id: unique site
52 it + sequence number
Nl,l)}
Yes, No, (3,1),
; {(1,1), (23000 History can get large
and compression
- needed
Done? Done? Lunch?
Lunch? Lunch? Done? :
Simpler scheme
Yes, No Yes, No Yes, No

possible if message

not multicast to
arbitrary user set

S

MESSAGE HISTORY STAMP (REg#==2

Local Bt Local Local Stamp.: Glopal
message id + history
PC of ids of
3/ sent/received msgs
e .Global id: unique site
52 it + sequence number
Nl,l)}
Yes, No, (3,1),
; {(1,1), (23000 History can get large
and compression
needed
Done? Done? Lunch?
Lunch? Lunch? Done? :
Simpler scheme
Yes, No Yes, No Yes, No

possible if message
not multicast to
arbitrary user set

&

GLOBAL SCALAR ID: LOGICAL CLOCK, ASSUMING
ALL MESSAGES BROADCAST

Every site keeps a global id initialized to O

When a site generates a message it
increments id and time stamps message
with it

A site delivers a message if its global id is
the successor of current global id;
otherwise it buffers the message to be
delivered later

On delivering/processing a received
message, a site sets its global id to the
message id

If no concurrent messages ever occur,
this scheme should work

Causal broadcast does not indicate

It should allow detection of concurrent
messages as soon as they arrive

what should happen with concurrent
messages —immediate delivery, (fatal)

error

It should not deliver a message before its

cause —~ ﬁj@

LAST SENDER TIME STAMP, ASSUMING ALL
MESSAGES BROADCAST

Every site keeps a receive count for
0O 0 0 O each site

When a site generates a message it
sends the sender and count of the last
message it received

A site delivers a message if the
received count for the site is the same
as its count for that site; otherwise it
buffers the message for later delivery

On delivering/processing a received
message, a site increments local count
for that site

5

LAST SENDER TIME STAMP: MULTIPLE CAUSES

Every site keeps a receive count for
each site

When a site generates a message it
sends the sender and count of the last
message it received

A site delivers a message if the
received count for the site is the same
as its count for that site; otherwise it
buffers the message for later delivery

On delivering/processing a received
message, a site increments local count
11 for that site

- A message may have multiple causes, and this scheme sends only the most recent cause b
'y
N

FROM HISTORY TO VECTOR TIMESTAMPS

Local |l Local Local H Assume: each

message broadcast to
5 all other users in an
/ app session

PC

IM and many other

wl’l)} apps foIIon this
assumption

Yes, No, (3,1),

_Lan e Cov

. sent/received

messages replace
Done? Done? Lunch? 8 P

history

Lunch? Lunch? Done?

Yes, No Yes, No Yes, No

EXTENSION OF TwWO-USER UNICAST

Local

Remote

Done?

Number for each
user: vector
timestamp

Message has vector
time stamp

Ordered buffer for
messages arriving
early

Need:

Lunch?

Done?
Lunch?
PC2 Buffer
Done? 1
Lunch? | 2

< and == for sorting
buffer

increment
operation before
sending message
and after receiving
message

succ function for
picking next <
received msg

C

g

—,

VECTOR TIME STAMPS

v=(x!, .. x") atSite S >

Site Sl has broadcast xX messages to

other sites and forall 1<i<n, i !=jSite S

has received x' messages from Site S'

forall1<i<n, al==Db

vi=(al, ..a")

forall1<i<n,a'<b

v2=(b%, .. b")

for somel<i<n,a<b

Vector time stamps do not create total order

p—

Possible that a'< b' and al > bifor some 1 <i, j < n = concurrent message, v! | |v?

Causal broadcast does not impose order on concurrent messages

For causal broadcast, will assume no concurrent messages are generated.

EXTENSION OF TwWO-USER UNICAST

Done?

Lunch?

Local

Remote

Number for each
user: vector
timestamp

PC

Message has vector
time stamp

D~

Ordered buffer for
messages arriving
early

Done?
Lunch?
PC2 Buffer
Done? 1
Lunch? | 2

Need:

< and == for sorting
buffer

increment
operation before
sending message
and after receiving
message

succ function for
picking next <
received msg

C

g

—,

INCREMENT AND SUCCESSOR

vi=(a%, ..a")

v2=(bl, .. b")

There exists 1 <i<n, a'==1+ b

for all j!=i, al==Db!

inc(i,v= (al,

., a,..,a")

Su

W

UNICAST VS. MULITCAST

Each pair of communicating computers
keeps a count of how many messages it
has sent to other party and next expected
remote# for other party

Each site' keeps a local vector time
stamp, v' = (i}, .. i")

Send message: attach and increment local
count

Send message: increment i' and attach
vector time stamp

Each site keeps ordered buffer for other
party

Each site' keeps ordered buffer' for all
parties

When message received, put message in
ordered buffer

When message received from site i, put
message in ordered buffer

1. If buffer empty or message#
I=successor (remote#) return

2. Remove message from buffer,
process it

3 remote# & messagett

4. Goto1l

1. If buffer empty or message TS !=
successor (local TS) return

2. Remove message from buffer,
process it

3. Local TS' € message TS'

4. Goto1l

CAUSéAlL MULTICASTV3 Send message:

increment i and
11010 11110 1110/ attach vector time
stamp

Received message is
put in ordered
buffer

%ﬂ"a 1. If buffer empty or

message TS
I=successor (local
TS) return

2. Remove message
Done? Done? Done? from buffer and

3 Local TS' € msg
Buffer, Buffer, Buffer, TS'

Done? 1(01(0 Done?
Lunch. Lﬂ Lﬂ U

&

EXTRA STEPS FOR IMPLEMENTING CAUSAL
IILTICAST?

V1 I\ |
1100 11
PC

2

0

Done? Done? Done?
Lunch? Lunch?
Buffer, Buffer, Buffer,
Done? Done? n n
Lunch?

—
—

Implement vect
time stamps

Implement buff.

Change messag
sends and receiv

1]1]0] '

SOFTWARE ARCHITECTURE

Causal
Model

SOFTWARE ARCHITECTURE REQUIREMENTS?

CAUSALITY ARCHITECTURE (REVIEW)

Send/Receive

Received messages

B0

INTERJECTION/INTERCEPTION OF MESSAGES

A sent/received message
through a send/receive filt
send/receive pipeline

Causality —
Unaware

Application
’ Default filter simply for
message to the next sta
Filter Filter Need a wa.y to replace. defa
with custom filters

HHHHIHE

L

DELIVERY: UN-FILTERED OR FILTERED

Demo 1: Multi-View Single-User Version of the IM/Editing

Tool

Demo 2: Multi-User IM/Editing Tool

Demo 3: Replicated Windows

Demo 4: Jitter and Telepointer Trails

Demo 5: Causality

Demo 6: Operation Transformation

Demo 7: Locking

Unfiltered

Unfiltered

Unfiltered

Buffered

Reordered

Transformed

FILTERING AND EXTENSIBILITY

SentMessage processMessage SentMessage
‘ : ” Pr r
Filter £ teray 0Ccesso
‘W
Sender toOthers Communicator |«——
. objectReceived .
Receiver = ReceivedMessage
e
: Messas Processor
Received 1W7
MessageFilter |
filterMessage

Filter interface(s)?

MESSAGE FILTER INTERFACE

public interface MessageFilter<MessageType4 {

public void
newVal;
public void

| /

setMessageProcessor ¢Messad&ﬁfocessorFMessageType>

filterMesagequssageType ;Lssage

/

AN

Called by communication
system when new message
to be filtered available

Next stage in pipeline, | ReceivedMessage
processing the filtered | or SentMessage

message

Called by
communication system
when pipeline setup

MESSAGE PROCESSOR INTERFACE

public interface MessageProcessor{MessageType>| ({
public wvoid processMessagequssag Type theMessage) ;

| [

/

Called by message
filterer to process
message

ReceivedMessage
or SentMessage

Sent message processor (and
succeeding pipeline stages)
broadcasts message

Received message processor (and
succeeding pipeline stages) delivers
to listeners

FILTERING AND EXTENSIBILITY

SentMessage processMessage SentMessage
‘ : ” Pr r
Filter £ teray 0Ccesso
‘W
Sender toOthers Communicator |«——
. objectReceived .
Receiver = ReceivedMessage
e
: Messas Processor
Received 1W7
MessageFilter |
filterMessage

Unfiltered case?

DEFAULT PARAMETERIZED MESSAGE FILTER

public class AMessageForwarder<MessageType> implements
MessageFilter<MessageType> ({
MessageProcessor<MessageType> messageProcessor;
public void filterMessage (MessageType sentMessage) ({
messageProcessor.processMessage (sentMessage) ;
}
public void setMessageProcgssor (MessageProcessor<MessageType>
newVal) {
messageProcessor = newVal

}

\

Simply forwards the Instantiated as both sent
message and receive filter

Can be replaced with custom received and sent filters that modify, buffer and/or
reorder messages: e.g. MySentMessageFilter, MyReceivedMessageFilter

MESSAGE-SPECIFIC FILTERS

public class AMessageForwarder<MessageType> implements
MessageFilter<MessageType> ({
MessageProcessor<MessageType> messageRrocessor;
public void filterMessage (MessageType
messageProcessor.processMessage (sentMe

}

public void setMessageProcessor (MessageProce

or<MessageType>

newVal) {
messageProcessor = newVal Message type matters, must know
} receive and send message types
) implemented by the communicator
\
Simply forwards the Instantiated as both sent
message and receive filter

Can be replaced with custom received and sent filters that modify, buffer and/or
reorder messages: e.g. MySentMessageFilter, MyReceivedMessageFilter

|
Typically different actions for sent and receive filtering (e.g. add time stamp, remove " ‘@

time stamp)

GROUPMESSAGE AND SENTMESSAGE

public interface GroupMessage extends Serializable {
String getApplicationName();
Object getUserMessage();
boolean isUserMessage();

public interface SentMessage extends GroupMessage{

,

Sent message filter must implement MessageFilter<SentMessage>

If (isUserMessage()) then getUserMessage() is the object sent by remote site

User object will be replaced with a time stamped object by filter

System messages such as client joins and leave status update messages

RECEIVEDMESSAGE

public interface ReceivedMessage extends GroupMessage {
String getClientName();

Receive message filter must implement MessageFilter<ReceivedMessage>

GroupMessage unites SendMessage and ReceiveMessage

If (isUserMessage()) then getUserMessage() is the object sent by remote site

User object will be actual user object extracted from timestamped message

getClientName() needed for timestamp-based processing

INTERJECTION/INTERCEPTION OF MESSAGES

CAUSAL MULTICAST,,

11010 11110 1|1

Done?

Buffer,

SHARED FILTER STATE

Causa
Mana

T

SHARED FILTER STATE

Causality —Unaware

Application
When to a
component to
Causality |
Manager lter

I clientJoined()

reation of

time stamp
correct len

LISTENING TO CLIENT JOINS

public interface SessionMessagelListener {
void clientJoined(String aClientName, String anApplicationName,
String aSessionName, boolean isNewSession, boolean isNewApplication,
Collection<String> allUsers);
void clientLeft(String aClientName, String anApplicationName);

}

communicator.addSessionMessagelListener(causalityManager);

Assume first message sent after all members of the session have
joined and no message sent after the first user leaves

Dynamic session changes in causal communication requires
latecomer messages

How TO SWITCH?

} N
N

How TO SWITCH?

Causality —Unaware Communicator could provide
Application to switch filters
Communicator is aware of filt
any other component that ne
Causality be switched
Filter " Manager | Filt

Filter created using factor

Shared objects can be passe
factories created by program

Can register custom factory

! How to share objects betw.
filters
abstract factory to create cu
! filter
How to switch factories. ,
<

FACTORY INTERFACE

public interface MessageFilterCreator<MessageType> ({

}

MessageFilter<MessageType>| getMessageFilter ()

>

e

Returns object to be Common interface for creating
created sent and receive filters

Can create a new object
each time or return a
singleton object

DEFAULT PARAMETERIZED MESSAGE FILTER
FACTORY

public class AMessageForwarderCreator<MessageType> implements
MessageFilterCreator<MessageType>{
public MessageFilter<MessageType> getMessageFilter () {
return new AMessageForwarder<MessageType> () ;

}

Can be replaced with custom factories
(e.g. MySendFilterCreator,
MyReceiveFilterCreator)

Instantiated as both sent
and receive filter factory

SEND FILTER (FACTORY) SELECTOR OR ABSTARCT
FACTORY

public class SentMessageFilterSelector ({
static MessageFilterCreator<SentMessage> |filterFactory
neW'AMéssagerrwarderCreator<SentMéJ:age AN
public static MessageFilterCreator<SentMessage> getMé\sageFilterCreator) {

return filterFactory;, r \

}
public static wvoid setMessageFilterCreator(Mess#geFilterdkeator<SentMessage>

theFactory) {
filterFactory= theFactory;

I8

Called during construction
of send pipeline Default factory

Can be assigned custom send factory
(SentMessageFilterSelector.setMessageFilterCreator(new MySendFilterCreator()) (before
communicator is created) ~ J@

RECEIVE FILTER (FACTORY) SELECTOR

public class ReceivedMessageFilterSelector {
static MessageFilterCreator<ReceivedMessage>| filterFactory |=
new AMessageForwarderCreator<ReceivedMessagé> () ,;
public static MessageFilterCreator<ReceivedMessag getMessageFilterCreator|() {
return queuerFactory,

}
public static wvoid
setMessageFilterCreator|MessageFilterCreator

eceivedMessage> the@Factory) {

guetuerraccory= ¢t ry;

Default factory Called during construction
of receive pipeline

Can be assigned custom receive factory
ReceivedMessageFilterSelector.setMessageFilterCreator(new MyReceiveFilterCreator())
(before communicator is created) /3
Rl G\

FILTERS

Send/Receive

Received messages

B0

UNICAST VS. MULITCAST (REVIEW)

Each pair of communicating computers
keeps a count of how many messages it
has sent to other party and next expected
remote# for other party

Each site' keeps a local vector time
stamp, v' = (i}, .. i")

Send message: attach and increment local
count

Send message: increment i' and attach
vector time stamp

Each site keeps ordered buffer for other
party

Each site' keeps ordered buffer' for all
parties

When message received, put message in
ordered buffer

When message received from site i, put
message in ordered buffer

1. If buffer empty or message#
I=successor (remote#) return

2. Remove message from buffer,
process it

3 remote# & messagett

4. Goto1l

1. If buffer empty or message TS !=
successor (local TS) return

2. Remove message from buffer,
process it

3. Local TS' € message TS'

4. Goto1l

FILTERS (REV

Caus
Mana

HOW TO TEST SYSTEM

11010 11110 11110

ust ask communica
peer)

ow to ensure that m
reach

Done? Done?
Lunch?
Buffer, Buffer,

DELAYING MESSAGES

static void setDelaysAlice (Communicator communicator) ({
communicator.setMinimumDelayToPeer ("cathy", 20000) ;

}

Nodes labeled in terms of their users

Actual delay maybe larger because of scheduling and
network delays

ASYNCHRONOUS IMPLEMENTATION CAVEAT

Timestamper Broadcaster

Ok l 3 T 1]0 Done?

myTimeStamp.inc();
timestampedMessage.setTimeStamp(myTimeStamp);
messageProcessor.processMessage();

Incrementing the time stamp may change ti
stamps of previous unsent messages!

Timestamper

DEEP COoPY

Ok

I3T1W Done? y. ‘ 0 ‘ 0 Lunch? 1 ‘

Broadcaster

0

3110} Site time stamp

myTimeStamp.inc();

timestampedMessage.timeStamp = myTimeStampy.deepCopy();

messageProcessor.processMessage();

(GENERAL CONVENIENCE FUNCTION FOR
SERIALIZABLE OBJECTS

VectorTimeStamp deepCopy(VectorTimeStamp original) {
return (VectorTimeStamp) Misc.deepCopy(original);

}

Uses Java’s ability to automatically serialize objects

Returns original if object is not serializable

CAUSALITY ARCHITECTURE: TRACEABLE
ALGORITHM

Causality —Unaware
Application

Causality |
Manager lter

\
/

|

PEER TRACEABLE ALGORITHM: PRE
COMMUNICATION STEPS

SEND TRACEABLE STEPS

Sen

RECEIVE TRACEABLE STEPS

Receive Filter

Handling Concurrent

Messages?

For each VectorTimeStampedMessageReceived

If isConcurrent(M) ConcurrenctVectorTimeStampedMessageDetected ... return

VectorTimeStampedMessageBuffered

If (isSuccessorNextBufferedMessage)

VectorTimeStampedMessageRemovedFromBuffer and

VectorTimeStampedMessageDelivered

Receive Filter

For each non-user message M

Pass unfiltered message to message processor

IMMEDIATELY DELIVERING CONCURRENT
MESSAGES

o When a message arrives see 1if its vector time stamp
> the vector time stamp, put in the buffer and
process buffer

o Otherwise deliver immediately (optimistically
assuming no conflict)
o Update time stamp

o Subsequent causal messages wrt to previous messages will
not be processed

e Do not update time stamp

o Subsequent causal messages wrt to this message not
processed

IMMEDIATELY DELIVERING CONCURRENT
MESSAGES

o A tree of message paths exists

o Create vector time stamp and buffer for each leaf in
the path

o When a message arrives see 1if its vector time stamp
> one of the vector time stamps, put in the buffer for
that vector time stamp

o Otherwise create a new vector time stamp and

buffer
(VectorTimeStampCopiedAndNewBufferCreated)
and deliver the message after flagging concurrency

SUMMARY

o Assume reliable delivery
o Send logical timestamp with message

o If message received out of order, buffer i1t until
preceding messages received

o In multi-party messages, vector timestamp

o Send and receive filters to make causality and
application independent

o Bulk of work done by shared causality manager,
which listens to join operations

o (Abstract) Factories to instantiate filters, which can
be used to share objects between filters

